Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1877 lines
62 KiB
1877 lines
62 KiB
// Copyright 2018 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
// For reference check out: |
|
// https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling |
|
// |
|
// Note that we only have partial C++11 support yet. |
|
|
|
#include "absl/debugging/internal/demangle.h" |
|
|
|
#include <cstdint> |
|
#include <cstdio> |
|
#include <limits> |
|
|
|
namespace absl { |
|
namespace debugging_internal { |
|
|
|
typedef struct { |
|
const char *abbrev; |
|
const char *real_name; |
|
// Number of arguments in <expression> context, or 0 if disallowed. |
|
int arity; |
|
} AbbrevPair; |
|
|
|
// List of operators from Itanium C++ ABI. |
|
static const AbbrevPair kOperatorList[] = { |
|
// New has special syntax (not currently supported). |
|
{"nw", "new", 0}, |
|
{"na", "new[]", 0}, |
|
|
|
// Works except that the 'gs' prefix is not supported. |
|
{"dl", "delete", 1}, |
|
{"da", "delete[]", 1}, |
|
|
|
{"ps", "+", 1}, // "positive" |
|
{"ng", "-", 1}, // "negative" |
|
{"ad", "&", 1}, // "address-of" |
|
{"de", "*", 1}, // "dereference" |
|
{"co", "~", 1}, |
|
|
|
{"pl", "+", 2}, |
|
{"mi", "-", 2}, |
|
{"ml", "*", 2}, |
|
{"dv", "/", 2}, |
|
{"rm", "%", 2}, |
|
{"an", "&", 2}, |
|
{"or", "|", 2}, |
|
{"eo", "^", 2}, |
|
{"aS", "=", 2}, |
|
{"pL", "+=", 2}, |
|
{"mI", "-=", 2}, |
|
{"mL", "*=", 2}, |
|
{"dV", "/=", 2}, |
|
{"rM", "%=", 2}, |
|
{"aN", "&=", 2}, |
|
{"oR", "|=", 2}, |
|
{"eO", "^=", 2}, |
|
{"ls", "<<", 2}, |
|
{"rs", ">>", 2}, |
|
{"lS", "<<=", 2}, |
|
{"rS", ">>=", 2}, |
|
{"eq", "==", 2}, |
|
{"ne", "!=", 2}, |
|
{"lt", "<", 2}, |
|
{"gt", ">", 2}, |
|
{"le", "<=", 2}, |
|
{"ge", ">=", 2}, |
|
{"nt", "!", 1}, |
|
{"aa", "&&", 2}, |
|
{"oo", "||", 2}, |
|
{"pp", "++", 1}, |
|
{"mm", "--", 1}, |
|
{"cm", ",", 2}, |
|
{"pm", "->*", 2}, |
|
{"pt", "->", 0}, // Special syntax |
|
{"cl", "()", 0}, // Special syntax |
|
{"ix", "[]", 2}, |
|
{"qu", "?", 3}, |
|
{"st", "sizeof", 0}, // Special syntax |
|
{"sz", "sizeof", 1}, // Not a real operator name, but used in expressions. |
|
{nullptr, nullptr, 0}, |
|
}; |
|
|
|
// List of builtin types from Itanium C++ ABI. |
|
static const AbbrevPair kBuiltinTypeList[] = { |
|
{"v", "void", 0}, |
|
{"w", "wchar_t", 0}, |
|
{"b", "bool", 0}, |
|
{"c", "char", 0}, |
|
{"a", "signed char", 0}, |
|
{"h", "unsigned char", 0}, |
|
{"s", "short", 0}, |
|
{"t", "unsigned short", 0}, |
|
{"i", "int", 0}, |
|
{"j", "unsigned int", 0}, |
|
{"l", "long", 0}, |
|
{"m", "unsigned long", 0}, |
|
{"x", "long long", 0}, |
|
{"y", "unsigned long long", 0}, |
|
{"n", "__int128", 0}, |
|
{"o", "unsigned __int128", 0}, |
|
{"f", "float", 0}, |
|
{"d", "double", 0}, |
|
{"e", "long double", 0}, |
|
{"g", "__float128", 0}, |
|
{"z", "ellipsis", 0}, |
|
{nullptr, nullptr, 0}, |
|
}; |
|
|
|
// List of substitutions Itanium C++ ABI. |
|
static const AbbrevPair kSubstitutionList[] = { |
|
{"St", "", 0}, |
|
{"Sa", "allocator", 0}, |
|
{"Sb", "basic_string", 0}, |
|
// std::basic_string<char, std::char_traits<char>,std::allocator<char> > |
|
{"Ss", "string", 0}, |
|
// std::basic_istream<char, std::char_traits<char> > |
|
{"Si", "istream", 0}, |
|
// std::basic_ostream<char, std::char_traits<char> > |
|
{"So", "ostream", 0}, |
|
// std::basic_iostream<char, std::char_traits<char> > |
|
{"Sd", "iostream", 0}, |
|
{nullptr, nullptr, 0}, |
|
}; |
|
|
|
// State needed for demangling. This struct is copied in almost every stack |
|
// frame, so every byte counts. |
|
typedef struct { |
|
int mangled_idx; // Cursor of mangled name. |
|
int out_cur_idx; // Cursor of output std::string. |
|
int prev_name_idx; // For constructors/destructors. |
|
signed int prev_name_length : 16; // For constructors/destructors. |
|
signed int nest_level : 15; // For nested names. |
|
unsigned int append : 1; // Append flag. |
|
// Note: for some reason MSVC can't pack "bool append : 1" into the same int |
|
// with the above two fields, so we use an int instead. Amusingly it can pack |
|
// "signed bool" as expected, but relying on that to continue to be a legal |
|
// type seems ill-advised (as it's illegal in at least clang). |
|
} ParseState; |
|
|
|
static_assert(sizeof(ParseState) == 4 * sizeof(int), |
|
"unexpected size of ParseState"); |
|
|
|
// One-off state for demangling that's not subject to backtracking -- either |
|
// constant data, data that's intentionally immune to backtracking (steps), or |
|
// data that would never be changed by backtracking anyway (recursion_depth). |
|
// |
|
// Only one copy of this exists for each call to Demangle, so the size of this |
|
// struct is nearly inconsequential. |
|
typedef struct { |
|
const char *mangled_begin; // Beginning of input std::string. |
|
char *out; // Beginning of output std::string. |
|
int out_end_idx; // One past last allowed output character. |
|
int recursion_depth; // For stack exhaustion prevention. |
|
int steps; // Cap how much work we'll do, regardless of depth. |
|
ParseState parse_state; // Backtrackable state copied for most frames. |
|
} State; |
|
|
|
namespace { |
|
// Prevent deep recursion / stack exhaustion. |
|
// Also prevent unbounded handling of complex inputs. |
|
class ComplexityGuard { |
|
public: |
|
explicit ComplexityGuard(State *state) : state_(state) { |
|
++state->recursion_depth; |
|
++state->steps; |
|
} |
|
~ComplexityGuard() { --state_->recursion_depth; } |
|
|
|
// 256 levels of recursion seems like a reasonable upper limit on depth. |
|
// 128 is not enough to demagle synthetic tests from demangle_unittest.txt: |
|
// "_ZaaZZZZ..." and "_ZaaZcvZcvZ..." |
|
static constexpr int kRecursionDepthLimit = 256; |
|
|
|
// We're trying to pick a charitable upper-limit on how many parse steps are |
|
// necessary to handle something that a human could actually make use of. |
|
// This is mostly in place as a bound on how much work we'll do if we are |
|
// asked to demangle an mangled name from an untrusted source, so it should be |
|
// much larger than the largest expected symbol, but much smaller than the |
|
// amount of work we can do in, e.g., a second. |
|
// |
|
// Some real-world symbols from an arbitrary binary started failing between |
|
// 2^12 and 2^13, so we multiply the latter by an extra factor of 16 to set |
|
// the limit. |
|
// |
|
// Spending one second on 2^17 parse steps would require each step to take |
|
// 7.6us, or ~30000 clock cycles, so it's safe to say this can be done in |
|
// under a second. |
|
static constexpr int kParseStepsLimit = 1 << 17; |
|
|
|
bool IsTooComplex() const { |
|
return state_->recursion_depth > kRecursionDepthLimit || |
|
state_->steps > kParseStepsLimit; |
|
} |
|
|
|
private: |
|
State *state_; |
|
}; |
|
} // namespace |
|
|
|
// We don't use strlen() in libc since it's not guaranteed to be async |
|
// signal safe. |
|
static size_t StrLen(const char *str) { |
|
size_t len = 0; |
|
while (*str != '\0') { |
|
++str; |
|
++len; |
|
} |
|
return len; |
|
} |
|
|
|
// Returns true if "str" has at least "n" characters remaining. |
|
static bool AtLeastNumCharsRemaining(const char *str, int n) { |
|
for (int i = 0; i < n; ++i) { |
|
if (str[i] == '\0') { |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
// Returns true if "str" has "prefix" as a prefix. |
|
static bool StrPrefix(const char *str, const char *prefix) { |
|
size_t i = 0; |
|
while (str[i] != '\0' && prefix[i] != '\0' && str[i] == prefix[i]) { |
|
++i; |
|
} |
|
return prefix[i] == '\0'; // Consumed everything in "prefix". |
|
} |
|
|
|
static void InitState(State *state, const char *mangled, char *out, |
|
int out_size) { |
|
state->mangled_begin = mangled; |
|
state->out = out; |
|
state->out_end_idx = out_size; |
|
state->recursion_depth = 0; |
|
state->steps = 0; |
|
|
|
state->parse_state.mangled_idx = 0; |
|
state->parse_state.out_cur_idx = 0; |
|
state->parse_state.prev_name_idx = 0; |
|
state->parse_state.prev_name_length = -1; |
|
state->parse_state.nest_level = -1; |
|
state->parse_state.append = true; |
|
} |
|
|
|
static inline const char *RemainingInput(State *state) { |
|
return &state->mangled_begin[state->parse_state.mangled_idx]; |
|
} |
|
|
|
// Returns true and advances "mangled_idx" if we find "one_char_token" |
|
// at "mangled_idx" position. It is assumed that "one_char_token" does |
|
// not contain '\0'. |
|
static bool ParseOneCharToken(State *state, const char one_char_token) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
if (RemainingInput(state)[0] == one_char_token) { |
|
++state->parse_state.mangled_idx; |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
// Returns true and advances "mangled_cur" if we find "two_char_token" |
|
// at "mangled_cur" position. It is assumed that "two_char_token" does |
|
// not contain '\0'. |
|
static bool ParseTwoCharToken(State *state, const char *two_char_token) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
if (RemainingInput(state)[0] == two_char_token[0] && |
|
RemainingInput(state)[1] == two_char_token[1]) { |
|
state->parse_state.mangled_idx += 2; |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
// Returns true and advances "mangled_cur" if we find any character in |
|
// "char_class" at "mangled_cur" position. |
|
static bool ParseCharClass(State *state, const char *char_class) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
if (RemainingInput(state)[0] == '\0') { |
|
return false; |
|
} |
|
const char *p = char_class; |
|
for (; *p != '\0'; ++p) { |
|
if (RemainingInput(state)[0] == *p) { |
|
++state->parse_state.mangled_idx; |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
static bool ParseDigit(State *state, int *digit) { |
|
char c = RemainingInput(state)[0]; |
|
if (ParseCharClass(state, "0123456789")) { |
|
if (digit != nullptr) { |
|
*digit = c - '0'; |
|
} |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
// This function is used for handling an optional non-terminal. |
|
static bool Optional(bool /*status*/) { return true; } |
|
|
|
// This function is used for handling <non-terminal>+ syntax. |
|
typedef bool (*ParseFunc)(State *); |
|
static bool OneOrMore(ParseFunc parse_func, State *state) { |
|
if (parse_func(state)) { |
|
while (parse_func(state)) { |
|
} |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
// This function is used for handling <non-terminal>* syntax. The function |
|
// always returns true and must be followed by a termination token or a |
|
// terminating sequence not handled by parse_func (e.g. |
|
// ParseOneCharToken(state, 'E')). |
|
static bool ZeroOrMore(ParseFunc parse_func, State *state) { |
|
while (parse_func(state)) { |
|
} |
|
return true; |
|
} |
|
|
|
// Append "str" at "out_cur_idx". If there is an overflow, out_cur_idx is |
|
// set to out_end_idx+1. The output string is ensured to |
|
// always terminate with '\0' as long as there is no overflow. |
|
static void Append(State *state, const char *const str, const int length) { |
|
for (int i = 0; i < length; ++i) { |
|
if (state->parse_state.out_cur_idx + 1 < |
|
state->out_end_idx) { // +1 for '\0' |
|
state->out[state->parse_state.out_cur_idx++] = str[i]; |
|
} else { |
|
// signal overflow |
|
state->parse_state.out_cur_idx = state->out_end_idx + 1; |
|
break; |
|
} |
|
} |
|
if (state->parse_state.out_cur_idx < state->out_end_idx) { |
|
state->out[state->parse_state.out_cur_idx] = |
|
'\0'; // Terminate it with '\0' |
|
} |
|
} |
|
|
|
// We don't use equivalents in libc to avoid locale issues. |
|
static bool IsLower(char c) { return c >= 'a' && c <= 'z'; } |
|
|
|
static bool IsAlpha(char c) { |
|
return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'); |
|
} |
|
|
|
static bool IsDigit(char c) { return c >= '0' && c <= '9'; } |
|
|
|
// Returns true if "str" is a function clone suffix. These suffixes are used |
|
// by GCC 4.5.x and later versions (and our locally-modified version of GCC |
|
// 4.4.x) to indicate functions which have been cloned during optimization. |
|
// We treat any sequence (.<alpha>+.<digit>+)+ as a function clone suffix. |
|
static bool IsFunctionCloneSuffix(const char *str) { |
|
size_t i = 0; |
|
while (str[i] != '\0') { |
|
// Consume a single .<alpha>+.<digit>+ sequence. |
|
if (str[i] != '.' || !IsAlpha(str[i + 1])) { |
|
return false; |
|
} |
|
i += 2; |
|
while (IsAlpha(str[i])) { |
|
++i; |
|
} |
|
if (str[i] != '.' || !IsDigit(str[i + 1])) { |
|
return false; |
|
} |
|
i += 2; |
|
while (IsDigit(str[i])) { |
|
++i; |
|
} |
|
} |
|
return true; // Consumed everything in "str". |
|
} |
|
|
|
static bool EndsWith(State *state, const char chr) { |
|
return state->parse_state.out_cur_idx > 0 && |
|
chr == state->out[state->parse_state.out_cur_idx - 1]; |
|
} |
|
|
|
// Append "str" with some tweaks, iff "append" state is true. |
|
static void MaybeAppendWithLength(State *state, const char *const str, |
|
const int length) { |
|
if (state->parse_state.append && length > 0) { |
|
// Append a space if the output buffer ends with '<' and "str" |
|
// starts with '<' to avoid <<<. |
|
if (str[0] == '<' && EndsWith(state, '<')) { |
|
Append(state, " ", 1); |
|
} |
|
// Remember the last identifier name for ctors/dtors. |
|
if (IsAlpha(str[0]) || str[0] == '_') { |
|
state->parse_state.prev_name_idx = state->parse_state.out_cur_idx; |
|
state->parse_state.prev_name_length = length; |
|
} |
|
Append(state, str, length); |
|
} |
|
} |
|
|
|
// Appends a positive decimal number to the output if appending is enabled. |
|
static bool MaybeAppendDecimal(State *state, unsigned int val) { |
|
// Max {32-64}-bit unsigned int is 20 digits. |
|
constexpr size_t kMaxLength = 20; |
|
char buf[kMaxLength]; |
|
|
|
// We can't use itoa or sprintf as neither is specified to be |
|
// async-signal-safe. |
|
if (state->parse_state.append) { |
|
// We can't have a one-before-the-beginning pointer, so instead start with |
|
// one-past-the-end and manipulate one character before the pointer. |
|
char *p = &buf[kMaxLength]; |
|
do { // val=0 is the only input that should write a leading zero digit. |
|
*--p = (val % 10) + '0'; |
|
val /= 10; |
|
} while (p > buf && val != 0); |
|
|
|
// 'p' landed on the last character we set. How convenient. |
|
Append(state, p, kMaxLength - (p - buf)); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
// A convenient wrapper around MaybeAppendWithLength(). |
|
// Returns true so that it can be placed in "if" conditions. |
|
static bool MaybeAppend(State *state, const char *const str) { |
|
if (state->parse_state.append) { |
|
int length = StrLen(str); |
|
MaybeAppendWithLength(state, str, length); |
|
} |
|
return true; |
|
} |
|
|
|
// This function is used for handling nested names. |
|
static bool EnterNestedName(State *state) { |
|
state->parse_state.nest_level = 0; |
|
return true; |
|
} |
|
|
|
// This function is used for handling nested names. |
|
static bool LeaveNestedName(State *state, int16_t prev_value) { |
|
state->parse_state.nest_level = prev_value; |
|
return true; |
|
} |
|
|
|
// Disable the append mode not to print function parameters, etc. |
|
static bool DisableAppend(State *state) { |
|
state->parse_state.append = false; |
|
return true; |
|
} |
|
|
|
// Restore the append mode to the previous state. |
|
static bool RestoreAppend(State *state, bool prev_value) { |
|
state->parse_state.append = prev_value; |
|
return true; |
|
} |
|
|
|
// Increase the nest level for nested names. |
|
static void MaybeIncreaseNestLevel(State *state) { |
|
if (state->parse_state.nest_level > -1) { |
|
++state->parse_state.nest_level; |
|
} |
|
} |
|
|
|
// Appends :: for nested names if necessary. |
|
static void MaybeAppendSeparator(State *state) { |
|
if (state->parse_state.nest_level >= 1) { |
|
MaybeAppend(state, "::"); |
|
} |
|
} |
|
|
|
// Cancel the last separator if necessary. |
|
static void MaybeCancelLastSeparator(State *state) { |
|
if (state->parse_state.nest_level >= 1 && state->parse_state.append && |
|
state->parse_state.out_cur_idx >= 2) { |
|
state->parse_state.out_cur_idx -= 2; |
|
state->out[state->parse_state.out_cur_idx] = '\0'; |
|
} |
|
} |
|
|
|
// Returns true if the identifier of the given length pointed to by |
|
// "mangled_cur" is anonymous namespace. |
|
static bool IdentifierIsAnonymousNamespace(State *state, int length) { |
|
// Returns true if "anon_prefix" is a proper prefix of "mangled_cur". |
|
static const char anon_prefix[] = "_GLOBAL__N_"; |
|
return (length > static_cast<int>(sizeof(anon_prefix) - 1) && |
|
StrPrefix(RemainingInput(state), anon_prefix)); |
|
} |
|
|
|
// Forward declarations of our parsing functions. |
|
static bool ParseMangledName(State *state); |
|
static bool ParseEncoding(State *state); |
|
static bool ParseName(State *state); |
|
static bool ParseUnscopedName(State *state); |
|
static bool ParseNestedName(State *state); |
|
static bool ParsePrefix(State *state); |
|
static bool ParseUnqualifiedName(State *state); |
|
static bool ParseSourceName(State *state); |
|
static bool ParseLocalSourceName(State *state); |
|
static bool ParseUnnamedTypeName(State *state); |
|
static bool ParseNumber(State *state, int *number_out); |
|
static bool ParseFloatNumber(State *state); |
|
static bool ParseSeqId(State *state); |
|
static bool ParseIdentifier(State *state, int length); |
|
static bool ParseOperatorName(State *state, int *arity); |
|
static bool ParseSpecialName(State *state); |
|
static bool ParseCallOffset(State *state); |
|
static bool ParseNVOffset(State *state); |
|
static bool ParseVOffset(State *state); |
|
static bool ParseCtorDtorName(State *state); |
|
static bool ParseDecltype(State *state); |
|
static bool ParseType(State *state); |
|
static bool ParseCVQualifiers(State *state); |
|
static bool ParseBuiltinType(State *state); |
|
static bool ParseFunctionType(State *state); |
|
static bool ParseBareFunctionType(State *state); |
|
static bool ParseClassEnumType(State *state); |
|
static bool ParseArrayType(State *state); |
|
static bool ParsePointerToMemberType(State *state); |
|
static bool ParseTemplateParam(State *state); |
|
static bool ParseTemplateTemplateParam(State *state); |
|
static bool ParseTemplateArgs(State *state); |
|
static bool ParseTemplateArg(State *state); |
|
static bool ParseBaseUnresolvedName(State *state); |
|
static bool ParseUnresolvedName(State *state); |
|
static bool ParseExpression(State *state); |
|
static bool ParseExprPrimary(State *state); |
|
static bool ParseExprCastValue(State *state); |
|
static bool ParseLocalName(State *state); |
|
static bool ParseLocalNameSuffix(State *state); |
|
static bool ParseDiscriminator(State *state); |
|
static bool ParseSubstitution(State *state, bool accept_std); |
|
|
|
// Implementation note: the following code is a straightforward |
|
// translation of the Itanium C++ ABI defined in BNF with a couple of |
|
// exceptions. |
|
// |
|
// - Support GNU extensions not defined in the Itanium C++ ABI |
|
// - <prefix> and <template-prefix> are combined to avoid infinite loop |
|
// - Reorder patterns to shorten the code |
|
// - Reorder patterns to give greedier functions precedence |
|
// We'll mark "Less greedy than" for these cases in the code |
|
// |
|
// Each parsing function changes the parse state and returns true on |
|
// success, or returns false and doesn't change the parse state (note: |
|
// the parse-steps counter increases regardless of success or failure). |
|
// To ensure that the parse state isn't changed in the latter case, we |
|
// save the original state before we call multiple parsing functions |
|
// consecutively with &&, and restore it if unsuccessful. See |
|
// ParseEncoding() as an example of this convention. We follow the |
|
// convention throughout the code. |
|
// |
|
// Originally we tried to do demangling without following the full ABI |
|
// syntax but it turned out we needed to follow the full syntax to |
|
// parse complicated cases like nested template arguments. Note that |
|
// implementing a full-fledged demangler isn't trivial (libiberty's |
|
// cp-demangle.c has +4300 lines). |
|
// |
|
// Note that (foo) in <(foo) ...> is a modifier to be ignored. |
|
// |
|
// Reference: |
|
// - Itanium C++ ABI |
|
// <https://mentorembedded.github.io/cxx-abi/abi.html#mangling> |
|
|
|
// <mangled-name> ::= _Z <encoding> |
|
static bool ParseMangledName(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
return ParseTwoCharToken(state, "_Z") && ParseEncoding(state); |
|
} |
|
|
|
// <encoding> ::= <(function) name> <bare-function-type> |
|
// ::= <(data) name> |
|
// ::= <special-name> |
|
static bool ParseEncoding(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
// Implementing the first two productions together as <name> |
|
// [<bare-function-type>] avoids exponential blowup of backtracking. |
|
// |
|
// Since Optional(...) can't fail, there's no need to copy the state for |
|
// backtracking. |
|
if (ParseName(state) && Optional(ParseBareFunctionType(state))) { |
|
return true; |
|
} |
|
|
|
if (ParseSpecialName(state)) { |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
// <name> ::= <nested-name> |
|
// ::= <unscoped-template-name> <template-args> |
|
// ::= <unscoped-name> |
|
// ::= <local-name> |
|
static bool ParseName(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
if (ParseNestedName(state) || ParseLocalName(state)) { |
|
return true; |
|
} |
|
|
|
// We reorganize the productions to avoid re-parsing unscoped names. |
|
// - Inline <unscoped-template-name> productions: |
|
// <name> ::= <substitution> <template-args> |
|
// ::= <unscoped-name> <template-args> |
|
// ::= <unscoped-name> |
|
// - Merge the two productions that start with unscoped-name: |
|
// <name> ::= <unscoped-name> [<template-args>] |
|
|
|
ParseState copy = state->parse_state; |
|
// "std<...>" isn't a valid name. |
|
if (ParseSubstitution(state, /*accept_std=*/false) && |
|
ParseTemplateArgs(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
// Note there's no need to restore state after this since only the first |
|
// subparser can fail. |
|
return ParseUnscopedName(state) && Optional(ParseTemplateArgs(state)); |
|
} |
|
|
|
// <unscoped-name> ::= <unqualified-name> |
|
// ::= St <unqualified-name> |
|
static bool ParseUnscopedName(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
if (ParseUnqualifiedName(state)) { |
|
return true; |
|
} |
|
|
|
ParseState copy = state->parse_state; |
|
if (ParseTwoCharToken(state, "St") && MaybeAppend(state, "std::") && |
|
ParseUnqualifiedName(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
return false; |
|
} |
|
|
|
// <ref-qualifer> ::= R // lvalue method reference qualifier |
|
// ::= O // rvalue method reference qualifier |
|
static inline bool ParseRefQualifier(State *state) { |
|
return ParseCharClass(state, "OR"); |
|
} |
|
|
|
// <nested-name> ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> |
|
// <unqualified-name> E |
|
// ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> |
|
// <template-args> E |
|
static bool ParseNestedName(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
ParseState copy = state->parse_state; |
|
if (ParseOneCharToken(state, 'N') && EnterNestedName(state) && |
|
Optional(ParseCVQualifiers(state)) && |
|
Optional(ParseRefQualifier(state)) && ParsePrefix(state) && |
|
LeaveNestedName(state, copy.nest_level) && |
|
ParseOneCharToken(state, 'E')) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
return false; |
|
} |
|
|
|
// This part is tricky. If we literally translate them to code, we'll |
|
// end up infinite loop. Hence we merge them to avoid the case. |
|
// |
|
// <prefix> ::= <prefix> <unqualified-name> |
|
// ::= <template-prefix> <template-args> |
|
// ::= <template-param> |
|
// ::= <substitution> |
|
// ::= # empty |
|
// <template-prefix> ::= <prefix> <(template) unqualified-name> |
|
// ::= <template-param> |
|
// ::= <substitution> |
|
static bool ParsePrefix(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
bool has_something = false; |
|
while (true) { |
|
MaybeAppendSeparator(state); |
|
if (ParseTemplateParam(state) || |
|
ParseSubstitution(state, /*accept_std=*/true) || |
|
ParseUnscopedName(state) || |
|
(ParseOneCharToken(state, 'M') && ParseUnnamedTypeName(state))) { |
|
has_something = true; |
|
MaybeIncreaseNestLevel(state); |
|
continue; |
|
} |
|
MaybeCancelLastSeparator(state); |
|
if (has_something && ParseTemplateArgs(state)) { |
|
return ParsePrefix(state); |
|
} else { |
|
break; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
// <unqualified-name> ::= <operator-name> |
|
// ::= <ctor-dtor-name> |
|
// ::= <source-name> |
|
// ::= <local-source-name> // GCC extension; see below. |
|
// ::= <unnamed-type-name> |
|
static bool ParseUnqualifiedName(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
return (ParseOperatorName(state, nullptr) || ParseCtorDtorName(state) || |
|
ParseSourceName(state) || ParseLocalSourceName(state) || |
|
ParseUnnamedTypeName(state)); |
|
} |
|
|
|
// <source-name> ::= <positive length number> <identifier> |
|
static bool ParseSourceName(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
ParseState copy = state->parse_state; |
|
int length = -1; |
|
if (ParseNumber(state, &length) && ParseIdentifier(state, length)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
return false; |
|
} |
|
|
|
// <local-source-name> ::= L <source-name> [<discriminator>] |
|
// |
|
// References: |
|
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=31775 |
|
// https://gcc.gnu.org/viewcvs?view=rev&revision=124467 |
|
static bool ParseLocalSourceName(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
ParseState copy = state->parse_state; |
|
if (ParseOneCharToken(state, 'L') && ParseSourceName(state) && |
|
Optional(ParseDiscriminator(state))) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
return false; |
|
} |
|
|
|
// <unnamed-type-name> ::= Ut [<(nonnegative) number>] _ |
|
// ::= <closure-type-name> |
|
// <closure-type-name> ::= Ul <lambda-sig> E [<(nonnegative) number>] _ |
|
// <lambda-sig> ::= <(parameter) type>+ |
|
static bool ParseUnnamedTypeName(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
ParseState copy = state->parse_state; |
|
// Type's 1-based index n is encoded as { "", n == 1; itoa(n-2), otherwise }. |
|
// Optionally parse the encoded value into 'which' and add 2 to get the index. |
|
int which = -1; |
|
|
|
// Unnamed type local to function or class. |
|
if (ParseTwoCharToken(state, "Ut") && Optional(ParseNumber(state, &which)) && |
|
which <= std::numeric_limits<int>::max() - 2 && // Don't overflow. |
|
ParseOneCharToken(state, '_')) { |
|
MaybeAppend(state, "{unnamed type#"); |
|
MaybeAppendDecimal(state, 2 + which); |
|
MaybeAppend(state, "}"); |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
// Closure type. |
|
which = -1; |
|
if (ParseTwoCharToken(state, "Ul") && DisableAppend(state) && |
|
OneOrMore(ParseType, state) && RestoreAppend(state, copy.append) && |
|
ParseOneCharToken(state, 'E') && Optional(ParseNumber(state, &which)) && |
|
which <= std::numeric_limits<int>::max() - 2 && // Don't overflow. |
|
ParseOneCharToken(state, '_')) { |
|
MaybeAppend(state, "{lambda()#"); |
|
MaybeAppendDecimal(state, 2 + which); |
|
MaybeAppend(state, "}"); |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
return false; |
|
} |
|
|
|
// <number> ::= [n] <non-negative decimal integer> |
|
// If "number_out" is non-null, then *number_out is set to the value of the |
|
// parsed number on success. |
|
static bool ParseNumber(State *state, int *number_out) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
bool negative = false; |
|
if (ParseOneCharToken(state, 'n')) { |
|
negative = true; |
|
} |
|
const char *p = RemainingInput(state); |
|
uint64_t number = 0; |
|
for (; *p != '\0'; ++p) { |
|
if (IsDigit(*p)) { |
|
number = number * 10 + (*p - '0'); |
|
} else { |
|
break; |
|
} |
|
} |
|
// Apply the sign with uint64_t arithmetic so overflows aren't UB. Gives |
|
// "incorrect" results for out-of-range inputs, but negative values only |
|
// appear for literals, which aren't printed. |
|
if (negative) { |
|
number = ~number + 1; |
|
} |
|
if (p != RemainingInput(state)) { // Conversion succeeded. |
|
state->parse_state.mangled_idx += p - RemainingInput(state); |
|
if (number_out != nullptr) { |
|
// Note: possibly truncate "number". |
|
*number_out = number; |
|
} |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
// Floating-point literals are encoded using a fixed-length lowercase |
|
// hexadecimal string. |
|
static bool ParseFloatNumber(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
const char *p = RemainingInput(state); |
|
for (; *p != '\0'; ++p) { |
|
if (!IsDigit(*p) && !(*p >= 'a' && *p <= 'f')) { |
|
break; |
|
} |
|
} |
|
if (p != RemainingInput(state)) { // Conversion succeeded. |
|
state->parse_state.mangled_idx += p - RemainingInput(state); |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
// The <seq-id> is a sequence number in base 36, |
|
// using digits and upper case letters |
|
static bool ParseSeqId(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
const char *p = RemainingInput(state); |
|
for (; *p != '\0'; ++p) { |
|
if (!IsDigit(*p) && !(*p >= 'A' && *p <= 'Z')) { |
|
break; |
|
} |
|
} |
|
if (p != RemainingInput(state)) { // Conversion succeeded. |
|
state->parse_state.mangled_idx += p - RemainingInput(state); |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
// <identifier> ::= <unqualified source code identifier> (of given length) |
|
static bool ParseIdentifier(State *state, int length) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
if (length < 0 || !AtLeastNumCharsRemaining(RemainingInput(state), length)) { |
|
return false; |
|
} |
|
if (IdentifierIsAnonymousNamespace(state, length)) { |
|
MaybeAppend(state, "(anonymous namespace)"); |
|
} else { |
|
MaybeAppendWithLength(state, RemainingInput(state), length); |
|
} |
|
state->parse_state.mangled_idx += length; |
|
return true; |
|
} |
|
|
|
// <operator-name> ::= nw, and other two letters cases |
|
// ::= cv <type> # (cast) |
|
// ::= v <digit> <source-name> # vendor extended operator |
|
static bool ParseOperatorName(State *state, int *arity) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
if (!AtLeastNumCharsRemaining(RemainingInput(state), 2)) { |
|
return false; |
|
} |
|
// First check with "cv" (cast) case. |
|
ParseState copy = state->parse_state; |
|
if (ParseTwoCharToken(state, "cv") && MaybeAppend(state, "operator ") && |
|
EnterNestedName(state) && ParseType(state) && |
|
LeaveNestedName(state, copy.nest_level)) { |
|
if (arity != nullptr) { |
|
*arity = 1; |
|
} |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
// Then vendor extended operators. |
|
if (ParseOneCharToken(state, 'v') && ParseDigit(state, arity) && |
|
ParseSourceName(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
// Other operator names should start with a lower alphabet followed |
|
// by a lower/upper alphabet. |
|
if (!(IsLower(RemainingInput(state)[0]) && |
|
IsAlpha(RemainingInput(state)[1]))) { |
|
return false; |
|
} |
|
// We may want to perform a binary search if we really need speed. |
|
const AbbrevPair *p; |
|
for (p = kOperatorList; p->abbrev != nullptr; ++p) { |
|
if (RemainingInput(state)[0] == p->abbrev[0] && |
|
RemainingInput(state)[1] == p->abbrev[1]) { |
|
if (arity != nullptr) { |
|
*arity = p->arity; |
|
} |
|
MaybeAppend(state, "operator"); |
|
if (IsLower(*p->real_name)) { // new, delete, etc. |
|
MaybeAppend(state, " "); |
|
} |
|
MaybeAppend(state, p->real_name); |
|
state->parse_state.mangled_idx += 2; |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
// <special-name> ::= TV <type> |
|
// ::= TT <type> |
|
// ::= TI <type> |
|
// ::= TS <type> |
|
// ::= Tc <call-offset> <call-offset> <(base) encoding> |
|
// ::= GV <(object) name> |
|
// ::= T <call-offset> <(base) encoding> |
|
// G++ extensions: |
|
// ::= TC <type> <(offset) number> _ <(base) type> |
|
// ::= TF <type> |
|
// ::= TJ <type> |
|
// ::= GR <name> |
|
// ::= GA <encoding> |
|
// ::= Th <call-offset> <(base) encoding> |
|
// ::= Tv <call-offset> <(base) encoding> |
|
// |
|
// Note: we don't care much about them since they don't appear in |
|
// stack traces. The are special data. |
|
static bool ParseSpecialName(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
ParseState copy = state->parse_state; |
|
if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "VTIS") && |
|
ParseType(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
if (ParseTwoCharToken(state, "Tc") && ParseCallOffset(state) && |
|
ParseCallOffset(state) && ParseEncoding(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
if (ParseTwoCharToken(state, "GV") && ParseName(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
if (ParseOneCharToken(state, 'T') && ParseCallOffset(state) && |
|
ParseEncoding(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
// G++ extensions |
|
if (ParseTwoCharToken(state, "TC") && ParseType(state) && |
|
ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') && |
|
DisableAppend(state) && ParseType(state)) { |
|
RestoreAppend(state, copy.append); |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "FJ") && |
|
ParseType(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
if (ParseTwoCharToken(state, "GR") && ParseName(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
if (ParseTwoCharToken(state, "GA") && ParseEncoding(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "hv") && |
|
ParseCallOffset(state) && ParseEncoding(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
return false; |
|
} |
|
|
|
// <call-offset> ::= h <nv-offset> _ |
|
// ::= v <v-offset> _ |
|
static bool ParseCallOffset(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
ParseState copy = state->parse_state; |
|
if (ParseOneCharToken(state, 'h') && ParseNVOffset(state) && |
|
ParseOneCharToken(state, '_')) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
if (ParseOneCharToken(state, 'v') && ParseVOffset(state) && |
|
ParseOneCharToken(state, '_')) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
return false; |
|
} |
|
|
|
// <nv-offset> ::= <(offset) number> |
|
static bool ParseNVOffset(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
return ParseNumber(state, nullptr); |
|
} |
|
|
|
// <v-offset> ::= <(offset) number> _ <(virtual offset) number> |
|
static bool ParseVOffset(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
ParseState copy = state->parse_state; |
|
if (ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') && |
|
ParseNumber(state, nullptr)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
return false; |
|
} |
|
|
|
// <ctor-dtor-name> ::= C1 | C2 | C3 |
|
// ::= D0 | D1 | D2 |
|
// # GCC extensions: "unified" constructor/destructor. See |
|
// # https://github.com/gcc-mirror/gcc/blob/7ad17b583c3643bd4557f29b8391ca7ef08391f5/gcc/cp/mangle.c#L1847 |
|
// ::= C4 | D4 |
|
static bool ParseCtorDtorName(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
ParseState copy = state->parse_state; |
|
if (ParseOneCharToken(state, 'C') && ParseCharClass(state, "1234")) { |
|
const char *const prev_name = state->out + state->parse_state.prev_name_idx; |
|
MaybeAppendWithLength(state, prev_name, |
|
state->parse_state.prev_name_length); |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "0124")) { |
|
const char *const prev_name = state->out + state->parse_state.prev_name_idx; |
|
MaybeAppend(state, "~"); |
|
MaybeAppendWithLength(state, prev_name, |
|
state->parse_state.prev_name_length); |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
return false; |
|
} |
|
|
|
// <decltype> ::= Dt <expression> E # decltype of an id-expression or class |
|
// # member access (C++0x) |
|
// ::= DT <expression> E # decltype of an expression (C++0x) |
|
static bool ParseDecltype(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
|
|
ParseState copy = state->parse_state; |
|
if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "tT") && |
|
ParseExpression(state) && ParseOneCharToken(state, 'E')) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
return false; |
|
} |
|
|
|
// <type> ::= <CV-qualifiers> <type> |
|
// ::= P <type> # pointer-to |
|
// ::= R <type> # reference-to |
|
// ::= O <type> # rvalue reference-to (C++0x) |
|
// ::= C <type> # complex pair (C 2000) |
|
// ::= G <type> # imaginary (C 2000) |
|
// ::= U <source-name> <type> # vendor extended type qualifier |
|
// ::= <builtin-type> |
|
// ::= <function-type> |
|
// ::= <class-enum-type> # note: just an alias for <name> |
|
// ::= <array-type> |
|
// ::= <pointer-to-member-type> |
|
// ::= <template-template-param> <template-args> |
|
// ::= <template-param> |
|
// ::= <decltype> |
|
// ::= <substitution> |
|
// ::= Dp <type> # pack expansion of (C++0x) |
|
// |
|
static bool ParseType(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
ParseState copy = state->parse_state; |
|
|
|
// We should check CV-qualifers, and PRGC things first. |
|
// |
|
// CV-qualifiers overlap with some operator names, but an operator name is not |
|
// valid as a type. To avoid an ambiguity that can lead to exponential time |
|
// complexity, refuse to backtrack the CV-qualifiers. |
|
// |
|
// _Z4aoeuIrMvvE |
|
// => _Z 4aoeuI rM v v E |
|
// aoeu<operator%=, void, void> |
|
// => _Z 4aoeuI r Mv v E |
|
// aoeu<void void::* restrict> |
|
// |
|
// By consuming the CV-qualifiers first, the former parse is disabled. |
|
if (ParseCVQualifiers(state)) { |
|
const bool result = ParseType(state); |
|
if (!result) state->parse_state = copy; |
|
return result; |
|
} |
|
state->parse_state = copy; |
|
|
|
// Similarly, these tag characters can overlap with other <name>s resulting in |
|
// two different parse prefixes that land on <template-args> in the same |
|
// place, such as "C3r1xI...". So, disable the "ctor-name = C3" parse by |
|
// refusing to backtrack the tag characters. |
|
if (ParseCharClass(state, "OPRCG")) { |
|
const bool result = ParseType(state); |
|
if (!result) state->parse_state = copy; |
|
return result; |
|
} |
|
state->parse_state = copy; |
|
|
|
if (ParseTwoCharToken(state, "Dp") && ParseType(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
// nullptr_t, i.e. decltype(nullptr). |
|
if (ParseTwoCharToken(state, "Dn")) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
if (ParseOneCharToken(state, 'U') && ParseSourceName(state) && |
|
ParseType(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
if (ParseBuiltinType(state) || ParseFunctionType(state) || |
|
ParseClassEnumType(state) || ParseArrayType(state) || |
|
ParsePointerToMemberType(state) || ParseDecltype(state) || |
|
// "std" on its own isn't a type. |
|
ParseSubstitution(state, /*accept_std=*/false)) { |
|
return true; |
|
} |
|
|
|
if (ParseTemplateTemplateParam(state) && ParseTemplateArgs(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
// Less greedy than <template-template-param> <template-args>. |
|
if (ParseTemplateParam(state)) { |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
// <CV-qualifiers> ::= [r] [V] [K] |
|
// We don't allow empty <CV-qualifiers> to avoid infinite loop in |
|
// ParseType(). |
|
static bool ParseCVQualifiers(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
int num_cv_qualifiers = 0; |
|
num_cv_qualifiers += ParseOneCharToken(state, 'r'); |
|
num_cv_qualifiers += ParseOneCharToken(state, 'V'); |
|
num_cv_qualifiers += ParseOneCharToken(state, 'K'); |
|
return num_cv_qualifiers > 0; |
|
} |
|
|
|
// <builtin-type> ::= v, etc. |
|
// ::= u <source-name> |
|
static bool ParseBuiltinType(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
const AbbrevPair *p; |
|
for (p = kBuiltinTypeList; p->abbrev != nullptr; ++p) { |
|
if (RemainingInput(state)[0] == p->abbrev[0]) { |
|
MaybeAppend(state, p->real_name); |
|
++state->parse_state.mangled_idx; |
|
return true; |
|
} |
|
} |
|
|
|
ParseState copy = state->parse_state; |
|
if (ParseOneCharToken(state, 'u') && ParseSourceName(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
return false; |
|
} |
|
|
|
// <function-type> ::= F [Y] <bare-function-type> E |
|
static bool ParseFunctionType(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
ParseState copy = state->parse_state; |
|
if (ParseOneCharToken(state, 'F') && |
|
Optional(ParseOneCharToken(state, 'Y')) && ParseBareFunctionType(state) && |
|
ParseOneCharToken(state, 'E')) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
return false; |
|
} |
|
|
|
// <bare-function-type> ::= <(signature) type>+ |
|
static bool ParseBareFunctionType(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
ParseState copy = state->parse_state; |
|
DisableAppend(state); |
|
if (OneOrMore(ParseType, state)) { |
|
RestoreAppend(state, copy.append); |
|
MaybeAppend(state, "()"); |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
return false; |
|
} |
|
|
|
// <class-enum-type> ::= <name> |
|
static bool ParseClassEnumType(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
return ParseName(state); |
|
} |
|
|
|
// <array-type> ::= A <(positive dimension) number> _ <(element) type> |
|
// ::= A [<(dimension) expression>] _ <(element) type> |
|
static bool ParseArrayType(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
ParseState copy = state->parse_state; |
|
if (ParseOneCharToken(state, 'A') && ParseNumber(state, nullptr) && |
|
ParseOneCharToken(state, '_') && ParseType(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
if (ParseOneCharToken(state, 'A') && Optional(ParseExpression(state)) && |
|
ParseOneCharToken(state, '_') && ParseType(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
return false; |
|
} |
|
|
|
// <pointer-to-member-type> ::= M <(class) type> <(member) type> |
|
static bool ParsePointerToMemberType(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
ParseState copy = state->parse_state; |
|
if (ParseOneCharToken(state, 'M') && ParseType(state) && ParseType(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
return false; |
|
} |
|
|
|
// <template-param> ::= T_ |
|
// ::= T <parameter-2 non-negative number> _ |
|
static bool ParseTemplateParam(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
if (ParseTwoCharToken(state, "T_")) { |
|
MaybeAppend(state, "?"); // We don't support template substitutions. |
|
return true; |
|
} |
|
|
|
ParseState copy = state->parse_state; |
|
if (ParseOneCharToken(state, 'T') && ParseNumber(state, nullptr) && |
|
ParseOneCharToken(state, '_')) { |
|
MaybeAppend(state, "?"); // We don't support template substitutions. |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
return false; |
|
} |
|
|
|
// <template-template-param> ::= <template-param> |
|
// ::= <substitution> |
|
static bool ParseTemplateTemplateParam(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
return (ParseTemplateParam(state) || |
|
// "std" on its own isn't a template. |
|
ParseSubstitution(state, /*accept_std=*/false)); |
|
} |
|
|
|
// <template-args> ::= I <template-arg>+ E |
|
static bool ParseTemplateArgs(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
ParseState copy = state->parse_state; |
|
DisableAppend(state); |
|
if (ParseOneCharToken(state, 'I') && OneOrMore(ParseTemplateArg, state) && |
|
ParseOneCharToken(state, 'E')) { |
|
RestoreAppend(state, copy.append); |
|
MaybeAppend(state, "<>"); |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
return false; |
|
} |
|
|
|
// <template-arg> ::= <type> |
|
// ::= <expr-primary> |
|
// ::= J <template-arg>* E # argument pack |
|
// ::= X <expression> E |
|
static bool ParseTemplateArg(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
ParseState copy = state->parse_state; |
|
if (ParseOneCharToken(state, 'J') && ZeroOrMore(ParseTemplateArg, state) && |
|
ParseOneCharToken(state, 'E')) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
// There can be significant overlap between the following leading to |
|
// exponential backtracking: |
|
// |
|
// <expr-primary> ::= L <type> <expr-cast-value> E |
|
// e.g. L 2xxIvE 1 E |
|
// <type> ==> <local-source-name> <template-args> |
|
// e.g. L 2xx IvE |
|
// |
|
// This means parsing an entire <type> twice, and <type> can contain |
|
// <template-arg>, so this can generate exponential backtracking. There is |
|
// only overlap when the remaining input starts with "L <source-name>", so |
|
// parse all cases that can start this way jointly to share the common prefix. |
|
// |
|
// We have: |
|
// |
|
// <template-arg> ::= <type> |
|
// ::= <expr-primary> |
|
// |
|
// First, drop all the productions of <type> that must start with something |
|
// other than 'L'. All that's left is <class-enum-type>; inline it. |
|
// |
|
// <type> ::= <nested-name> # starts with 'N' |
|
// ::= <unscoped-name> |
|
// ::= <unscoped-template-name> <template-args> |
|
// ::= <local-name> # starts with 'Z' |
|
// |
|
// Drop and inline again: |
|
// |
|
// <type> ::= <unscoped-name> |
|
// ::= <unscoped-name> <template-args> |
|
// ::= <substitution> <template-args> # starts with 'S' |
|
// |
|
// Merge the first two, inline <unscoped-name>, drop last: |
|
// |
|
// <type> ::= <unqualified-name> [<template-args>] |
|
// ::= St <unqualified-name> [<template-args>] # starts with 'S' |
|
// |
|
// Drop and inline: |
|
// |
|
// <type> ::= <operator-name> [<template-args>] # starts with lowercase |
|
// ::= <ctor-dtor-name> [<template-args>] # starts with 'C' or 'D' |
|
// ::= <source-name> [<template-args>] # starts with digit |
|
// ::= <local-source-name> [<template-args>] |
|
// ::= <unnamed-type-name> [<template-args>] # starts with 'U' |
|
// |
|
// One more time: |
|
// |
|
// <type> ::= L <source-name> [<template-args>] |
|
// |
|
// Likewise with <expr-primary>: |
|
// |
|
// <expr-primary> ::= L <type> <expr-cast-value> E |
|
// ::= LZ <encoding> E # cannot overlap; drop |
|
// ::= L <mangled_name> E # cannot overlap; drop |
|
// |
|
// By similar reasoning as shown above, the only <type>s starting with |
|
// <source-name> are "<source-name> [<template-args>]". Inline this. |
|
// |
|
// <expr-primary> ::= L <source-name> [<template-args>] <expr-cast-value> E |
|
// |
|
// Now inline both of these into <template-arg>: |
|
// |
|
// <template-arg> ::= L <source-name> [<template-args>] |
|
// ::= L <source-name> [<template-args>] <expr-cast-value> E |
|
// |
|
// Merge them and we're done: |
|
// <template-arg> |
|
// ::= L <source-name> [<template-args>] [<expr-cast-value> E] |
|
if (ParseLocalSourceName(state) && Optional(ParseTemplateArgs(state))) { |
|
copy = state->parse_state; |
|
if (ParseExprCastValue(state) && ParseOneCharToken(state, 'E')) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
return true; |
|
} |
|
|
|
// Now that the overlapping cases can't reach this code, we can safely call |
|
// both of these. |
|
if (ParseType(state) || ParseExprPrimary(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
if (ParseOneCharToken(state, 'X') && ParseExpression(state) && |
|
ParseOneCharToken(state, 'E')) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
return false; |
|
} |
|
|
|
// <unresolved-type> ::= <template-param> [<template-args>] |
|
// ::= <decltype> |
|
// ::= <substitution> |
|
static inline bool ParseUnresolvedType(State *state) { |
|
// No ComplexityGuard because we don't copy the state in this stack frame. |
|
return (ParseTemplateParam(state) && Optional(ParseTemplateArgs(state))) || |
|
ParseDecltype(state) || ParseSubstitution(state, /*accept_std=*/false); |
|
} |
|
|
|
// <simple-id> ::= <source-name> [<template-args>] |
|
static inline bool ParseSimpleId(State *state) { |
|
// No ComplexityGuard because we don't copy the state in this stack frame. |
|
|
|
// Note: <simple-id> cannot be followed by a parameter pack; see comment in |
|
// ParseUnresolvedType. |
|
return ParseSourceName(state) && Optional(ParseTemplateArgs(state)); |
|
} |
|
|
|
// <base-unresolved-name> ::= <source-name> [<template-args>] |
|
// ::= on <operator-name> [<template-args>] |
|
// ::= dn <destructor-name> |
|
static bool ParseBaseUnresolvedName(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
|
|
if (ParseSimpleId(state)) { |
|
return true; |
|
} |
|
|
|
ParseState copy = state->parse_state; |
|
if (ParseTwoCharToken(state, "on") && ParseOperatorName(state, nullptr) && |
|
Optional(ParseTemplateArgs(state))) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
if (ParseTwoCharToken(state, "dn") && |
|
(ParseUnresolvedType(state) || ParseSimpleId(state))) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
return false; |
|
} |
|
|
|
// <unresolved-name> ::= [gs] <base-unresolved-name> |
|
// ::= sr <unresolved-type> <base-unresolved-name> |
|
// ::= srN <unresolved-type> <unresolved-qualifier-level>+ E |
|
// <base-unresolved-name> |
|
// ::= [gs] sr <unresolved-qualifier-level>+ E |
|
// <base-unresolved-name> |
|
static bool ParseUnresolvedName(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
|
|
ParseState copy = state->parse_state; |
|
if (Optional(ParseTwoCharToken(state, "gs")) && |
|
ParseBaseUnresolvedName(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
if (ParseTwoCharToken(state, "sr") && ParseUnresolvedType(state) && |
|
ParseBaseUnresolvedName(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
if (ParseTwoCharToken(state, "sr") && ParseOneCharToken(state, 'N') && |
|
ParseUnresolvedType(state) && |
|
OneOrMore(/* <unresolved-qualifier-level> ::= */ ParseSimpleId, state) && |
|
ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
if (Optional(ParseTwoCharToken(state, "gs")) && |
|
ParseTwoCharToken(state, "sr") && |
|
OneOrMore(/* <unresolved-qualifier-level> ::= */ ParseSimpleId, state) && |
|
ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
return false; |
|
} |
|
|
|
// <expression> ::= <1-ary operator-name> <expression> |
|
// ::= <2-ary operator-name> <expression> <expression> |
|
// ::= <3-ary operator-name> <expression> <expression> <expression> |
|
// ::= cl <expression>+ E |
|
// ::= cv <type> <expression> # type (expression) |
|
// ::= cv <type> _ <expression>* E # type (expr-list) |
|
// ::= st <type> |
|
// ::= <template-param> |
|
// ::= <function-param> |
|
// ::= <expr-primary> |
|
// ::= dt <expression> <unresolved-name> # expr.name |
|
// ::= pt <expression> <unresolved-name> # expr->name |
|
// ::= sp <expression> # argument pack expansion |
|
// ::= sr <type> <unqualified-name> <template-args> |
|
// ::= sr <type> <unqualified-name> |
|
// <function-param> ::= fp <(top-level) CV-qualifiers> _ |
|
// ::= fp <(top-level) CV-qualifiers> <number> _ |
|
// ::= fL <number> p <(top-level) CV-qualifiers> _ |
|
// ::= fL <number> p <(top-level) CV-qualifiers> <number> _ |
|
static bool ParseExpression(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
if (ParseTemplateParam(state) || ParseExprPrimary(state)) { |
|
return true; |
|
} |
|
|
|
// Object/function call expression. |
|
ParseState copy = state->parse_state; |
|
if (ParseTwoCharToken(state, "cl") && OneOrMore(ParseExpression, state) && |
|
ParseOneCharToken(state, 'E')) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
// Function-param expression (level 0). |
|
if (ParseTwoCharToken(state, "fp") && Optional(ParseCVQualifiers(state)) && |
|
Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
// Function-param expression (level 1+). |
|
if (ParseTwoCharToken(state, "fL") && Optional(ParseNumber(state, nullptr)) && |
|
ParseOneCharToken(state, 'p') && Optional(ParseCVQualifiers(state)) && |
|
Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
// Parse the conversion expressions jointly to avoid re-parsing the <type> in |
|
// their common prefix. Parsed as: |
|
// <expression> ::= cv <type> <conversion-args> |
|
// <conversion-args> ::= _ <expression>* E |
|
// ::= <expression> |
|
// |
|
// Also don't try ParseOperatorName after seeing "cv", since ParseOperatorName |
|
// also needs to accept "cv <type>" in other contexts. |
|
if (ParseTwoCharToken(state, "cv")) { |
|
if (ParseType(state)) { |
|
ParseState copy2 = state->parse_state; |
|
if (ParseOneCharToken(state, '_') && ZeroOrMore(ParseExpression, state) && |
|
ParseOneCharToken(state, 'E')) { |
|
return true; |
|
} |
|
state->parse_state = copy2; |
|
if (ParseExpression(state)) { |
|
return true; |
|
} |
|
} |
|
} else { |
|
// Parse unary, binary, and ternary operator expressions jointly, taking |
|
// care not to re-parse subexpressions repeatedly. Parse like: |
|
// <expression> ::= <operator-name> <expression> |
|
// [<one-to-two-expressions>] |
|
// <one-to-two-expressions> ::= <expression> [<expression>] |
|
int arity = -1; |
|
if (ParseOperatorName(state, &arity) && |
|
arity > 0 && // 0 arity => disabled. |
|
(arity < 3 || ParseExpression(state)) && |
|
(arity < 2 || ParseExpression(state)) && |
|
(arity < 1 || ParseExpression(state))) { |
|
return true; |
|
} |
|
} |
|
state->parse_state = copy; |
|
|
|
// sizeof type |
|
if (ParseTwoCharToken(state, "st") && ParseType(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
// Object and pointer member access expressions. |
|
if ((ParseTwoCharToken(state, "dt") || ParseTwoCharToken(state, "pt")) && |
|
ParseExpression(state) && ParseType(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
// Pointer-to-member access expressions. This parses the same as a binary |
|
// operator, but it's implemented separately because "ds" shouldn't be |
|
// accepted in other contexts that parse an operator name. |
|
if (ParseTwoCharToken(state, "ds") && ParseExpression(state) && |
|
ParseExpression(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
// Parameter pack expansion |
|
if (ParseTwoCharToken(state, "sp") && ParseExpression(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
return ParseUnresolvedName(state); |
|
} |
|
|
|
// <expr-primary> ::= L <type> <(value) number> E |
|
// ::= L <type> <(value) float> E |
|
// ::= L <mangled-name> E |
|
// // A bug in g++'s C++ ABI version 2 (-fabi-version=2). |
|
// ::= LZ <encoding> E |
|
// |
|
// Warning, subtle: the "bug" LZ production above is ambiguous with the first |
|
// production where <type> starts with <local-name>, which can lead to |
|
// exponential backtracking in two scenarios: |
|
// |
|
// - When whatever follows the E in the <local-name> in the first production is |
|
// not a name, we backtrack the whole <encoding> and re-parse the whole thing. |
|
// |
|
// - When whatever follows the <local-name> in the first production is not a |
|
// number and this <expr-primary> may be followed by a name, we backtrack the |
|
// <name> and re-parse it. |
|
// |
|
// Moreover this ambiguity isn't always resolved -- for example, the following |
|
// has two different parses: |
|
// |
|
// _ZaaILZ4aoeuE1x1EvE |
|
// => operator&&<aoeu, x, E, void> |
|
// => operator&&<(aoeu::x)(1), void> |
|
// |
|
// To resolve this, we just do what GCC's demangler does, and refuse to parse |
|
// casts to <local-name> types. |
|
static bool ParseExprPrimary(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
ParseState copy = state->parse_state; |
|
|
|
// The "LZ" special case: if we see LZ, we commit to accept "LZ <encoding> E" |
|
// or fail, no backtracking. |
|
if (ParseTwoCharToken(state, "LZ")) { |
|
if (ParseEncoding(state) && ParseOneCharToken(state, 'E')) { |
|
return true; |
|
} |
|
|
|
state->parse_state = copy; |
|
return false; |
|
} |
|
|
|
// The merged cast production. |
|
if (ParseOneCharToken(state, 'L') && ParseType(state) && |
|
ParseExprCastValue(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
if (ParseOneCharToken(state, 'L') && ParseMangledName(state) && |
|
ParseOneCharToken(state, 'E')) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
return false; |
|
} |
|
|
|
// <number> or <float>, followed by 'E', as described above ParseExprPrimary. |
|
static bool ParseExprCastValue(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
// We have to be able to backtrack after accepting a number because we could |
|
// have e.g. "7fffE", which will accept "7" as a number but then fail to find |
|
// the 'E'. |
|
ParseState copy = state->parse_state; |
|
if (ParseNumber(state, nullptr) && ParseOneCharToken(state, 'E')) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
if (ParseFloatNumber(state) && ParseOneCharToken(state, 'E')) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
return false; |
|
} |
|
|
|
// <local-name> ::= Z <(function) encoding> E <(entity) name> [<discriminator>] |
|
// ::= Z <(function) encoding> E s [<discriminator>] |
|
// |
|
// Parsing a common prefix of these two productions together avoids an |
|
// exponential blowup of backtracking. Parse like: |
|
// <local-name> := Z <encoding> E <local-name-suffix> |
|
// <local-name-suffix> ::= s [<discriminator>] |
|
// ::= <name> [<discriminator>] |
|
|
|
static bool ParseLocalNameSuffix(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
|
|
if (MaybeAppend(state, "::") && ParseName(state) && |
|
Optional(ParseDiscriminator(state))) { |
|
return true; |
|
} |
|
|
|
// Since we're not going to overwrite the above "::" by re-parsing the |
|
// <encoding> (whose trailing '\0' byte was in the byte now holding the |
|
// first ':'), we have to rollback the "::" if the <name> parse failed. |
|
if (state->parse_state.append) { |
|
state->out[state->parse_state.out_cur_idx - 2] = '\0'; |
|
} |
|
|
|
return ParseOneCharToken(state, 's') && Optional(ParseDiscriminator(state)); |
|
} |
|
|
|
static bool ParseLocalName(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
ParseState copy = state->parse_state; |
|
if (ParseOneCharToken(state, 'Z') && ParseEncoding(state) && |
|
ParseOneCharToken(state, 'E') && ParseLocalNameSuffix(state)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
return false; |
|
} |
|
|
|
// <discriminator> := _ <(non-negative) number> |
|
static bool ParseDiscriminator(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
ParseState copy = state->parse_state; |
|
if (ParseOneCharToken(state, '_') && ParseNumber(state, nullptr)) { |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
return false; |
|
} |
|
|
|
// <substitution> ::= S_ |
|
// ::= S <seq-id> _ |
|
// ::= St, etc. |
|
// |
|
// "St" is special in that it's not valid as a standalone name, and it *is* |
|
// allowed to precede a name without being wrapped in "N...E". This means that |
|
// if we accept it on its own, we can accept "St1a" and try to parse |
|
// template-args, then fail and backtrack, accept "St" on its own, then "1a" as |
|
// an unqualified name and re-parse the same template-args. To block this |
|
// exponential backtracking, we disable it with 'accept_std=false' in |
|
// problematic contexts. |
|
static bool ParseSubstitution(State *state, bool accept_std) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
if (ParseTwoCharToken(state, "S_")) { |
|
MaybeAppend(state, "?"); // We don't support substitutions. |
|
return true; |
|
} |
|
|
|
ParseState copy = state->parse_state; |
|
if (ParseOneCharToken(state, 'S') && ParseSeqId(state) && |
|
ParseOneCharToken(state, '_')) { |
|
MaybeAppend(state, "?"); // We don't support substitutions. |
|
return true; |
|
} |
|
state->parse_state = copy; |
|
|
|
// Expand abbreviations like "St" => "std". |
|
if (ParseOneCharToken(state, 'S')) { |
|
const AbbrevPair *p; |
|
for (p = kSubstitutionList; p->abbrev != nullptr; ++p) { |
|
if (RemainingInput(state)[0] == p->abbrev[1] && |
|
(accept_std || p->abbrev[1] != 't')) { |
|
MaybeAppend(state, "std"); |
|
if (p->real_name[0] != '\0') { |
|
MaybeAppend(state, "::"); |
|
MaybeAppend(state, p->real_name); |
|
} |
|
++state->parse_state.mangled_idx; |
|
return true; |
|
} |
|
} |
|
} |
|
state->parse_state = copy; |
|
return false; |
|
} |
|
|
|
// Parse <mangled-name>, optionally followed by either a function-clone suffix |
|
// or version suffix. Returns true only if all of "mangled_cur" was consumed. |
|
static bool ParseTopLevelMangledName(State *state) { |
|
ComplexityGuard guard(state); |
|
if (guard.IsTooComplex()) return false; |
|
if (ParseMangledName(state)) { |
|
if (RemainingInput(state)[0] != '\0') { |
|
// Drop trailing function clone suffix, if any. |
|
if (IsFunctionCloneSuffix(RemainingInput(state))) { |
|
return true; |
|
} |
|
// Append trailing version suffix if any. |
|
// ex. _Z3foo@@GLIBCXX_3.4 |
|
if (RemainingInput(state)[0] == '@') { |
|
MaybeAppend(state, RemainingInput(state)); |
|
return true; |
|
} |
|
return false; // Unconsumed suffix. |
|
} |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
static bool Overflowed(const State *state) { |
|
return state->parse_state.out_cur_idx >= state->out_end_idx; |
|
} |
|
|
|
// The demangler entry point. |
|
bool Demangle(const char *mangled, char *out, int out_size) { |
|
State state; |
|
InitState(&state, mangled, out, out_size); |
|
return ParseTopLevelMangledName(&state) && !Overflowed(&state); |
|
} |
|
|
|
} // namespace debugging_internal |
|
} // namespace absl
|
|
|