Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
221 lines
7.2 KiB
221 lines
7.2 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#include "absl/numeric/int128.h" |
|
|
|
#include <algorithm> |
|
#include <cstdint> |
|
#include <random> |
|
#include <vector> |
|
|
|
#include "benchmark/benchmark.h" |
|
#include "absl/base/config.h" |
|
|
|
namespace { |
|
|
|
constexpr size_t kSampleSize = 1000000; |
|
|
|
std::mt19937 MakeRandomEngine() { |
|
std::random_device r; |
|
std::seed_seq seed({r(), r(), r(), r(), r(), r(), r(), r()}); |
|
return std::mt19937(seed); |
|
} |
|
|
|
std::vector<std::pair<absl::uint128, absl::uint128>> |
|
GetRandomClass128SampleUniformDivisor() { |
|
std::vector<std::pair<absl::uint128, absl::uint128>> values; |
|
std::mt19937 random = MakeRandomEngine(); |
|
std::uniform_int_distribution<uint64_t> uniform_uint64; |
|
values.reserve(kSampleSize); |
|
for (size_t i = 0; i < kSampleSize; ++i) { |
|
absl::uint128 a = |
|
absl::MakeUint128(uniform_uint64(random), uniform_uint64(random)); |
|
absl::uint128 b = |
|
absl::MakeUint128(uniform_uint64(random), uniform_uint64(random)); |
|
values.emplace_back(std::max(a, b), |
|
std::max(absl::uint128(2), std::min(a, b))); |
|
} |
|
return values; |
|
} |
|
|
|
void BM_DivideClass128UniformDivisor(benchmark::State& state) { |
|
auto values = GetRandomClass128SampleUniformDivisor(); |
|
while (state.KeepRunningBatch(values.size())) { |
|
for (const auto& pair : values) { |
|
benchmark::DoNotOptimize(pair.first / pair.second); |
|
} |
|
} |
|
} |
|
BENCHMARK(BM_DivideClass128UniformDivisor); |
|
|
|
std::vector<std::pair<absl::uint128, uint64_t>> |
|
GetRandomClass128SampleSmallDivisor() { |
|
std::vector<std::pair<absl::uint128, uint64_t>> values; |
|
std::mt19937 random = MakeRandomEngine(); |
|
std::uniform_int_distribution<uint64_t> uniform_uint64; |
|
values.reserve(kSampleSize); |
|
for (size_t i = 0; i < kSampleSize; ++i) { |
|
absl::uint128 a = |
|
absl::MakeUint128(uniform_uint64(random), uniform_uint64(random)); |
|
uint64_t b = std::max(uint64_t{2}, uniform_uint64(random)); |
|
values.emplace_back(std::max(a, absl::uint128(b)), b); |
|
} |
|
return values; |
|
} |
|
|
|
void BM_DivideClass128SmallDivisor(benchmark::State& state) { |
|
auto values = GetRandomClass128SampleSmallDivisor(); |
|
while (state.KeepRunningBatch(values.size())) { |
|
for (const auto& pair : values) { |
|
benchmark::DoNotOptimize(pair.first / pair.second); |
|
} |
|
} |
|
} |
|
BENCHMARK(BM_DivideClass128SmallDivisor); |
|
|
|
std::vector<std::pair<absl::uint128, absl::uint128>> GetRandomClass128Sample() { |
|
std::vector<std::pair<absl::uint128, absl::uint128>> values; |
|
std::mt19937 random = MakeRandomEngine(); |
|
std::uniform_int_distribution<uint64_t> uniform_uint64; |
|
values.reserve(kSampleSize); |
|
for (size_t i = 0; i < kSampleSize; ++i) { |
|
values.emplace_back( |
|
absl::MakeUint128(uniform_uint64(random), uniform_uint64(random)), |
|
absl::MakeUint128(uniform_uint64(random), uniform_uint64(random))); |
|
} |
|
return values; |
|
} |
|
|
|
void BM_MultiplyClass128(benchmark::State& state) { |
|
auto values = GetRandomClass128Sample(); |
|
while (state.KeepRunningBatch(values.size())) { |
|
for (const auto& pair : values) { |
|
benchmark::DoNotOptimize(pair.first * pair.second); |
|
} |
|
} |
|
} |
|
BENCHMARK(BM_MultiplyClass128); |
|
|
|
void BM_AddClass128(benchmark::State& state) { |
|
auto values = GetRandomClass128Sample(); |
|
while (state.KeepRunningBatch(values.size())) { |
|
for (const auto& pair : values) { |
|
benchmark::DoNotOptimize(pair.first + pair.second); |
|
} |
|
} |
|
} |
|
BENCHMARK(BM_AddClass128); |
|
|
|
#ifdef ABSL_HAVE_INTRINSIC_INT128 |
|
|
|
// Some implementations of <random> do not support __int128 when it is |
|
// available, so we make our own uniform_int_distribution-like type. |
|
class UniformIntDistribution128 { |
|
public: |
|
// NOLINTNEXTLINE: mimicking std::uniform_int_distribution API |
|
unsigned __int128 operator()(std::mt19937& generator) { |
|
return (static_cast<unsigned __int128>(dist64_(generator)) << 64) | |
|
dist64_(generator); |
|
} |
|
|
|
private: |
|
std::uniform_int_distribution<uint64_t> dist64_; |
|
}; |
|
|
|
std::vector<std::pair<unsigned __int128, unsigned __int128>> |
|
GetRandomIntrinsic128SampleUniformDivisor() { |
|
std::vector<std::pair<unsigned __int128, unsigned __int128>> values; |
|
std::mt19937 random = MakeRandomEngine(); |
|
UniformIntDistribution128 uniform_uint128; |
|
values.reserve(kSampleSize); |
|
for (size_t i = 0; i < kSampleSize; ++i) { |
|
unsigned __int128 a = uniform_uint128(random); |
|
unsigned __int128 b = uniform_uint128(random); |
|
values.emplace_back( |
|
std::max(a, b), |
|
std::max(static_cast<unsigned __int128>(2), std::min(a, b))); |
|
} |
|
return values; |
|
} |
|
|
|
void BM_DivideIntrinsic128UniformDivisor(benchmark::State& state) { |
|
auto values = GetRandomIntrinsic128SampleUniformDivisor(); |
|
while (state.KeepRunningBatch(values.size())) { |
|
for (const auto& pair : values) { |
|
benchmark::DoNotOptimize(pair.first / pair.second); |
|
} |
|
} |
|
} |
|
BENCHMARK(BM_DivideIntrinsic128UniformDivisor); |
|
|
|
std::vector<std::pair<unsigned __int128, uint64_t>> |
|
GetRandomIntrinsic128SampleSmallDivisor() { |
|
std::vector<std::pair<unsigned __int128, uint64_t>> values; |
|
std::mt19937 random = MakeRandomEngine(); |
|
UniformIntDistribution128 uniform_uint128; |
|
std::uniform_int_distribution<uint64_t> uniform_uint64; |
|
values.reserve(kSampleSize); |
|
for (size_t i = 0; i < kSampleSize; ++i) { |
|
unsigned __int128 a = uniform_uint128(random); |
|
uint64_t b = std::max(uint64_t{2}, uniform_uint64(random)); |
|
values.emplace_back(std::max(a, static_cast<unsigned __int128>(b)), b); |
|
} |
|
return values; |
|
} |
|
|
|
void BM_DivideIntrinsic128SmallDivisor(benchmark::State& state) { |
|
auto values = GetRandomIntrinsic128SampleSmallDivisor(); |
|
while (state.KeepRunningBatch(values.size())) { |
|
for (const auto& pair : values) { |
|
benchmark::DoNotOptimize(pair.first / pair.second); |
|
} |
|
} |
|
} |
|
BENCHMARK(BM_DivideIntrinsic128SmallDivisor); |
|
|
|
std::vector<std::pair<unsigned __int128, unsigned __int128>> |
|
GetRandomIntrinsic128Sample() { |
|
std::vector<std::pair<unsigned __int128, unsigned __int128>> values; |
|
std::mt19937 random = MakeRandomEngine(); |
|
UniformIntDistribution128 uniform_uint128; |
|
values.reserve(kSampleSize); |
|
for (size_t i = 0; i < kSampleSize; ++i) { |
|
values.emplace_back(uniform_uint128(random), uniform_uint128(random)); |
|
} |
|
return values; |
|
} |
|
|
|
void BM_MultiplyIntrinsic128(benchmark::State& state) { |
|
auto values = GetRandomIntrinsic128Sample(); |
|
while (state.KeepRunningBatch(values.size())) { |
|
for (const auto& pair : values) { |
|
benchmark::DoNotOptimize(pair.first * pair.second); |
|
} |
|
} |
|
} |
|
BENCHMARK(BM_MultiplyIntrinsic128); |
|
|
|
void BM_AddIntrinsic128(benchmark::State& state) { |
|
auto values = GetRandomIntrinsic128Sample(); |
|
while (state.KeepRunningBatch(values.size())) { |
|
for (const auto& pair : values) { |
|
benchmark::DoNotOptimize(pair.first + pair.second); |
|
} |
|
} |
|
} |
|
BENCHMARK(BM_AddIntrinsic128); |
|
|
|
#endif // ABSL_HAVE_INTRINSIC_INT128 |
|
|
|
} // namespace
|
|
|