Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
250 lines
8.5 KiB
250 lines
8.5 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#ifndef ABSL_RANDOM_LOG_UNIFORM_INT_DISTRIBUTION_H_ |
|
#define ABSL_RANDOM_LOG_UNIFORM_INT_DISTRIBUTION_H_ |
|
|
|
#include <algorithm> |
|
#include <cassert> |
|
#include <cmath> |
|
#include <istream> |
|
#include <limits> |
|
#include <ostream> |
|
#include <type_traits> |
|
|
|
#include "absl/random/internal/distribution_impl.h" |
|
#include "absl/random/internal/fastmath.h" |
|
#include "absl/random/internal/iostream_state_saver.h" |
|
#include "absl/random/internal/traits.h" |
|
#include "absl/random/uniform_int_distribution.h" |
|
|
|
namespace absl { |
|
|
|
// log_uniform_int_distribution: |
|
// |
|
// Returns a random variate R in range [min, max] such that |
|
// floor(log(R-min, base)) is uniformly distributed. |
|
// We ensure uniformity by discretization using the |
|
// boundary sets [0, 1, base, base * base, ... min(base*n, max)] |
|
// |
|
template <typename IntType = int> |
|
class log_uniform_int_distribution { |
|
private: |
|
using unsigned_type = |
|
typename random_internal::make_unsigned_bits<IntType>::type; |
|
|
|
public: |
|
using result_type = IntType; |
|
|
|
class param_type { |
|
public: |
|
using distribution_type = log_uniform_int_distribution; |
|
|
|
explicit param_type( |
|
result_type min = 0, |
|
result_type max = (std::numeric_limits<result_type>::max)(), |
|
result_type base = 2) |
|
: min_(min), |
|
max_(max), |
|
base_(base), |
|
range_(static_cast<unsigned_type>(max_) - |
|
static_cast<unsigned_type>(min_)), |
|
log_range_(0) { |
|
assert(max_ >= min_); |
|
assert(base_ > 1); |
|
|
|
if (base_ == 2) { |
|
// Determine where the first set bit is on range(), giving a log2(range) |
|
// value which can be used to construct bounds. |
|
log_range_ = (std::min)(random_internal::LeadingSetBit(range()), |
|
std::numeric_limits<unsigned_type>::digits); |
|
} else { |
|
// NOTE: Computing the logN(x) introduces error from 2 sources: |
|
// 1. Conversion of int to double loses precision for values >= |
|
// 2^53, which may cause some log() computations to operate on |
|
// different values. |
|
// 2. The error introduced by the division will cause the result |
|
// to differ from the expected value. |
|
// |
|
// Thus a result which should equal K may equal K +/- epsilon, |
|
// which can eliminate some values depending on where the bounds fall. |
|
const double inv_log_base = 1.0 / std::log(base_); |
|
const double log_range = std::log(static_cast<double>(range()) + 0.5); |
|
log_range_ = static_cast<int>(std::ceil(inv_log_base * log_range)); |
|
} |
|
} |
|
|
|
result_type(min)() const { return min_; } |
|
result_type(max)() const { return max_; } |
|
result_type base() const { return base_; } |
|
|
|
friend bool operator==(const param_type& a, const param_type& b) { |
|
return a.min_ == b.min_ && a.max_ == b.max_ && a.base_ == b.base_; |
|
} |
|
|
|
friend bool operator!=(const param_type& a, const param_type& b) { |
|
return !(a == b); |
|
} |
|
|
|
private: |
|
friend class log_uniform_int_distribution; |
|
|
|
int log_range() const { return log_range_; } |
|
unsigned_type range() const { return range_; } |
|
|
|
result_type min_; |
|
result_type max_; |
|
result_type base_; |
|
unsigned_type range_; // max - min |
|
int log_range_; // ceil(logN(range_)) |
|
|
|
static_assert(std::is_integral<IntType>::value, |
|
"Class-template absl::log_uniform_int_distribution<> must be " |
|
"parameterized using an integral type."); |
|
}; |
|
|
|
log_uniform_int_distribution() : log_uniform_int_distribution(0) {} |
|
|
|
explicit log_uniform_int_distribution( |
|
result_type min, |
|
result_type max = (std::numeric_limits<result_type>::max)(), |
|
result_type base = 2) |
|
: param_(min, max, base) {} |
|
|
|
explicit log_uniform_int_distribution(const param_type& p) : param_(p) {} |
|
|
|
void reset() {} |
|
|
|
// generating functions |
|
template <typename URBG> |
|
result_type operator()(URBG& g) { // NOLINT(runtime/references) |
|
return (*this)(g, param_); |
|
} |
|
|
|
template <typename URBG> |
|
result_type operator()(URBG& g, // NOLINT(runtime/references) |
|
const param_type& p) { |
|
return (p.min)() + Generate(g, p); |
|
} |
|
|
|
result_type(min)() const { return (param_.min)(); } |
|
result_type(max)() const { return (param_.max)(); } |
|
result_type base() const { return param_.base(); } |
|
|
|
param_type param() const { return param_; } |
|
void param(const param_type& p) { param_ = p; } |
|
|
|
friend bool operator==(const log_uniform_int_distribution& a, |
|
const log_uniform_int_distribution& b) { |
|
return a.param_ == b.param_; |
|
} |
|
friend bool operator!=(const log_uniform_int_distribution& a, |
|
const log_uniform_int_distribution& b) { |
|
return a.param_ != b.param_; |
|
} |
|
|
|
private: |
|
// Returns a log-uniform variate in the range [0, p.range()]. The caller |
|
// should add min() to shift the result to the correct range. |
|
template <typename URNG> |
|
unsigned_type Generate(URNG& g, // NOLINT(runtime/references) |
|
const param_type& p); |
|
|
|
param_type param_; |
|
}; |
|
|
|
template <typename IntType> |
|
template <typename URBG> |
|
typename log_uniform_int_distribution<IntType>::unsigned_type |
|
log_uniform_int_distribution<IntType>::Generate( |
|
URBG& g, // NOLINT(runtime/references) |
|
const param_type& p) { |
|
// sample e over [0, log_range]. Map the results of e to this: |
|
// 0 => 0 |
|
// 1 => [1, b-1] |
|
// 2 => [b, (b^2)-1] |
|
// n => [b^(n-1)..(b^n)-1] |
|
const int e = absl::uniform_int_distribution<int>(0, p.log_range())(g); |
|
if (e == 0) { |
|
return 0; |
|
} |
|
const int d = e - 1; |
|
|
|
unsigned_type base_e, top_e; |
|
if (p.base() == 2) { |
|
base_e = static_cast<unsigned_type>(1) << d; |
|
|
|
top_e = (e >= std::numeric_limits<unsigned_type>::digits) |
|
? (std::numeric_limits<unsigned_type>::max)() |
|
: (static_cast<unsigned_type>(1) << e) - 1; |
|
} else { |
|
const double r = std::pow(p.base(), d); |
|
const double s = (r * p.base()) - 1.0; |
|
|
|
base_e = (r > (std::numeric_limits<unsigned_type>::max)()) |
|
? (std::numeric_limits<unsigned_type>::max)() |
|
: static_cast<unsigned_type>(r); |
|
|
|
top_e = (s > (std::numeric_limits<unsigned_type>::max)()) |
|
? (std::numeric_limits<unsigned_type>::max)() |
|
: static_cast<unsigned_type>(s); |
|
} |
|
|
|
const unsigned_type lo = (base_e >= p.range()) ? p.range() : base_e; |
|
const unsigned_type hi = (top_e >= p.range()) ? p.range() : top_e; |
|
|
|
// choose uniformly over [lo, hi] |
|
return absl::uniform_int_distribution<result_type>(lo, hi)(g); |
|
} |
|
|
|
template <typename CharT, typename Traits, typename IntType> |
|
std::basic_ostream<CharT, Traits>& operator<<( |
|
std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references) |
|
const log_uniform_int_distribution<IntType>& x) { |
|
using stream_type = |
|
typename random_internal::stream_format_type<IntType>::type; |
|
auto saver = random_internal::make_ostream_state_saver(os); |
|
os << static_cast<stream_type>((x.min)()) << os.fill() |
|
<< static_cast<stream_type>((x.max)()) << os.fill() |
|
<< static_cast<stream_type>(x.base()); |
|
return os; |
|
} |
|
|
|
template <typename CharT, typename Traits, typename IntType> |
|
std::basic_istream<CharT, Traits>& operator>>( |
|
std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references) |
|
log_uniform_int_distribution<IntType>& x) { // NOLINT(runtime/references) |
|
using param_type = typename log_uniform_int_distribution<IntType>::param_type; |
|
using result_type = |
|
typename log_uniform_int_distribution<IntType>::result_type; |
|
using stream_type = |
|
typename random_internal::stream_format_type<IntType>::type; |
|
|
|
stream_type min; |
|
stream_type max; |
|
stream_type base; |
|
|
|
auto saver = random_internal::make_istream_state_saver(is); |
|
is >> min >> max >> base; |
|
if (!is.fail()) { |
|
x.param(param_type(static_cast<result_type>(min), |
|
static_cast<result_type>(max), |
|
static_cast<result_type>(base))); |
|
} |
|
return is; |
|
} |
|
|
|
} // namespace absl |
|
|
|
#endif // ABSL_RANDOM_LOG_UNIFORM_INT_DISTRIBUTION_H_
|
|
|