Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
390 lines
12 KiB
390 lines
12 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// http://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#include "absl/base/internal/sysinfo.h" |
|
|
|
#ifdef _WIN32 |
|
#include <shlwapi.h> |
|
#include <windows.h> |
|
#else |
|
#include <fcntl.h> |
|
#include <pthread.h> |
|
#include <sys/stat.h> |
|
#include <sys/types.h> |
|
#include <unistd.h> |
|
#endif |
|
|
|
#ifdef __linux__ |
|
#include <sys/syscall.h> |
|
#endif |
|
|
|
#ifdef __APPLE__ |
|
#include <sys/sysctl.h> |
|
#endif |
|
|
|
#include <string.h> |
|
#include <cassert> |
|
#include <cstdint> |
|
#include <cstdio> |
|
#include <cstdlib> |
|
#include <ctime> |
|
#include <limits> |
|
#include <thread> // NOLINT(build/c++11) |
|
#include <utility> |
|
#include <vector> |
|
|
|
#include "absl/base/call_once.h" |
|
#include "absl/base/internal/raw_logging.h" |
|
#include "absl/base/internal/spinlock.h" |
|
#include "absl/base/internal/unscaledcycleclock.h" |
|
|
|
namespace absl { |
|
namespace base_internal { |
|
|
|
static once_flag init_system_info_once; |
|
static int num_cpus = 0; |
|
static double nominal_cpu_frequency = 1.0; // 0.0 might be dangerous. |
|
|
|
static int GetNumCPUs() { |
|
#if defined(__myriad2__) |
|
return 1; |
|
#else |
|
// Other possibilities: |
|
// - Read /sys/devices/system/cpu/online and use cpumask_parse() |
|
// - sysconf(_SC_NPROCESSORS_ONLN) |
|
return std::thread::hardware_concurrency(); |
|
#endif |
|
} |
|
|
|
#if defined(_WIN32) |
|
|
|
static double GetNominalCPUFrequency() { |
|
DWORD data; |
|
DWORD data_size = sizeof(data); |
|
#pragma comment(lib, "shlwapi.lib") // For SHGetValue(). |
|
if (SUCCEEDED( |
|
SHGetValueA(HKEY_LOCAL_MACHINE, |
|
"HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", |
|
"~MHz", nullptr, &data, &data_size))) { |
|
return data * 1e6; // Value is MHz. |
|
} |
|
return 1.0; |
|
} |
|
|
|
#elif defined(CTL_HW) && defined(HW_CPU_FREQ) |
|
|
|
static double GetNominalCPUFrequency() { |
|
unsigned freq; |
|
size_t size = sizeof(freq); |
|
int mib[2] = {CTL_HW, HW_CPU_FREQ}; |
|
if (sysctl(mib, 2, &freq, &size, nullptr, 0) == 0) { |
|
return static_cast<double>(freq); |
|
} |
|
return 1.0; |
|
} |
|
|
|
#else |
|
|
|
// Helper function for reading a long from a file. Returns true if successful |
|
// and the memory location pointed to by value is set to the value read. |
|
static bool ReadLongFromFile(const char *file, long *value) { |
|
bool ret = false; |
|
int fd = open(file, O_RDONLY); |
|
if (fd != -1) { |
|
char line[1024]; |
|
char *err; |
|
memset(line, '\0', sizeof(line)); |
|
int len = read(fd, line, sizeof(line) - 1); |
|
if (len <= 0) { |
|
ret = false; |
|
} else { |
|
const long temp_value = strtol(line, &err, 10); |
|
if (line[0] != '\0' && (*err == '\n' || *err == '\0')) { |
|
*value = temp_value; |
|
ret = true; |
|
} |
|
} |
|
close(fd); |
|
} |
|
return ret; |
|
} |
|
|
|
#if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY) |
|
|
|
// Reads a monotonic time source and returns a value in |
|
// nanoseconds. The returned value uses an arbitrary epoch, not the |
|
// Unix epoch. |
|
static int64_t ReadMonotonicClockNanos() { |
|
struct timespec t; |
|
#ifdef CLOCK_MONOTONIC_RAW |
|
int rc = clock_gettime(CLOCK_MONOTONIC_RAW, &t); |
|
#else |
|
int rc = clock_gettime(CLOCK_MONOTONIC, &t); |
|
#endif |
|
if (rc != 0) { |
|
perror("clock_gettime() failed"); |
|
abort(); |
|
} |
|
return int64_t{t.tv_sec} * 1000000000 + t.tv_nsec; |
|
} |
|
|
|
class UnscaledCycleClockWrapperForInitializeFrequency { |
|
public: |
|
static int64_t Now() { return base_internal::UnscaledCycleClock::Now(); } |
|
}; |
|
|
|
struct TimeTscPair { |
|
int64_t time; // From ReadMonotonicClockNanos(). |
|
int64_t tsc; // From UnscaledCycleClock::Now(). |
|
}; |
|
|
|
// Returns a pair of values (monotonic kernel time, TSC ticks) that |
|
// approximately correspond to each other. This is accomplished by |
|
// doing several reads and picking the reading with the lowest |
|
// latency. This approach is used to minimize the probability that |
|
// our thread was preempted between clock reads. |
|
static TimeTscPair GetTimeTscPair() { |
|
int64_t best_latency = std::numeric_limits<int64_t>::max(); |
|
TimeTscPair best; |
|
for (int i = 0; i < 10; ++i) { |
|
int64_t t0 = ReadMonotonicClockNanos(); |
|
int64_t tsc = UnscaledCycleClockWrapperForInitializeFrequency::Now(); |
|
int64_t t1 = ReadMonotonicClockNanos(); |
|
int64_t latency = t1 - t0; |
|
if (latency < best_latency) { |
|
best_latency = latency; |
|
best.time = t0; |
|
best.tsc = tsc; |
|
} |
|
} |
|
return best; |
|
} |
|
|
|
// Measures and returns the TSC frequency by taking a pair of |
|
// measurements approximately `sleep_nanoseconds` apart. |
|
static double MeasureTscFrequencyWithSleep(int sleep_nanoseconds) { |
|
auto t0 = GetTimeTscPair(); |
|
struct timespec ts; |
|
ts.tv_sec = 0; |
|
ts.tv_nsec = sleep_nanoseconds; |
|
while (nanosleep(&ts, &ts) != 0 && errno == EINTR) {} |
|
auto t1 = GetTimeTscPair(); |
|
double elapsed_ticks = t1.tsc - t0.tsc; |
|
double elapsed_time = (t1.time - t0.time) * 1e-9; |
|
return elapsed_ticks / elapsed_time; |
|
} |
|
|
|
// Measures and returns the TSC frequency by calling |
|
// MeasureTscFrequencyWithSleep(), doubling the sleep interval until the |
|
// frequency measurement stabilizes. |
|
static double MeasureTscFrequency() { |
|
double last_measurement = -1.0; |
|
int sleep_nanoseconds = 1000000; // 1 millisecond. |
|
for (int i = 0; i < 8; ++i) { |
|
double measurement = MeasureTscFrequencyWithSleep(sleep_nanoseconds); |
|
if (measurement * 0.99 < last_measurement && |
|
last_measurement < measurement * 1.01) { |
|
// Use the current measurement if it is within 1% of the |
|
// previous measurement. |
|
return measurement; |
|
} |
|
last_measurement = measurement; |
|
sleep_nanoseconds *= 2; |
|
} |
|
return last_measurement; |
|
} |
|
|
|
#endif // ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY |
|
|
|
static double GetNominalCPUFrequency() { |
|
long freq = 0; |
|
|
|
// Google's production kernel has a patch to export the TSC |
|
// frequency through sysfs. If the kernel is exporting the TSC |
|
// frequency use that. There are issues where cpuinfo_max_freq |
|
// cannot be relied on because the BIOS may be exporting an invalid |
|
// p-state (on x86) or p-states may be used to put the processor in |
|
// a new mode (turbo mode). Essentially, those frequencies cannot |
|
// always be relied upon. The same reasons apply to /proc/cpuinfo as |
|
// well. |
|
if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz", &freq)) { |
|
return freq * 1e3; // Value is kHz. |
|
} |
|
|
|
#if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY) |
|
// On these platforms, the TSC frequency is the nominal CPU |
|
// frequency. But without having the kernel export it directly |
|
// though /sys/devices/system/cpu/cpu0/tsc_freq_khz, there is no |
|
// other way to reliably get the TSC frequency, so we have to |
|
// measure it ourselves. Some CPUs abuse cpuinfo_max_freq by |
|
// exporting "fake" frequencies for implementing new features. For |
|
// example, Intel's turbo mode is enabled by exposing a p-state |
|
// value with a higher frequency than that of the real TSC |
|
// rate. Because of this, we prefer to measure the TSC rate |
|
// ourselves on i386 and x86-64. |
|
return MeasureTscFrequency(); |
|
#else |
|
|
|
// If CPU scaling is in effect, we want to use the *maximum* |
|
// frequency, not whatever CPU speed some random processor happens |
|
// to be using now. |
|
if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq", |
|
&freq)) { |
|
return freq * 1e3; // Value is kHz. |
|
} |
|
|
|
return 1.0; |
|
#endif // !ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY |
|
} |
|
|
|
#endif |
|
|
|
// InitializeSystemInfo() may be called before main() and before |
|
// malloc is properly initialized, therefore this must not allocate |
|
// memory. |
|
static void InitializeSystemInfo() { |
|
num_cpus = GetNumCPUs(); |
|
nominal_cpu_frequency = GetNominalCPUFrequency(); |
|
} |
|
|
|
int NumCPUs() { |
|
base_internal::LowLevelCallOnce(&init_system_info_once, InitializeSystemInfo); |
|
return num_cpus; |
|
} |
|
|
|
double NominalCPUFrequency() { |
|
base_internal::LowLevelCallOnce(&init_system_info_once, InitializeSystemInfo); |
|
return nominal_cpu_frequency; |
|
} |
|
|
|
#if defined(_WIN32) |
|
|
|
pid_t GetTID() { |
|
return GetCurrentThreadId(); |
|
} |
|
|
|
#elif defined(__linux__) |
|
|
|
#ifndef SYS_gettid |
|
#define SYS_gettid __NR_gettid |
|
#endif |
|
|
|
pid_t GetTID() { |
|
return syscall(SYS_gettid); |
|
} |
|
|
|
#elif defined(__akaros__) |
|
|
|
pid_t GetTID() { |
|
// Akaros has a concept of "vcore context", which is the state the program |
|
// is forced into when we need to make a user-level scheduling decision, or |
|
// run a signal handler. This is analogous to the interrupt context that a |
|
// CPU might enter if it encounters some kind of exception. |
|
// |
|
// There is no current thread context in vcore context, but we need to give |
|
// a reasonable answer if asked for a thread ID (e.g., in a signal handler). |
|
// Thread 0 always exists, so if we are in vcore context, we return that. |
|
// |
|
// Otherwise, we know (since we are using pthreads) that the uthread struct |
|
// current_uthread is pointing to is the first element of a |
|
// struct pthread_tcb, so we extract and return the thread ID from that. |
|
// |
|
// TODO(dcross): Akaros anticipates moving the thread ID to the uthread |
|
// structure at some point. We should modify this code to remove the cast |
|
// when that happens. |
|
if (in_vcore_context()) |
|
return 0; |
|
return reinterpret_cast<struct pthread_tcb *>(current_uthread)->id; |
|
} |
|
|
|
#else |
|
|
|
// Fallback implementation of GetTID using pthread_getspecific. |
|
static once_flag tid_once; |
|
static pthread_key_t tid_key; |
|
static absl::base_internal::SpinLock tid_lock( |
|
absl::base_internal::kLinkerInitialized); |
|
|
|
// We set a bit per thread in this array to indicate that an ID is in |
|
// use. ID 0 is unused because it is the default value returned by |
|
// pthread_getspecific(). |
|
static std::vector<uint32_t>* tid_array GUARDED_BY(tid_lock) = nullptr; |
|
static constexpr int kBitsPerWord = 32; // tid_array is uint32_t. |
|
|
|
// Returns the TID to tid_array. |
|
static void FreeTID(void *v) { |
|
intptr_t tid = reinterpret_cast<intptr_t>(v); |
|
int word = tid / kBitsPerWord; |
|
uint32_t mask = ~(1u << (tid % kBitsPerWord)); |
|
absl::base_internal::SpinLockHolder lock(&tid_lock); |
|
assert(0 <= word && static_cast<size_t>(word) < tid_array->size()); |
|
(*tid_array)[word] &= mask; |
|
} |
|
|
|
static void InitGetTID() { |
|
if (pthread_key_create(&tid_key, FreeTID) != 0) { |
|
// The logging system calls GetTID() so it can't be used here. |
|
perror("pthread_key_create failed"); |
|
abort(); |
|
} |
|
|
|
// Initialize tid_array. |
|
absl::base_internal::SpinLockHolder lock(&tid_lock); |
|
tid_array = new std::vector<uint32_t>(1); |
|
(*tid_array)[0] = 1; // ID 0 is never-allocated. |
|
} |
|
|
|
// Return a per-thread small integer ID from pthread's thread-specific data. |
|
pid_t GetTID() { |
|
absl::call_once(tid_once, InitGetTID); |
|
|
|
intptr_t tid = reinterpret_cast<intptr_t>(pthread_getspecific(tid_key)); |
|
if (tid != 0) { |
|
return tid; |
|
} |
|
|
|
int bit; // tid_array[word] = 1u << bit; |
|
size_t word; |
|
{ |
|
// Search for the first unused ID. |
|
absl::base_internal::SpinLockHolder lock(&tid_lock); |
|
// First search for a word in the array that is not all ones. |
|
word = 0; |
|
while (word < tid_array->size() && ~(*tid_array)[word] == 0) { |
|
++word; |
|
} |
|
if (word == tid_array->size()) { |
|
tid_array->push_back(0); // No space left, add kBitsPerWord more IDs. |
|
} |
|
// Search for a zero bit in the word. |
|
bit = 0; |
|
while (bit < kBitsPerWord && (((*tid_array)[word] >> bit) & 1) != 0) { |
|
++bit; |
|
} |
|
tid = (word * kBitsPerWord) + bit; |
|
(*tid_array)[word] |= 1u << bit; // Mark the TID as allocated. |
|
} |
|
|
|
if (pthread_setspecific(tid_key, reinterpret_cast<void *>(tid)) != 0) { |
|
perror("pthread_setspecific failed"); |
|
abort(); |
|
} |
|
|
|
return static_cast<pid_t>(tid); |
|
} |
|
|
|
#endif |
|
|
|
} // namespace base_internal |
|
} // namespace absl
|
|
|