Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
269 lines
8.8 KiB
269 lines
8.8 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#ifndef ABSL_RANDOM_ZIPF_DISTRIBUTION_H_ |
|
#define ABSL_RANDOM_ZIPF_DISTRIBUTION_H_ |
|
|
|
#include <cassert> |
|
#include <cmath> |
|
#include <istream> |
|
#include <limits> |
|
#include <ostream> |
|
#include <type_traits> |
|
|
|
#include "absl/random/internal/iostream_state_saver.h" |
|
#include "absl/random/uniform_real_distribution.h" |
|
|
|
namespace absl { |
|
|
|
// absl::zipf_distribution produces random integer-values in the range [0, k], |
|
// distributed according to the discrete probability function: |
|
// |
|
// P(x) = (v + x) ^ -q |
|
// |
|
// The parameter `v` must be greater than 0 and the parameter `q` must be |
|
// greater than 1. If either of these parameters take invalid values then the |
|
// behavior is undefined. |
|
// |
|
// IntType is the result_type generated by the generator. It must be of integral |
|
// type; a static_assert ensures this is the case. |
|
// |
|
// The implementation is based on W.Hormann, G.Derflinger: |
|
// |
|
// "Rejection-Inversion to Generate Variates from Monotone Discrete |
|
// Distributions" |
|
// |
|
// http://eeyore.wu-wien.ac.at/papers/96-04-04.wh-der.ps.gz |
|
// |
|
template <typename IntType = int> |
|
class zipf_distribution { |
|
public: |
|
using result_type = IntType; |
|
|
|
class param_type { |
|
public: |
|
using distribution_type = zipf_distribution; |
|
|
|
// Preconditions: k > 0, v > 0, q > 1 |
|
// The precondidtions are validated when NDEBUG is not defined via |
|
// a pair of assert() directives. |
|
// If NDEBUG is defined and either or both of these parameters take invalid |
|
// values, the behavior of the class is undefined. |
|
explicit param_type(result_type k = (std::numeric_limits<IntType>::max)(), |
|
double q = 2.0, double v = 1.0); |
|
|
|
result_type k() const { return k_; } |
|
double q() const { return q_; } |
|
double v() const { return v_; } |
|
|
|
friend bool operator==(const param_type& a, const param_type& b) { |
|
return a.k_ == b.k_ && a.q_ == b.q_ && a.v_ == b.v_; |
|
} |
|
friend bool operator!=(const param_type& a, const param_type& b) { |
|
return !(a == b); |
|
} |
|
|
|
private: |
|
friend class zipf_distribution; |
|
inline double h(double x) const; |
|
inline double hinv(double x) const; |
|
inline double compute_s() const; |
|
inline double pow_negative_q(double x) const; |
|
|
|
// Parameters here are exactly the same as the parameters of Algorithm ZRI |
|
// in the paper. |
|
IntType k_; |
|
double q_; |
|
double v_; |
|
|
|
double one_minus_q_; // 1-q |
|
double s_; |
|
double one_minus_q_inv_; // 1 / 1-q |
|
double hxm_; // h(k + 0.5) |
|
double hx0_minus_hxm_; // h(x0) - h(k + 0.5) |
|
|
|
static_assert(std::is_integral<IntType>::value, |
|
"Class-template absl::zipf_distribution<> must be " |
|
"parameterized using an integral type."); |
|
}; |
|
|
|
zipf_distribution() |
|
: zipf_distribution((std::numeric_limits<IntType>::max)()) {} |
|
|
|
explicit zipf_distribution(result_type k, double q = 2.0, double v = 1.0) |
|
: param_(k, q, v) {} |
|
|
|
explicit zipf_distribution(const param_type& p) : param_(p) {} |
|
|
|
void reset() {} |
|
|
|
template <typename URBG> |
|
result_type operator()(URBG& g) { // NOLINT(runtime/references) |
|
return (*this)(g, param_); |
|
} |
|
|
|
template <typename URBG> |
|
result_type operator()(URBG& g, // NOLINT(runtime/references) |
|
const param_type& p); |
|
|
|
result_type k() const { return param_.k(); } |
|
double q() const { return param_.q(); } |
|
double v() const { return param_.v(); } |
|
|
|
param_type param() const { return param_; } |
|
void param(const param_type& p) { param_ = p; } |
|
|
|
result_type(min)() const { return 0; } |
|
result_type(max)() const { return k(); } |
|
|
|
friend bool operator==(const zipf_distribution& a, |
|
const zipf_distribution& b) { |
|
return a.param_ == b.param_; |
|
} |
|
friend bool operator!=(const zipf_distribution& a, |
|
const zipf_distribution& b) { |
|
return a.param_ != b.param_; |
|
} |
|
|
|
private: |
|
param_type param_; |
|
}; |
|
|
|
// -------------------------------------------------------------------------- |
|
// Implementation details follow |
|
// -------------------------------------------------------------------------- |
|
|
|
template <typename IntType> |
|
zipf_distribution<IntType>::param_type::param_type( |
|
typename zipf_distribution<IntType>::result_type k, double q, double v) |
|
: k_(k), q_(q), v_(v), one_minus_q_(1 - q) { |
|
assert(q > 1); |
|
assert(v > 0); |
|
assert(k > 0); |
|
one_minus_q_inv_ = 1 / one_minus_q_; |
|
|
|
// Setup for the ZRI algorithm (pg 17 of the paper). |
|
// Compute: h(i max) => h(k + 0.5) |
|
constexpr double kMax = 18446744073709549568.0; |
|
double kd = static_cast<double>(k); |
|
// TODO(absl-team): Determine if this check is needed, and if so, add a test |
|
// that fails for k > kMax |
|
if (kd > kMax) { |
|
// Ensure that our maximum value is capped to a value which will |
|
// round-trip back through double. |
|
kd = kMax; |
|
} |
|
hxm_ = h(kd + 0.5); |
|
|
|
// Compute: h(0) |
|
const bool use_precomputed = (v == 1.0 && q == 2.0); |
|
const double h0x5 = use_precomputed ? (-1.0 / 1.5) // exp(-log(1.5)) |
|
: h(0.5); |
|
const double elogv_q = (v_ == 1.0) ? 1 : pow_negative_q(v_); |
|
|
|
// h(0) = h(0.5) - exp(log(v) * -q) |
|
hx0_minus_hxm_ = (h0x5 - elogv_q) - hxm_; |
|
|
|
// And s |
|
s_ = use_precomputed ? 0.46153846153846123 : compute_s(); |
|
} |
|
|
|
template <typename IntType> |
|
double zipf_distribution<IntType>::param_type::h(double x) const { |
|
// std::exp(one_minus_q_ * std::log(v_ + x)) * one_minus_q_inv_; |
|
x += v_; |
|
return (one_minus_q_ == -1.0) |
|
? (-1.0 / x) // -exp(-log(x)) |
|
: (std::exp(std::log(x) * one_minus_q_) * one_minus_q_inv_); |
|
} |
|
|
|
template <typename IntType> |
|
double zipf_distribution<IntType>::param_type::hinv(double x) const { |
|
// std::exp(one_minus_q_inv_ * std::log(one_minus_q_ * x)) - v_; |
|
return -v_ + ((one_minus_q_ == -1.0) |
|
? (-1.0 / x) // exp(-log(-x)) |
|
: std::exp(one_minus_q_inv_ * std::log(one_minus_q_ * x))); |
|
} |
|
|
|
template <typename IntType> |
|
double zipf_distribution<IntType>::param_type::compute_s() const { |
|
// 1 - hinv(h(1.5) - std::exp(std::log(v_ + 1) * -q_)); |
|
return 1.0 - hinv(h(1.5) - pow_negative_q(v_ + 1.0)); |
|
} |
|
|
|
template <typename IntType> |
|
double zipf_distribution<IntType>::param_type::pow_negative_q(double x) const { |
|
// std::exp(std::log(x) * -q_); |
|
return q_ == 2.0 ? (1.0 / (x * x)) : std::exp(std::log(x) * -q_); |
|
} |
|
|
|
template <typename IntType> |
|
template <typename URBG> |
|
typename zipf_distribution<IntType>::result_type |
|
zipf_distribution<IntType>::operator()( |
|
URBG& g, const param_type& p) { // NOLINT(runtime/references) |
|
absl::uniform_real_distribution<double> uniform_double; |
|
double k; |
|
for (;;) { |
|
const double v = uniform_double(g); |
|
const double u = p.hxm_ + v * p.hx0_minus_hxm_; |
|
const double x = p.hinv(u); |
|
k = rint(x); // std::floor(x + 0.5); |
|
if (k > p.k()) continue; // reject k > max_k |
|
if (k - x <= p.s_) break; |
|
const double h = p.h(k + 0.5); |
|
const double r = p.pow_negative_q(p.v_ + k); |
|
if (u >= h - r) break; |
|
} |
|
IntType ki = static_cast<IntType>(k); |
|
assert(ki <= p.k_); |
|
return ki; |
|
} |
|
|
|
template <typename CharT, typename Traits, typename IntType> |
|
std::basic_ostream<CharT, Traits>& operator<<( |
|
std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references) |
|
const zipf_distribution<IntType>& x) { |
|
using stream_type = |
|
typename random_internal::stream_format_type<IntType>::type; |
|
auto saver = random_internal::make_ostream_state_saver(os); |
|
os.precision(random_internal::stream_precision_helper<double>::kPrecision); |
|
os << static_cast<stream_type>(x.k()) << os.fill() << x.q() << os.fill() |
|
<< x.v(); |
|
return os; |
|
} |
|
|
|
template <typename CharT, typename Traits, typename IntType> |
|
std::basic_istream<CharT, Traits>& operator>>( |
|
std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references) |
|
zipf_distribution<IntType>& x) { // NOLINT(runtime/references) |
|
using result_type = typename zipf_distribution<IntType>::result_type; |
|
using param_type = typename zipf_distribution<IntType>::param_type; |
|
using stream_type = |
|
typename random_internal::stream_format_type<IntType>::type; |
|
stream_type k; |
|
double q; |
|
double v; |
|
|
|
auto saver = random_internal::make_istream_state_saver(is); |
|
is >> k >> q >> v; |
|
if (!is.fail()) { |
|
x.param(param_type(static_cast<result_type>(k), q, v)); |
|
} |
|
return is; |
|
} |
|
|
|
} // namespace absl. |
|
|
|
#endif // ABSL_RANDOM_ZIPF_DISTRIBUTION_H_
|
|
|