Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1306 lines
49 KiB
1306 lines
49 KiB
// Copyright 2019 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
// |
|
// ----------------------------------------------------------------------------- |
|
// File: inlined_vector.h |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// This header file contains the declaration and definition of an "inlined |
|
// vector" which behaves in an equivalent fashion to a `std::vector`, except |
|
// that storage for small sequences of the vector are provided inline without |
|
// requiring any heap allocation. |
|
// |
|
// An `absl::InlinedVector<T, N>` specifies the default capacity `N` as one of |
|
// its template parameters. Instances where `size() <= N` hold contained |
|
// elements in inline space. Typically `N` is very small so that sequences that |
|
// are expected to be short do not require allocations. |
|
// |
|
// An `absl::InlinedVector` does not usually require a specific allocator. If |
|
// the inlined vector grows beyond its initial constraints, it will need to |
|
// allocate (as any normal `std::vector` would). This is usually performed with |
|
// the default allocator (defined as `std::allocator<T>`). Optionally, a custom |
|
// allocator type may be specified as `A` in `absl::InlinedVector<T, N, A>`. |
|
|
|
#ifndef ABSL_CONTAINER_INLINED_VECTOR_H_ |
|
#define ABSL_CONTAINER_INLINED_VECTOR_H_ |
|
|
|
#include <algorithm> |
|
#include <cassert> |
|
#include <cstddef> |
|
#include <cstdlib> |
|
#include <cstring> |
|
#include <initializer_list> |
|
#include <iterator> |
|
#include <memory> |
|
#include <type_traits> |
|
#include <utility> |
|
|
|
#include "absl/algorithm/algorithm.h" |
|
#include "absl/base/internal/throw_delegate.h" |
|
#include "absl/base/optimization.h" |
|
#include "absl/base/port.h" |
|
#include "absl/container/internal/inlined_vector.h" |
|
#include "absl/memory/memory.h" |
|
|
|
namespace absl { |
|
// ----------------------------------------------------------------------------- |
|
// InlinedVector |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// An `absl::InlinedVector` is designed to be a drop-in replacement for |
|
// `std::vector` for use cases where the vector's size is sufficiently small |
|
// that it can be inlined. If the inlined vector does grow beyond its estimated |
|
// capacity, it will trigger an initial allocation on the heap, and will behave |
|
// as a `std:vector`. The API of the `absl::InlinedVector` within this file is |
|
// designed to cover the same API footprint as covered by `std::vector`. |
|
template <typename T, size_t N, typename A = std::allocator<T>> |
|
class InlinedVector { |
|
static_assert( |
|
N > 0, "InlinedVector cannot be instantiated with `0` inlined elements."); |
|
|
|
using Storage = inlined_vector_internal::Storage<InlinedVector>; |
|
using Allocation = typename Storage::Allocation; |
|
|
|
template <typename Iterator> |
|
using IsAtLeastForwardIterator = std::is_convertible< |
|
typename std::iterator_traits<Iterator>::iterator_category, |
|
std::forward_iterator_tag>; |
|
|
|
template <typename Iterator> |
|
using EnableIfAtLeastForwardIterator = |
|
absl::enable_if_t<IsAtLeastForwardIterator<Iterator>::value>; |
|
|
|
template <typename Iterator> |
|
using DisableIfAtLeastForwardIterator = |
|
absl::enable_if_t<!IsAtLeastForwardIterator<Iterator>::value>; |
|
|
|
using rvalue_reference = typename Storage::rvalue_reference; |
|
|
|
public: |
|
using allocator_type = typename Storage::allocator_type; |
|
using value_type = typename Storage::value_type; |
|
using pointer = typename Storage::pointer; |
|
using const_pointer = typename Storage::const_pointer; |
|
using reference = typename Storage::reference; |
|
using const_reference = typename Storage::const_reference; |
|
using size_type = typename Storage::size_type; |
|
using difference_type = typename Storage::difference_type; |
|
using iterator = typename Storage::iterator; |
|
using const_iterator = typename Storage::const_iterator; |
|
using reverse_iterator = typename Storage::reverse_iterator; |
|
using const_reverse_iterator = typename Storage::const_reverse_iterator; |
|
|
|
// --------------------------------------------------------------------------- |
|
// InlinedVector Constructors and Destructor |
|
// --------------------------------------------------------------------------- |
|
|
|
// Creates an empty inlined vector with a default initialized allocator. |
|
InlinedVector() noexcept(noexcept(allocator_type())) |
|
: storage_(allocator_type()) {} |
|
|
|
// Creates an empty inlined vector with a specified allocator. |
|
explicit InlinedVector(const allocator_type& alloc) noexcept |
|
: storage_(alloc) {} |
|
|
|
// Creates an inlined vector with `n` copies of `value_type()`. |
|
explicit InlinedVector(size_type n, |
|
const allocator_type& alloc = allocator_type()) |
|
: storage_(alloc) { |
|
InitAssign(n); |
|
} |
|
|
|
// Creates an inlined vector with `n` copies of `v`. |
|
InlinedVector(size_type n, const_reference v, |
|
const allocator_type& alloc = allocator_type()) |
|
: storage_(alloc) { |
|
InitAssign(n, v); |
|
} |
|
|
|
// Creates an inlined vector of copies of the values in `list`. |
|
InlinedVector(std::initializer_list<value_type> list, |
|
const allocator_type& alloc = allocator_type()) |
|
: storage_(alloc) { |
|
AppendForwardRange(list.begin(), list.end()); |
|
} |
|
|
|
// Creates an inlined vector with elements constructed from the provided |
|
// forward iterator range [`first`, `last`). |
|
// |
|
// NOTE: The `enable_if` prevents ambiguous interpretation between a call to |
|
// this constructor with two integral arguments and a call to the above |
|
// `InlinedVector(size_type, const_reference)` constructor. |
|
template <typename ForwardIterator, |
|
EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr> |
|
InlinedVector(ForwardIterator first, ForwardIterator last, |
|
const allocator_type& alloc = allocator_type()) |
|
: storage_(alloc) { |
|
AppendForwardRange(first, last); |
|
} |
|
|
|
// Creates an inlined vector with elements constructed from the provided input |
|
// iterator range [`first`, `last`). |
|
template <typename InputIterator, |
|
DisableIfAtLeastForwardIterator<InputIterator>* = nullptr> |
|
InlinedVector(InputIterator first, InputIterator last, |
|
const allocator_type& alloc = allocator_type()) |
|
: storage_(alloc) { |
|
std::copy(first, last, std::back_inserter(*this)); |
|
} |
|
|
|
// Creates a copy of an `other` inlined vector using `other`'s allocator. |
|
InlinedVector(const InlinedVector& other) |
|
: InlinedVector(other, other.storage_.GetAllocator()) {} |
|
|
|
// Creates a copy of an `other` inlined vector using a specified allocator. |
|
InlinedVector(const InlinedVector& other, const allocator_type& alloc) |
|
: storage_(alloc) { |
|
reserve(other.size()); |
|
if (storage_.GetIsAllocated()) { |
|
UninitializedCopy(other.begin(), other.end(), |
|
storage_.GetAllocatedData()); |
|
storage_.SetAllocatedSize(other.size()); |
|
} else { |
|
UninitializedCopy(other.begin(), other.end(), storage_.GetInlinedData()); |
|
storage_.SetInlinedSize(other.size()); |
|
} |
|
} |
|
|
|
// Creates an inlined vector by moving in the contents of an `other` inlined |
|
// vector without performing any allocations. If `other` contains allocated |
|
// memory, the newly-created instance will take ownership of that memory |
|
// (leaving `other` itself empty). However, if `other` does not contain any |
|
// allocated memory, the new inlined vector will will perform element-wise |
|
// move construction of `other`s elements. |
|
// |
|
// NOTE: since no allocation is performed for the inlined vector in either |
|
// case, the `noexcept(...)` specification depends on whether moving the |
|
// underlying objects can throw. We assume: |
|
// a) Move constructors should only throw due to allocation failure. |
|
// b) If `value_type`'s move constructor allocates, it uses the same |
|
// allocation function as the `InlinedVector`'s allocator. Thus, the move |
|
// constructor is non-throwing if the allocator is non-throwing or |
|
// `value_type`'s move constructor is specified as `noexcept`. |
|
InlinedVector(InlinedVector&& other) noexcept( |
|
absl::allocator_is_nothrow<allocator_type>::value || |
|
std::is_nothrow_move_constructible<value_type>::value) |
|
: storage_(other.storage_.GetAllocator()) { |
|
if (other.storage_.GetIsAllocated()) { |
|
// We can just steal the underlying buffer from the source. |
|
// That leaves the source empty, so we clear its size. |
|
storage_.InitAllocation(other.storage_.GetAllocation()); |
|
storage_.SetAllocatedSize(other.size()); |
|
other.storage_.SetInlinedSize(0); |
|
} else { |
|
UninitializedCopy( |
|
std::make_move_iterator(other.storage_.GetInlinedData()), |
|
std::make_move_iterator(other.storage_.GetInlinedData() + |
|
other.size()), |
|
storage_.GetInlinedData()); |
|
storage_.SetInlinedSize(other.size()); |
|
} |
|
} |
|
|
|
// Creates an inlined vector by moving in the contents of an `other` inlined |
|
// vector, performing allocations with the specified `alloc` allocator. If |
|
// `other`'s allocator is not equal to `alloc` and `other` contains allocated |
|
// memory, this move constructor will create a new allocation. |
|
// |
|
// NOTE: since allocation is performed in this case, this constructor can |
|
// only be `noexcept` if the specified allocator is also `noexcept`. If this |
|
// is the case, or if `other` contains allocated memory, this constructor |
|
// performs element-wise move construction of its contents. |
|
// |
|
// Only in the case where `other`'s allocator is equal to `alloc` and `other` |
|
// contains allocated memory will the newly created inlined vector take |
|
// ownership of `other`'s allocated memory. |
|
InlinedVector(InlinedVector&& other, const allocator_type& alloc) noexcept( |
|
absl::allocator_is_nothrow<allocator_type>::value) |
|
: storage_(alloc) { |
|
if (other.storage_.GetIsAllocated()) { |
|
if (alloc == other.storage_.GetAllocator()) { |
|
// We can just steal the allocation from the source. |
|
storage_.SetAllocatedSize(other.size()); |
|
storage_.InitAllocation(other.storage_.GetAllocation()); |
|
other.storage_.SetInlinedSize(0); |
|
} else { |
|
// We need to use our own allocator |
|
reserve(other.size()); |
|
UninitializedCopy(std::make_move_iterator(other.begin()), |
|
std::make_move_iterator(other.end()), |
|
storage_.GetAllocatedData()); |
|
storage_.SetAllocatedSize(other.size()); |
|
} |
|
} else { |
|
UninitializedCopy( |
|
std::make_move_iterator(other.storage_.GetInlinedData()), |
|
std::make_move_iterator(other.storage_.GetInlinedData() + |
|
other.size()), |
|
storage_.GetInlinedData()); |
|
storage_.SetInlinedSize(other.size()); |
|
} |
|
} |
|
|
|
~InlinedVector() { clear(); } |
|
|
|
// --------------------------------------------------------------------------- |
|
// InlinedVector Member Accessors |
|
// --------------------------------------------------------------------------- |
|
|
|
// `InlinedVector::empty()` |
|
// |
|
// Checks if the inlined vector has no elements. |
|
bool empty() const noexcept { return !size(); } |
|
|
|
// `InlinedVector::size()` |
|
// |
|
// Returns the number of elements in the inlined vector. |
|
size_type size() const noexcept { return storage_.GetSize(); } |
|
|
|
// `InlinedVector::max_size()` |
|
// |
|
// Returns the maximum number of elements the vector can hold. |
|
size_type max_size() const noexcept { |
|
// One bit of the size storage is used to indicate whether the inlined |
|
// vector is allocated. As a result, the maximum size of the container that |
|
// we can express is half of the max for `size_type`. |
|
return (std::numeric_limits<size_type>::max)() / 2; |
|
} |
|
|
|
// `InlinedVector::capacity()` |
|
// |
|
// Returns the number of elements that can be stored in the inlined vector |
|
// without requiring a reallocation of underlying memory. |
|
// |
|
// NOTE: For most inlined vectors, `capacity()` should equal the template |
|
// parameter `N`. For inlined vectors which exceed this capacity, they |
|
// will no longer be inlined and `capacity()` will equal its capacity on the |
|
// allocated heap. |
|
size_type capacity() const noexcept { |
|
return storage_.GetIsAllocated() ? storage_.GetAllocatedCapacity() |
|
: static_cast<size_type>(N); |
|
} |
|
|
|
// `InlinedVector::data()` |
|
// |
|
// Returns a `pointer` to elements of the inlined vector. This pointer can be |
|
// used to access and modify the contained elements. |
|
// Only results within the range [`0`, `size()`) are defined. |
|
pointer data() noexcept { |
|
return storage_.GetIsAllocated() ? storage_.GetAllocatedData() |
|
: storage_.GetInlinedData(); |
|
} |
|
|
|
// Overload of `InlinedVector::data()` to return a `const_pointer` to elements |
|
// of the inlined vector. This pointer can be used to access (but not modify) |
|
// the contained elements. |
|
const_pointer data() const noexcept { |
|
return storage_.GetIsAllocated() ? storage_.GetAllocatedData() |
|
: storage_.GetInlinedData(); |
|
} |
|
|
|
// `InlinedVector::operator[]()` |
|
// |
|
// Returns a `reference` to the `i`th element of the inlined vector using the |
|
// array operator. |
|
reference operator[](size_type i) { |
|
assert(i < size()); |
|
return data()[i]; |
|
} |
|
|
|
// Overload of `InlinedVector::operator[]()` to return a `const_reference` to |
|
// the `i`th element of the inlined vector. |
|
const_reference operator[](size_type i) const { |
|
assert(i < size()); |
|
return data()[i]; |
|
} |
|
|
|
// `InlinedVector::at()` |
|
// |
|
// Returns a `reference` to the `i`th element of the inlined vector. |
|
reference at(size_type i) { |
|
if (ABSL_PREDICT_FALSE(i >= size())) { |
|
base_internal::ThrowStdOutOfRange( |
|
"`InlinedVector::at(size_type)` failed bounds check"); |
|
} |
|
return data()[i]; |
|
} |
|
|
|
// Overload of `InlinedVector::at()` to return a `const_reference` to the |
|
// `i`th element of the inlined vector. |
|
const_reference at(size_type i) const { |
|
if (ABSL_PREDICT_FALSE(i >= size())) { |
|
base_internal::ThrowStdOutOfRange( |
|
"`InlinedVector::at(size_type) const` failed bounds check"); |
|
} |
|
return data()[i]; |
|
} |
|
|
|
// `InlinedVector::front()` |
|
// |
|
// Returns a `reference` to the first element of the inlined vector. |
|
reference front() { |
|
assert(!empty()); |
|
return at(0); |
|
} |
|
|
|
// Overload of `InlinedVector::front()` returns a `const_reference` to the |
|
// first element of the inlined vector. |
|
const_reference front() const { |
|
assert(!empty()); |
|
return at(0); |
|
} |
|
|
|
// `InlinedVector::back()` |
|
// |
|
// Returns a `reference` to the last element of the inlined vector. |
|
reference back() { |
|
assert(!empty()); |
|
return at(size() - 1); |
|
} |
|
|
|
// Overload of `InlinedVector::back()` to return a `const_reference` to the |
|
// last element of the inlined vector. |
|
const_reference back() const { |
|
assert(!empty()); |
|
return at(size() - 1); |
|
} |
|
|
|
// `InlinedVector::begin()` |
|
// |
|
// Returns an `iterator` to the beginning of the inlined vector. |
|
iterator begin() noexcept { return data(); } |
|
|
|
// Overload of `InlinedVector::begin()` to return a `const_iterator` to |
|
// the beginning of the inlined vector. |
|
const_iterator begin() const noexcept { return data(); } |
|
|
|
// `InlinedVector::end()` |
|
// |
|
// Returns an `iterator` to the end of the inlined vector. |
|
iterator end() noexcept { return data() + size(); } |
|
|
|
// Overload of `InlinedVector::end()` to return a `const_iterator` to the |
|
// end of the inlined vector. |
|
const_iterator end() const noexcept { return data() + size(); } |
|
|
|
// `InlinedVector::cbegin()` |
|
// |
|
// Returns a `const_iterator` to the beginning of the inlined vector. |
|
const_iterator cbegin() const noexcept { return begin(); } |
|
|
|
// `InlinedVector::cend()` |
|
// |
|
// Returns a `const_iterator` to the end of the inlined vector. |
|
const_iterator cend() const noexcept { return end(); } |
|
|
|
// `InlinedVector::rbegin()` |
|
// |
|
// Returns a `reverse_iterator` from the end of the inlined vector. |
|
reverse_iterator rbegin() noexcept { return reverse_iterator(end()); } |
|
|
|
// Overload of `InlinedVector::rbegin()` to return a |
|
// `const_reverse_iterator` from the end of the inlined vector. |
|
const_reverse_iterator rbegin() const noexcept { |
|
return const_reverse_iterator(end()); |
|
} |
|
|
|
// `InlinedVector::rend()` |
|
// |
|
// Returns a `reverse_iterator` from the beginning of the inlined vector. |
|
reverse_iterator rend() noexcept { return reverse_iterator(begin()); } |
|
|
|
// Overload of `InlinedVector::rend()` to return a `const_reverse_iterator` |
|
// from the beginning of the inlined vector. |
|
const_reverse_iterator rend() const noexcept { |
|
return const_reverse_iterator(begin()); |
|
} |
|
|
|
// `InlinedVector::crbegin()` |
|
// |
|
// Returns a `const_reverse_iterator` from the end of the inlined vector. |
|
const_reverse_iterator crbegin() const noexcept { return rbegin(); } |
|
|
|
// `InlinedVector::crend()` |
|
// |
|
// Returns a `const_reverse_iterator` from the beginning of the inlined |
|
// vector. |
|
const_reverse_iterator crend() const noexcept { return rend(); } |
|
|
|
// `InlinedVector::get_allocator()` |
|
// |
|
// Returns a copy of the allocator of the inlined vector. |
|
allocator_type get_allocator() const { return storage_.GetAllocator(); } |
|
|
|
// --------------------------------------------------------------------------- |
|
// InlinedVector Member Mutators |
|
// --------------------------------------------------------------------------- |
|
|
|
// `InlinedVector::operator=()` |
|
// |
|
// Replaces the contents of the inlined vector with copies of the elements in |
|
// the provided `std::initializer_list`. |
|
InlinedVector& operator=(std::initializer_list<value_type> list) { |
|
AssignForwardRange(list.begin(), list.end()); |
|
return *this; |
|
} |
|
|
|
// Overload of `InlinedVector::operator=()` to replace the contents of the |
|
// inlined vector with the contents of `other`. |
|
InlinedVector& operator=(const InlinedVector& other) { |
|
if (ABSL_PREDICT_FALSE(this == std::addressof(other))) return *this; |
|
|
|
// Optimized to avoid reallocation. |
|
// Prefer reassignment to copy construction for elements. |
|
if (size() < other.size()) { // grow |
|
reserve(other.size()); |
|
std::copy(other.begin(), other.begin() + size(), begin()); |
|
std::copy(other.begin() + size(), other.end(), std::back_inserter(*this)); |
|
} else { // maybe shrink |
|
erase(begin() + other.size(), end()); |
|
std::copy(other.begin(), other.end(), begin()); |
|
} |
|
return *this; |
|
} |
|
|
|
// Overload of `InlinedVector::operator=()` to replace the contents of the |
|
// inlined vector with the contents of `other`. |
|
// |
|
// NOTE: As a result of calling this overload, `other` may be empty or it's |
|
// contents may be left in a moved-from state. |
|
InlinedVector& operator=(InlinedVector&& other) { |
|
if (ABSL_PREDICT_FALSE(this == std::addressof(other))) return *this; |
|
|
|
if (other.storage_.GetIsAllocated()) { |
|
clear(); |
|
storage_.SetAllocatedSize(other.size()); |
|
storage_.InitAllocation(other.storage_.GetAllocation()); |
|
other.storage_.SetInlinedSize(0); |
|
} else { |
|
if (storage_.GetIsAllocated()) clear(); |
|
// Both are inlined now. |
|
if (size() < other.size()) { |
|
auto mid = std::make_move_iterator(other.begin() + size()); |
|
std::copy(std::make_move_iterator(other.begin()), mid, begin()); |
|
UninitializedCopy(mid, std::make_move_iterator(other.end()), end()); |
|
} else { |
|
auto new_end = std::copy(std::make_move_iterator(other.begin()), |
|
std::make_move_iterator(other.end()), begin()); |
|
Destroy(new_end, end()); |
|
} |
|
storage_.SetInlinedSize(other.size()); |
|
} |
|
return *this; |
|
} |
|
|
|
// `InlinedVector::assign()` |
|
// |
|
// Replaces the contents of the inlined vector with `n` copies of `v`. |
|
void assign(size_type n, const_reference v) { |
|
if (n <= size()) { // Possibly shrink |
|
std::fill_n(begin(), n, v); |
|
erase(begin() + n, end()); |
|
return; |
|
} |
|
// Grow |
|
reserve(n); |
|
std::fill_n(begin(), size(), v); |
|
if (storage_.GetIsAllocated()) { |
|
UninitializedFill(storage_.GetAllocatedData() + size(), |
|
storage_.GetAllocatedData() + n, v); |
|
storage_.SetAllocatedSize(n); |
|
} else { |
|
UninitializedFill(storage_.GetInlinedData() + size(), |
|
storage_.GetInlinedData() + n, v); |
|
storage_.SetInlinedSize(n); |
|
} |
|
} |
|
|
|
// Overload of `InlinedVector::assign()` to replace the contents of the |
|
// inlined vector with copies of the values in the provided |
|
// `std::initializer_list`. |
|
void assign(std::initializer_list<value_type> list) { |
|
AssignForwardRange(list.begin(), list.end()); |
|
} |
|
|
|
// Overload of `InlinedVector::assign()` to replace the contents of the |
|
// inlined vector with the forward iterator range [`first`, `last`). |
|
template <typename ForwardIterator, |
|
EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr> |
|
void assign(ForwardIterator first, ForwardIterator last) { |
|
AssignForwardRange(first, last); |
|
} |
|
|
|
// Overload of `InlinedVector::assign()` to replace the contents of the |
|
// inlined vector with the input iterator range [`first`, `last`). |
|
template <typename InputIterator, |
|
DisableIfAtLeastForwardIterator<InputIterator>* = nullptr> |
|
void assign(InputIterator first, InputIterator last) { |
|
size_type assign_index = 0; |
|
for (; (assign_index < size()) && (first != last); |
|
static_cast<void>(++assign_index), static_cast<void>(++first)) { |
|
*(data() + assign_index) = *first; |
|
} |
|
erase(data() + assign_index, data() + size()); |
|
std::copy(first, last, std::back_inserter(*this)); |
|
} |
|
|
|
// `InlinedVector::resize()` |
|
// |
|
// Resizes the inlined vector to contain `n` elements. If `n` is smaller than |
|
// the inlined vector's current size, extra elements are destroyed. If `n` is |
|
// larger than the initial size, new elements are value-initialized. |
|
void resize(size_type n) { |
|
size_type s = size(); |
|
if (n < s) { |
|
erase(begin() + n, end()); |
|
return; |
|
} |
|
reserve(n); |
|
assert(capacity() >= n); |
|
|
|
// Fill new space with elements constructed in-place. |
|
if (storage_.GetIsAllocated()) { |
|
UninitializedFill(storage_.GetAllocatedData() + s, |
|
storage_.GetAllocatedData() + n); |
|
storage_.SetAllocatedSize(n); |
|
} else { |
|
UninitializedFill(storage_.GetInlinedData() + s, |
|
storage_.GetInlinedData() + n); |
|
storage_.SetInlinedSize(n); |
|
} |
|
} |
|
|
|
// Overload of `InlinedVector::resize()` to resize the inlined vector to |
|
// contain `n` elements where, if `n` is larger than `size()`, the new values |
|
// will be copy-constructed from `v`. |
|
void resize(size_type n, const_reference v) { |
|
size_type s = size(); |
|
if (n < s) { |
|
erase(begin() + n, end()); |
|
return; |
|
} |
|
reserve(n); |
|
assert(capacity() >= n); |
|
|
|
// Fill new space with copies of `v`. |
|
if (storage_.GetIsAllocated()) { |
|
UninitializedFill(storage_.GetAllocatedData() + s, |
|
storage_.GetAllocatedData() + n, v); |
|
storage_.SetAllocatedSize(n); |
|
} else { |
|
UninitializedFill(storage_.GetInlinedData() + s, |
|
storage_.GetInlinedData() + n, v); |
|
storage_.SetInlinedSize(n); |
|
} |
|
} |
|
|
|
// `InlinedVector::insert()` |
|
// |
|
// Copies `v` into `pos`, returning an `iterator` pointing to the newly |
|
// inserted element. |
|
iterator insert(const_iterator pos, const_reference v) { |
|
return emplace(pos, v); |
|
} |
|
|
|
// Overload of `InlinedVector::insert()` for moving `v` into `pos`, returning |
|
// an iterator pointing to the newly inserted element. |
|
iterator insert(const_iterator pos, rvalue_reference v) { |
|
return emplace(pos, std::move(v)); |
|
} |
|
|
|
// Overload of `InlinedVector::insert()` for inserting `n` contiguous copies |
|
// of `v` starting at `pos`. Returns an `iterator` pointing to the first of |
|
// the newly inserted elements. |
|
iterator insert(const_iterator pos, size_type n, const_reference v) { |
|
return InsertWithCount(pos, n, v); |
|
} |
|
|
|
// Overload of `InlinedVector::insert()` for copying the contents of the |
|
// `std::initializer_list` into the vector starting at `pos`. Returns an |
|
// `iterator` pointing to the first of the newly inserted elements. |
|
iterator insert(const_iterator pos, std::initializer_list<value_type> list) { |
|
return insert(pos, list.begin(), list.end()); |
|
} |
|
|
|
// Overload of `InlinedVector::insert()` for inserting elements constructed |
|
// from the forward iterator range [`first`, `last`). Returns an `iterator` |
|
// pointing to the first of the newly inserted elements. |
|
// |
|
// NOTE: The `enable_if` is intended to disambiguate the two three-argument |
|
// overloads of `insert()`. |
|
template <typename ForwardIterator, |
|
EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr> |
|
iterator insert(const_iterator pos, ForwardIterator first, |
|
ForwardIterator last) { |
|
return InsertWithForwardRange(pos, first, last); |
|
} |
|
|
|
// Overload of `InlinedVector::insert()` for inserting elements constructed |
|
// from the input iterator range [`first`, `last`). Returns an `iterator` |
|
// pointing to the first of the newly inserted elements. |
|
template <typename InputIterator, |
|
DisableIfAtLeastForwardIterator<InputIterator>* = nullptr> |
|
iterator insert(const_iterator pos, InputIterator first, InputIterator last) { |
|
size_type initial_insert_index = std::distance(cbegin(), pos); |
|
for (size_type insert_index = initial_insert_index; first != last; |
|
static_cast<void>(++insert_index), static_cast<void>(++first)) { |
|
insert(data() + insert_index, *first); |
|
} |
|
return iterator(data() + initial_insert_index); |
|
} |
|
|
|
// `InlinedVector::emplace()` |
|
// |
|
// Constructs and inserts an object in the inlined vector at the given `pos`, |
|
// returning an `iterator` pointing to the newly emplaced element. |
|
template <typename... Args> |
|
iterator emplace(const_iterator pos, Args&&... args) { |
|
assert(pos >= begin()); |
|
assert(pos <= end()); |
|
if (ABSL_PREDICT_FALSE(pos == end())) { |
|
emplace_back(std::forward<Args>(args)...); |
|
return end() - 1; |
|
} |
|
|
|
T new_t = T(std::forward<Args>(args)...); |
|
|
|
auto range = ShiftRight(pos, 1); |
|
if (range.first == range.second) { |
|
// constructing into uninitialized memory |
|
Construct(range.first, std::move(new_t)); |
|
} else { |
|
// assigning into moved-from object |
|
*range.first = T(std::move(new_t)); |
|
} |
|
|
|
return range.first; |
|
} |
|
|
|
// `InlinedVector::emplace_back()` |
|
// |
|
// Constructs and appends a new element to the end of the inlined vector, |
|
// returning a `reference` to the emplaced element. |
|
template <typename... Args> |
|
reference emplace_back(Args&&... args) { |
|
size_type s = size(); |
|
if (ABSL_PREDICT_FALSE(s == capacity())) { |
|
return GrowAndEmplaceBack(std::forward<Args>(args)...); |
|
} |
|
pointer space; |
|
if (storage_.GetIsAllocated()) { |
|
storage_.SetAllocatedSize(s + 1); |
|
space = storage_.GetAllocatedData(); |
|
} else { |
|
storage_.SetInlinedSize(s + 1); |
|
space = storage_.GetInlinedData(); |
|
} |
|
return Construct(space + s, std::forward<Args>(args)...); |
|
} |
|
|
|
// `InlinedVector::push_back()` |
|
// |
|
// Appends a copy of `v` to the end of the inlined vector. |
|
void push_back(const_reference v) { static_cast<void>(emplace_back(v)); } |
|
|
|
// Overload of `InlinedVector::push_back()` for moving `v` into a newly |
|
// appended element. |
|
void push_back(rvalue_reference v) { |
|
static_cast<void>(emplace_back(std::move(v))); |
|
} |
|
|
|
// `InlinedVector::pop_back()` |
|
// |
|
// Destroys the element at the end of the inlined vector and shrinks the size |
|
// by `1` (unless the inlined vector is empty, in which case this is a no-op). |
|
void pop_back() noexcept { |
|
assert(!empty()); |
|
size_type s = size(); |
|
if (storage_.GetIsAllocated()) { |
|
Destroy(storage_.GetAllocatedData() + s - 1, |
|
storage_.GetAllocatedData() + s); |
|
storage_.SetAllocatedSize(s - 1); |
|
} else { |
|
Destroy(storage_.GetInlinedData() + s - 1, storage_.GetInlinedData() + s); |
|
storage_.SetInlinedSize(s - 1); |
|
} |
|
} |
|
|
|
// `InlinedVector::erase()` |
|
// |
|
// Erases the element at `pos` of the inlined vector, returning an `iterator` |
|
// pointing to the first element following the erased element. |
|
// |
|
// NOTE: May return the end iterator, which is not dereferencable. |
|
iterator erase(const_iterator pos) { |
|
assert(pos >= begin()); |
|
assert(pos < end()); |
|
|
|
iterator position = const_cast<iterator>(pos); |
|
std::move(position + 1, end(), position); |
|
pop_back(); |
|
return position; |
|
} |
|
|
|
// Overload of `InlinedVector::erase()` for erasing all elements in the |
|
// range [`from`, `to`) in the inlined vector. Returns an `iterator` pointing |
|
// to the first element following the range erased or the end iterator if `to` |
|
// was the end iterator. |
|
iterator erase(const_iterator from, const_iterator to) { |
|
assert(begin() <= from); |
|
assert(from <= to); |
|
assert(to <= end()); |
|
|
|
iterator range_start = const_cast<iterator>(from); |
|
iterator range_end = const_cast<iterator>(to); |
|
|
|
size_type s = size(); |
|
ptrdiff_t erase_gap = std::distance(range_start, range_end); |
|
if (erase_gap > 0) { |
|
pointer space; |
|
if (storage_.GetIsAllocated()) { |
|
space = storage_.GetAllocatedData(); |
|
storage_.SetAllocatedSize(s - erase_gap); |
|
} else { |
|
space = storage_.GetInlinedData(); |
|
storage_.SetInlinedSize(s - erase_gap); |
|
} |
|
std::move(range_end, space + s, range_start); |
|
Destroy(space + s - erase_gap, space + s); |
|
} |
|
return range_start; |
|
} |
|
|
|
// `InlinedVector::clear()` |
|
// |
|
// Destroys all elements in the inlined vector, sets the size of `0` and |
|
// deallocates the heap allocation if the inlined vector was allocated. |
|
void clear() noexcept { |
|
size_type s = size(); |
|
if (storage_.GetIsAllocated()) { |
|
Destroy(storage_.GetAllocatedData(), storage_.GetAllocatedData() + s); |
|
storage_.GetAllocation().Dealloc(storage_.GetAllocator()); |
|
} else if (s != 0) { // do nothing for empty vectors |
|
Destroy(storage_.GetInlinedData(), storage_.GetInlinedData() + s); |
|
} |
|
storage_.SetInlinedSize(0); |
|
} |
|
|
|
// `InlinedVector::reserve()` |
|
// |
|
// Enlarges the underlying representation of the inlined vector so it can hold |
|
// at least `n` elements. This method does not change `size()` or the actual |
|
// contents of the vector. |
|
// |
|
// NOTE: If `n` does not exceed `capacity()`, `reserve()` will have no |
|
// effects. Otherwise, `reserve()` will reallocate, performing an n-time |
|
// element-wise move of everything contained. |
|
void reserve(size_type n) { |
|
if (n > capacity()) { |
|
// Make room for new elements |
|
EnlargeBy(n - size()); |
|
} |
|
} |
|
|
|
// `InlinedVector::shrink_to_fit()` |
|
// |
|
// Reduces memory usage by freeing unused memory. After this call, calls to |
|
// `capacity()` will be equal to `max(N, size())`. |
|
// |
|
// If `size() <= N` and the elements are currently stored on the heap, they |
|
// will be moved to the inlined storage and the heap memory will be |
|
// deallocated. |
|
// |
|
// If `size() > N` and `size() < capacity()` the elements will be moved to a |
|
// smaller heap allocation. |
|
void shrink_to_fit() { |
|
const auto s = size(); |
|
if (ABSL_PREDICT_FALSE(!storage_.GetIsAllocated() || s == capacity())) |
|
return; |
|
|
|
if (s <= N) { |
|
// Move the elements to the inlined storage. |
|
// We have to do this using a temporary, because `inlined_storage` and |
|
// `allocation_storage` are in a union field. |
|
auto temp = std::move(*this); |
|
assign(std::make_move_iterator(temp.begin()), |
|
std::make_move_iterator(temp.end())); |
|
return; |
|
} |
|
|
|
// Reallocate storage and move elements. |
|
// We can't simply use the same approach as above, because `assign()` would |
|
// call into `reserve()` internally and reserve larger capacity than we need |
|
Allocation new_allocation(storage_.GetAllocator(), s); |
|
UninitializedCopy(std::make_move_iterator(storage_.GetAllocatedData()), |
|
std::make_move_iterator(storage_.GetAllocatedData() + s), |
|
new_allocation.buffer()); |
|
ResetAllocation(new_allocation, s); |
|
} |
|
|
|
// `InlinedVector::swap()` |
|
// |
|
// Swaps the contents of this inlined vector with the contents of `other`. |
|
void swap(InlinedVector& other) { |
|
if (ABSL_PREDICT_FALSE(this == std::addressof(other))) return; |
|
|
|
SwapImpl(other); |
|
} |
|
|
|
private: |
|
template <typename H, typename TheT, size_t TheN, typename TheA> |
|
friend H AbslHashValue(H h, const absl::InlinedVector<TheT, TheN, TheA>& a); |
|
|
|
void ResetAllocation(Allocation new_allocation, size_type new_size) { |
|
if (storage_.GetIsAllocated()) { |
|
Destroy(storage_.GetAllocatedData(), |
|
storage_.GetAllocatedData() + size()); |
|
assert(begin() == storage_.GetAllocatedData()); |
|
storage_.GetAllocation().Dealloc(storage_.GetAllocator()); |
|
storage_.GetAllocation() = new_allocation; |
|
} else { |
|
Destroy(storage_.GetInlinedData(), storage_.GetInlinedData() + size()); |
|
storage_.InitAllocation(new_allocation); // bug: only init once |
|
} |
|
storage_.SetAllocatedSize(new_size); |
|
} |
|
|
|
template <typename... Args> |
|
reference Construct(pointer p, Args&&... args) { |
|
std::allocator_traits<allocator_type>::construct( |
|
storage_.GetAllocator(), p, std::forward<Args>(args)...); |
|
return *p; |
|
} |
|
|
|
template <typename Iterator> |
|
void UninitializedCopy(Iterator src, Iterator src_last, pointer dst) { |
|
for (; src != src_last; ++dst, ++src) Construct(dst, *src); |
|
} |
|
|
|
template <typename... Args> |
|
void UninitializedFill(pointer dst, pointer dst_last, const Args&... args) { |
|
for (; dst != dst_last; ++dst) Construct(dst, args...); |
|
} |
|
|
|
// Destroy [`from`, `to`) in place. |
|
void Destroy(pointer from, pointer to) { |
|
for (pointer cur = from; cur != to; ++cur) { |
|
std::allocator_traits<allocator_type>::destroy(storage_.GetAllocator(), |
|
cur); |
|
} |
|
#if !defined(NDEBUG) |
|
// Overwrite unused memory with `0xab` so we can catch uninitialized usage. |
|
// Cast to `void*` to tell the compiler that we don't care that we might be |
|
// scribbling on a vtable pointer. |
|
if (from != to) { |
|
auto len = sizeof(value_type) * std::distance(from, to); |
|
std::memset(reinterpret_cast<void*>(from), 0xab, len); |
|
} |
|
#endif // !defined(NDEBUG) |
|
} |
|
|
|
// Enlarge the underlying representation so we can store `size_ + delta` elems |
|
// in allocated space. The size is not changed, and any newly added memory is |
|
// not initialized. |
|
void EnlargeBy(size_type delta) { |
|
const size_type s = size(); |
|
assert(s <= capacity()); |
|
|
|
size_type target = (std::max)(static_cast<size_type>(N), s + delta); |
|
|
|
// Compute new capacity by repeatedly doubling current capacity |
|
// TODO(psrc): Check and avoid overflow? |
|
size_type new_capacity = capacity(); |
|
while (new_capacity < target) { |
|
new_capacity <<= 1; |
|
} |
|
|
|
Allocation new_allocation(storage_.GetAllocator(), new_capacity); |
|
|
|
UninitializedCopy(std::make_move_iterator(data()), |
|
std::make_move_iterator(data() + s), |
|
new_allocation.buffer()); |
|
|
|
ResetAllocation(new_allocation, s); |
|
} |
|
|
|
// Shift all elements from `position` to `end()` by `n` places to the right. |
|
// If the vector needs to be enlarged, memory will be allocated. |
|
// Returns `iterator`s pointing to the start of the previously-initialized |
|
// portion and the start of the uninitialized portion of the created gap. |
|
// The number of initialized spots is `pair.second - pair.first`. The number |
|
// of raw spots is `n - (pair.second - pair.first)`. |
|
// |
|
// Updates the size of the InlinedVector internally. |
|
std::pair<iterator, iterator> ShiftRight(const_iterator position, |
|
size_type n) { |
|
iterator start_used = const_cast<iterator>(position); |
|
iterator start_raw = const_cast<iterator>(position); |
|
size_type s = size(); |
|
size_type required_size = s + n; |
|
|
|
if (required_size > capacity()) { |
|
// Compute new capacity by repeatedly doubling current capacity |
|
size_type new_capacity = capacity(); |
|
while (new_capacity < required_size) { |
|
new_capacity <<= 1; |
|
} |
|
// Move everyone into the new allocation, leaving a gap of `n` for the |
|
// requested shift. |
|
Allocation new_allocation(storage_.GetAllocator(), new_capacity); |
|
size_type index = position - begin(); |
|
UninitializedCopy(std::make_move_iterator(data()), |
|
std::make_move_iterator(data() + index), |
|
new_allocation.buffer()); |
|
UninitializedCopy(std::make_move_iterator(data() + index), |
|
std::make_move_iterator(data() + s), |
|
new_allocation.buffer() + index + n); |
|
ResetAllocation(new_allocation, s); |
|
|
|
// New allocation means our iterator is invalid, so we'll recalculate. |
|
// Since the entire gap is in new space, there's no used space to reuse. |
|
start_raw = begin() + index; |
|
start_used = start_raw; |
|
} else { |
|
// If we had enough space, it's a two-part move. Elements going into |
|
// previously-unoccupied space need an `UninitializedCopy()`. Elements |
|
// going into a previously-occupied space are just a `std::move()`. |
|
iterator pos = const_cast<iterator>(position); |
|
iterator raw_space = end(); |
|
size_type slots_in_used_space = raw_space - pos; |
|
size_type new_elements_in_used_space = (std::min)(n, slots_in_used_space); |
|
size_type new_elements_in_raw_space = n - new_elements_in_used_space; |
|
size_type old_elements_in_used_space = |
|
slots_in_used_space - new_elements_in_used_space; |
|
|
|
UninitializedCopy( |
|
std::make_move_iterator(pos + old_elements_in_used_space), |
|
std::make_move_iterator(raw_space), |
|
raw_space + new_elements_in_raw_space); |
|
std::move_backward(pos, pos + old_elements_in_used_space, raw_space); |
|
|
|
// If the gap is entirely in raw space, the used space starts where the |
|
// raw space starts, leaving no elements in used space. If the gap is |
|
// entirely in used space, the raw space starts at the end of the gap, |
|
// leaving all elements accounted for within the used space. |
|
start_used = pos; |
|
start_raw = pos + new_elements_in_used_space; |
|
} |
|
storage_.AddSize(n); |
|
return std::make_pair(start_used, start_raw); |
|
} |
|
|
|
template <typename... Args> |
|
reference GrowAndEmplaceBack(Args&&... args) { |
|
assert(size() == capacity()); |
|
const size_type s = size(); |
|
|
|
Allocation new_allocation(storage_.GetAllocator(), 2 * capacity()); |
|
|
|
reference new_element = |
|
Construct(new_allocation.buffer() + s, std::forward<Args>(args)...); |
|
UninitializedCopy(std::make_move_iterator(data()), |
|
std::make_move_iterator(data() + s), |
|
new_allocation.buffer()); |
|
|
|
ResetAllocation(new_allocation, s + 1); |
|
|
|
return new_element; |
|
} |
|
|
|
void InitAssign(size_type n) { |
|
if (n > static_cast<size_type>(N)) { |
|
Allocation new_allocation(storage_.GetAllocator(), n); |
|
storage_.InitAllocation(new_allocation); |
|
UninitializedFill(storage_.GetAllocatedData(), |
|
storage_.GetAllocatedData() + n); |
|
storage_.SetAllocatedSize(n); |
|
} else { |
|
UninitializedFill(storage_.GetInlinedData(), |
|
storage_.GetInlinedData() + n); |
|
storage_.SetInlinedSize(n); |
|
} |
|
} |
|
|
|
void InitAssign(size_type n, const_reference v) { |
|
if (n > static_cast<size_type>(N)) { |
|
Allocation new_allocation(storage_.GetAllocator(), n); |
|
storage_.InitAllocation(new_allocation); |
|
UninitializedFill(storage_.GetAllocatedData(), |
|
storage_.GetAllocatedData() + n, v); |
|
storage_.SetAllocatedSize(n); |
|
} else { |
|
UninitializedFill(storage_.GetInlinedData(), |
|
storage_.GetInlinedData() + n, v); |
|
storage_.SetInlinedSize(n); |
|
} |
|
} |
|
|
|
template <typename ForwardIt> |
|
void AssignForwardRange(ForwardIt first, ForwardIt last) { |
|
static_assert(IsAtLeastForwardIterator<ForwardIt>::value, ""); |
|
|
|
auto length = std::distance(first, last); |
|
|
|
// Prefer reassignment to copy construction for elements. |
|
if (static_cast<size_type>(length) <= size()) { |
|
erase(std::copy(first, last, begin()), end()); |
|
return; |
|
} |
|
|
|
reserve(length); |
|
iterator out = begin(); |
|
for (; out != end(); ++first, ++out) *out = *first; |
|
if (storage_.GetIsAllocated()) { |
|
UninitializedCopy(first, last, out); |
|
storage_.SetAllocatedSize(length); |
|
} else { |
|
UninitializedCopy(first, last, out); |
|
storage_.SetInlinedSize(length); |
|
} |
|
} |
|
|
|
template <typename ForwardIt> |
|
void AppendForwardRange(ForwardIt first, ForwardIt last) { |
|
static_assert(IsAtLeastForwardIterator<ForwardIt>::value, ""); |
|
|
|
auto length = std::distance(first, last); |
|
reserve(size() + length); |
|
if (storage_.GetIsAllocated()) { |
|
UninitializedCopy(first, last, storage_.GetAllocatedData() + size()); |
|
storage_.SetAllocatedSize(size() + length); |
|
} else { |
|
UninitializedCopy(first, last, storage_.GetInlinedData() + size()); |
|
storage_.SetInlinedSize(size() + length); |
|
} |
|
} |
|
|
|
iterator InsertWithCount(const_iterator position, size_type n, |
|
const_reference v) { |
|
assert(position >= begin() && position <= end()); |
|
if (ABSL_PREDICT_FALSE(n == 0)) return const_cast<iterator>(position); |
|
|
|
value_type copy = v; |
|
std::pair<iterator, iterator> it_pair = ShiftRight(position, n); |
|
std::fill(it_pair.first, it_pair.second, copy); |
|
UninitializedFill(it_pair.second, it_pair.first + n, copy); |
|
|
|
return it_pair.first; |
|
} |
|
|
|
template <typename ForwardIt> |
|
iterator InsertWithForwardRange(const_iterator position, ForwardIt first, |
|
ForwardIt last) { |
|
static_assert(IsAtLeastForwardIterator<ForwardIt>::value, ""); |
|
assert(position >= begin() && position <= end()); |
|
|
|
if (ABSL_PREDICT_FALSE(first == last)) |
|
return const_cast<iterator>(position); |
|
|
|
auto n = std::distance(first, last); |
|
std::pair<iterator, iterator> it_pair = ShiftRight(position, n); |
|
size_type used_spots = it_pair.second - it_pair.first; |
|
auto open_spot = std::next(first, used_spots); |
|
std::copy(first, open_spot, it_pair.first); |
|
UninitializedCopy(open_spot, last, it_pair.second); |
|
return it_pair.first; |
|
} |
|
|
|
void SwapImpl(InlinedVector& other) { |
|
using std::swap; // Augment ADL with `std::swap`. |
|
|
|
bool is_allocated = storage_.GetIsAllocated(); |
|
bool other_is_allocated = other.storage_.GetIsAllocated(); |
|
|
|
if (is_allocated && other_is_allocated) { |
|
// Both out of line, so just swap the tag, allocation, and allocator. |
|
storage_.SwapSizeAndIsAllocated(other.storage_); |
|
swap(storage_.GetAllocation(), other.storage_.GetAllocation()); |
|
swap(storage_.GetAllocator(), other.storage_.GetAllocator()); |
|
|
|
return; |
|
} |
|
|
|
if (!is_allocated && !other_is_allocated) { |
|
// Both inlined: swap up to smaller size, then move remaining elements. |
|
InlinedVector* a = this; |
|
InlinedVector* b = std::addressof(other); |
|
if (size() < other.size()) { |
|
swap(a, b); |
|
} |
|
|
|
const size_type a_size = a->size(); |
|
const size_type b_size = b->size(); |
|
assert(a_size >= b_size); |
|
// `a` is larger. Swap the elements up to the smaller array size. |
|
std::swap_ranges(a->storage_.GetInlinedData(), |
|
a->storage_.GetInlinedData() + b_size, |
|
b->storage_.GetInlinedData()); |
|
|
|
// Move the remaining elements: |
|
// [`b_size`, `a_size`) from `a` -> [`b_size`, `a_size`) from `b` |
|
b->UninitializedCopy(a->storage_.GetInlinedData() + b_size, |
|
a->storage_.GetInlinedData() + a_size, |
|
b->storage_.GetInlinedData() + b_size); |
|
a->Destroy(a->storage_.GetInlinedData() + b_size, |
|
a->storage_.GetInlinedData() + a_size); |
|
|
|
storage_.SwapSizeAndIsAllocated(other.storage_); |
|
swap(storage_.GetAllocator(), other.storage_.GetAllocator()); |
|
|
|
assert(b->size() == a_size); |
|
assert(a->size() == b_size); |
|
return; |
|
} |
|
|
|
// One is out of line, one is inline. |
|
// We first move the elements from the inlined vector into the |
|
// inlined space in the other vector. We then put the other vector's |
|
// pointer/capacity into the originally inlined vector and swap |
|
// the tags. |
|
InlinedVector* a = this; |
|
InlinedVector* b = std::addressof(other); |
|
if (a->storage_.GetIsAllocated()) { |
|
swap(a, b); |
|
} |
|
|
|
assert(!a->storage_.GetIsAllocated()); |
|
assert(b->storage_.GetIsAllocated()); |
|
|
|
const size_type a_size = a->size(); |
|
const size_type b_size = b->size(); |
|
// In an optimized build, `b_size` would be unused. |
|
static_cast<void>(b_size); |
|
|
|
// Made Local copies of `size()`, these can now be swapped |
|
a->storage_.SwapSizeAndIsAllocated(b->storage_); |
|
|
|
// Copy `b_allocation` out before `b`'s union gets clobbered by |
|
// `inline_space` |
|
Allocation b_allocation = b->storage_.GetAllocation(); |
|
|
|
b->UninitializedCopy(a->storage_.GetInlinedData(), |
|
a->storage_.GetInlinedData() + a_size, |
|
b->storage_.GetInlinedData()); |
|
a->Destroy(a->storage_.GetInlinedData(), |
|
a->storage_.GetInlinedData() + a_size); |
|
|
|
a->storage_.GetAllocation() = b_allocation; |
|
|
|
if (a->storage_.GetAllocator() != b->storage_.GetAllocator()) { |
|
swap(a->storage_.GetAllocator(), b->storage_.GetAllocator()); |
|
} |
|
|
|
assert(b->size() == a_size); |
|
assert(a->size() == b_size); |
|
} |
|
|
|
Storage storage_; |
|
}; |
|
|
|
// ----------------------------------------------------------------------------- |
|
// InlinedVector Non-Member Functions |
|
// ----------------------------------------------------------------------------- |
|
|
|
// `swap()` |
|
// |
|
// Swaps the contents of two inlined vectors. This convenience function |
|
// simply calls `InlinedVector::swap()`. |
|
template <typename T, size_t N, typename A> |
|
void swap(absl::InlinedVector<T, N, A>& a, |
|
absl::InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) { |
|
a.swap(b); |
|
} |
|
|
|
// `operator==()` |
|
// |
|
// Tests the equivalency of the contents of two inlined vectors. |
|
template <typename T, size_t N, typename A> |
|
bool operator==(const absl::InlinedVector<T, N, A>& a, |
|
const absl::InlinedVector<T, N, A>& b) { |
|
auto a_data = a.data(); |
|
auto a_size = a.size(); |
|
auto b_data = b.data(); |
|
auto b_size = b.size(); |
|
return absl::equal(a_data, a_data + a_size, b_data, b_data + b_size); |
|
} |
|
|
|
// `operator!=()` |
|
// |
|
// Tests the inequality of the contents of two inlined vectors. |
|
template <typename T, size_t N, typename A> |
|
bool operator!=(const absl::InlinedVector<T, N, A>& a, |
|
const absl::InlinedVector<T, N, A>& b) { |
|
return !(a == b); |
|
} |
|
|
|
// `operator<()` |
|
// |
|
// Tests whether the contents of one inlined vector are less than the contents |
|
// of another through a lexicographical comparison operation. |
|
template <typename T, size_t N, typename A> |
|
bool operator<(const absl::InlinedVector<T, N, A>& a, |
|
const absl::InlinedVector<T, N, A>& b) { |
|
auto a_data = a.data(); |
|
auto a_size = a.size(); |
|
auto b_data = b.data(); |
|
auto b_size = b.size(); |
|
return std::lexicographical_compare(a_data, a_data + a_size, b_data, |
|
b_data + b_size); |
|
} |
|
|
|
// `operator>()` |
|
// |
|
// Tests whether the contents of one inlined vector are greater than the |
|
// contents of another through a lexicographical comparison operation. |
|
template <typename T, size_t N, typename A> |
|
bool operator>(const absl::InlinedVector<T, N, A>& a, |
|
const absl::InlinedVector<T, N, A>& b) { |
|
return b < a; |
|
} |
|
|
|
// `operator<=()` |
|
// |
|
// Tests whether the contents of one inlined vector are less than or equal to |
|
// the contents of another through a lexicographical comparison operation. |
|
template <typename T, size_t N, typename A> |
|
bool operator<=(const absl::InlinedVector<T, N, A>& a, |
|
const absl::InlinedVector<T, N, A>& b) { |
|
return !(b < a); |
|
} |
|
|
|
// `operator>=()` |
|
// |
|
// Tests whether the contents of one inlined vector are greater than or equal to |
|
// the contents of another through a lexicographical comparison operation. |
|
template <typename T, size_t N, typename A> |
|
bool operator>=(const absl::InlinedVector<T, N, A>& a, |
|
const absl::InlinedVector<T, N, A>& b) { |
|
return !(a < b); |
|
} |
|
|
|
// `AbslHashValue()` |
|
// |
|
// Provides `absl::Hash` support for `absl::InlinedVector`. You do not normally |
|
// call this function directly. |
|
template <typename H, typename TheT, size_t TheN, typename TheA> |
|
H AbslHashValue(H h, const absl::InlinedVector<TheT, TheN, TheA>& a) { |
|
auto a_data = a.data(); |
|
auto a_size = a.size(); |
|
return H::combine(H::combine_contiguous(std::move(h), a_data, a_size), |
|
a_size); |
|
} |
|
|
|
} // namespace absl |
|
|
|
#endif // ABSL_CONTAINER_INLINED_VECTOR_H_
|
|
|