Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
735 lines
27 KiB
735 lines
27 KiB
// Copyright 2018 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#include <stdint.h> |
|
|
|
#include <algorithm> |
|
#include <functional> |
|
#include <map> |
|
#include <numeric> |
|
#include <random> |
|
#include <set> |
|
#include <string> |
|
#include <type_traits> |
|
#include <unordered_map> |
|
#include <unordered_set> |
|
#include <vector> |
|
|
|
#include "absl/base/internal/raw_logging.h" |
|
#include "absl/container/btree_map.h" |
|
#include "absl/container/btree_set.h" |
|
#include "absl/container/btree_test.h" |
|
#include "absl/container/flat_hash_map.h" |
|
#include "absl/container/flat_hash_set.h" |
|
#include "absl/container/internal/hashtable_debug.h" |
|
#include "absl/flags/flag.h" |
|
#include "absl/hash/hash.h" |
|
#include "absl/memory/memory.h" |
|
#include "absl/strings/cord.h" |
|
#include "absl/strings/str_format.h" |
|
#include "absl/time/time.h" |
|
#include "benchmark/benchmark.h" |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
namespace container_internal { |
|
namespace { |
|
|
|
constexpr size_t kBenchmarkValues = 1 << 20; |
|
|
|
// How many times we add and remove sub-batches in one batch of *AddRem |
|
// benchmarks. |
|
constexpr size_t kAddRemBatchSize = 1 << 2; |
|
|
|
// Generates n values in the range [0, 4 * n]. |
|
template <typename V> |
|
std::vector<V> GenerateValues(int n) { |
|
constexpr int kSeed = 23; |
|
return GenerateValuesWithSeed<V>(n, 4 * n, kSeed); |
|
} |
|
|
|
// Benchmark insertion of values into a container. |
|
template <typename T> |
|
void BM_InsertImpl(benchmark::State& state, bool sorted) { |
|
using V = typename remove_pair_const<typename T::value_type>::type; |
|
typename KeyOfValue<typename T::key_type, V>::type key_of_value; |
|
|
|
std::vector<V> values = GenerateValues<V>(kBenchmarkValues); |
|
if (sorted) { |
|
std::sort(values.begin(), values.end()); |
|
} |
|
T container(values.begin(), values.end()); |
|
|
|
// Remove and re-insert 10% of the keys per batch. |
|
const int batch_size = (kBenchmarkValues + 9) / 10; |
|
while (state.KeepRunningBatch(batch_size)) { |
|
state.PauseTiming(); |
|
const auto i = static_cast<int>(state.iterations()); |
|
|
|
for (int j = i; j < i + batch_size; j++) { |
|
int x = j % kBenchmarkValues; |
|
container.erase(key_of_value(values[x])); |
|
} |
|
|
|
state.ResumeTiming(); |
|
|
|
for (int j = i; j < i + batch_size; j++) { |
|
int x = j % kBenchmarkValues; |
|
container.insert(values[x]); |
|
} |
|
} |
|
} |
|
|
|
template <typename T> |
|
void BM_Insert(benchmark::State& state) { |
|
BM_InsertImpl<T>(state, false); |
|
} |
|
|
|
template <typename T> |
|
void BM_InsertSorted(benchmark::State& state) { |
|
BM_InsertImpl<T>(state, true); |
|
} |
|
|
|
// container::insert sometimes returns a pair<iterator, bool> and sometimes |
|
// returns an iterator (for multi- containers). |
|
template <typename Iter> |
|
Iter GetIterFromInsert(const std::pair<Iter, bool>& pair) { |
|
return pair.first; |
|
} |
|
template <typename Iter> |
|
Iter GetIterFromInsert(const Iter iter) { |
|
return iter; |
|
} |
|
|
|
// Benchmark insertion of values into a container at the end. |
|
template <typename T> |
|
void BM_InsertEnd(benchmark::State& state) { |
|
using V = typename remove_pair_const<typename T::value_type>::type; |
|
typename KeyOfValue<typename T::key_type, V>::type key_of_value; |
|
|
|
T container; |
|
const int kSize = 10000; |
|
for (int i = 0; i < kSize; ++i) { |
|
container.insert(Generator<V>(kSize)(i)); |
|
} |
|
V v = Generator<V>(kSize)(kSize - 1); |
|
typename T::key_type k = key_of_value(v); |
|
|
|
auto it = container.find(k); |
|
while (state.KeepRunning()) { |
|
// Repeatedly removing then adding v. |
|
container.erase(it); |
|
it = GetIterFromInsert(container.insert(v)); |
|
} |
|
} |
|
|
|
// Benchmark inserting the first few elements in a container. In b-tree, this is |
|
// when the root node grows. |
|
template <typename T> |
|
void BM_InsertSmall(benchmark::State& state) { |
|
using V = typename remove_pair_const<typename T::value_type>::type; |
|
|
|
const int kSize = 8; |
|
std::vector<V> values = GenerateValues<V>(kSize); |
|
T container; |
|
|
|
while (state.KeepRunningBatch(kSize)) { |
|
for (int i = 0; i < kSize; ++i) { |
|
benchmark::DoNotOptimize(container.insert(values[i])); |
|
} |
|
state.PauseTiming(); |
|
// Do not measure the time it takes to clear the container. |
|
container.clear(); |
|
state.ResumeTiming(); |
|
} |
|
} |
|
|
|
template <typename T> |
|
void BM_LookupImpl(benchmark::State& state, bool sorted) { |
|
using V = typename remove_pair_const<typename T::value_type>::type; |
|
typename KeyOfValue<typename T::key_type, V>::type key_of_value; |
|
|
|
std::vector<V> values = GenerateValues<V>(kBenchmarkValues); |
|
if (sorted) { |
|
std::sort(values.begin(), values.end()); |
|
} |
|
T container(values.begin(), values.end()); |
|
|
|
while (state.KeepRunning()) { |
|
int idx = state.iterations() % kBenchmarkValues; |
|
benchmark::DoNotOptimize(container.find(key_of_value(values[idx]))); |
|
} |
|
} |
|
|
|
// Benchmark lookup of values in a container. |
|
template <typename T> |
|
void BM_Lookup(benchmark::State& state) { |
|
BM_LookupImpl<T>(state, false); |
|
} |
|
|
|
// Benchmark lookup of values in a full container, meaning that values |
|
// are inserted in-order to take advantage of biased insertion, which |
|
// yields a full tree. |
|
template <typename T> |
|
void BM_FullLookup(benchmark::State& state) { |
|
BM_LookupImpl<T>(state, true); |
|
} |
|
|
|
// Benchmark deletion of values from a container. |
|
template <typename T> |
|
void BM_Delete(benchmark::State& state) { |
|
using V = typename remove_pair_const<typename T::value_type>::type; |
|
typename KeyOfValue<typename T::key_type, V>::type key_of_value; |
|
std::vector<V> values = GenerateValues<V>(kBenchmarkValues); |
|
T container(values.begin(), values.end()); |
|
|
|
// Remove and re-insert 10% of the keys per batch. |
|
const int batch_size = (kBenchmarkValues + 9) / 10; |
|
while (state.KeepRunningBatch(batch_size)) { |
|
const int i = state.iterations(); |
|
|
|
for (int j = i; j < i + batch_size; j++) { |
|
int x = j % kBenchmarkValues; |
|
container.erase(key_of_value(values[x])); |
|
} |
|
|
|
state.PauseTiming(); |
|
for (int j = i; j < i + batch_size; j++) { |
|
int x = j % kBenchmarkValues; |
|
container.insert(values[x]); |
|
} |
|
state.ResumeTiming(); |
|
} |
|
} |
|
|
|
// Benchmark deletion of multiple values from a container. |
|
template <typename T> |
|
void BM_DeleteRange(benchmark::State& state) { |
|
using V = typename remove_pair_const<typename T::value_type>::type; |
|
typename KeyOfValue<typename T::key_type, V>::type key_of_value; |
|
std::vector<V> values = GenerateValues<V>(kBenchmarkValues); |
|
T container(values.begin(), values.end()); |
|
|
|
// Remove and re-insert 10% of the keys per batch. |
|
const int batch_size = (kBenchmarkValues + 9) / 10; |
|
while (state.KeepRunningBatch(batch_size)) { |
|
const int i = state.iterations(); |
|
|
|
const int start_index = i % kBenchmarkValues; |
|
|
|
state.PauseTiming(); |
|
{ |
|
std::vector<V> removed; |
|
removed.reserve(batch_size); |
|
auto itr = container.find(key_of_value(values[start_index])); |
|
auto start = itr; |
|
for (int j = 0; j < batch_size; j++) { |
|
if (itr == container.end()) { |
|
state.ResumeTiming(); |
|
container.erase(start, itr); |
|
state.PauseTiming(); |
|
itr = container.begin(); |
|
start = itr; |
|
} |
|
removed.push_back(*itr++); |
|
} |
|
|
|
state.ResumeTiming(); |
|
container.erase(start, itr); |
|
state.PauseTiming(); |
|
|
|
container.insert(removed.begin(), removed.end()); |
|
} |
|
state.ResumeTiming(); |
|
} |
|
} |
|
|
|
// Benchmark steady-state insert (into first half of range) and remove (from |
|
// second half of range), treating the container approximately like a queue with |
|
// log-time access for all elements. This benchmark does not test the case where |
|
// insertion and removal happen in the same region of the tree. This benchmark |
|
// counts two value constructors. |
|
template <typename T> |
|
void BM_QueueAddRem(benchmark::State& state) { |
|
using V = typename remove_pair_const<typename T::value_type>::type; |
|
typename KeyOfValue<typename T::key_type, V>::type key_of_value; |
|
|
|
ABSL_RAW_CHECK(kBenchmarkValues % 2 == 0, "for performance"); |
|
|
|
T container; |
|
|
|
const size_t half = kBenchmarkValues / 2; |
|
std::vector<int> remove_keys(half); |
|
std::vector<int> add_keys(half); |
|
|
|
// We want to do the exact same work repeatedly, and the benchmark can end |
|
// after a different number of iterations depending on the speed of the |
|
// individual run so we use a large batch size here and ensure that we do |
|
// deterministic work every batch. |
|
while (state.KeepRunningBatch(half * kAddRemBatchSize)) { |
|
state.PauseTiming(); |
|
|
|
container.clear(); |
|
|
|
for (size_t i = 0; i < half; ++i) { |
|
remove_keys[i] = i; |
|
add_keys[i] = i; |
|
} |
|
constexpr int kSeed = 5; |
|
std::mt19937_64 rand(kSeed); |
|
std::shuffle(remove_keys.begin(), remove_keys.end(), rand); |
|
std::shuffle(add_keys.begin(), add_keys.end(), rand); |
|
|
|
// Note needs lazy generation of values. |
|
Generator<V> g(kBenchmarkValues * kAddRemBatchSize); |
|
|
|
for (size_t i = 0; i < half; ++i) { |
|
container.insert(g(add_keys[i])); |
|
container.insert(g(half + remove_keys[i])); |
|
} |
|
|
|
// There are three parts each of size "half": |
|
// 1 is being deleted from [offset - half, offset) |
|
// 2 is standing [offset, offset + half) |
|
// 3 is being inserted into [offset + half, offset + 2 * half) |
|
size_t offset = 0; |
|
|
|
for (size_t i = 0; i < kAddRemBatchSize; ++i) { |
|
std::shuffle(remove_keys.begin(), remove_keys.end(), rand); |
|
std::shuffle(add_keys.begin(), add_keys.end(), rand); |
|
offset += half; |
|
|
|
state.ResumeTiming(); |
|
for (size_t idx = 0; idx < half; ++idx) { |
|
container.erase(key_of_value(g(offset - half + remove_keys[idx]))); |
|
container.insert(g(offset + half + add_keys[idx])); |
|
} |
|
state.PauseTiming(); |
|
} |
|
state.ResumeTiming(); |
|
} |
|
} |
|
|
|
// Mixed insertion and deletion in the same range using pre-constructed values. |
|
template <typename T> |
|
void BM_MixedAddRem(benchmark::State& state) { |
|
using V = typename remove_pair_const<typename T::value_type>::type; |
|
typename KeyOfValue<typename T::key_type, V>::type key_of_value; |
|
|
|
ABSL_RAW_CHECK(kBenchmarkValues % 2 == 0, "for performance"); |
|
|
|
T container; |
|
|
|
// Create two random shuffles |
|
std::vector<int> remove_keys(kBenchmarkValues); |
|
std::vector<int> add_keys(kBenchmarkValues); |
|
|
|
// We want to do the exact same work repeatedly, and the benchmark can end |
|
// after a different number of iterations depending on the speed of the |
|
// individual run so we use a large batch size here and ensure that we do |
|
// deterministic work every batch. |
|
while (state.KeepRunningBatch(kBenchmarkValues * kAddRemBatchSize)) { |
|
state.PauseTiming(); |
|
|
|
container.clear(); |
|
|
|
constexpr int kSeed = 7; |
|
std::mt19937_64 rand(kSeed); |
|
|
|
std::vector<V> values = GenerateValues<V>(kBenchmarkValues * 2); |
|
|
|
// Insert the first half of the values (already in random order) |
|
container.insert(values.begin(), values.begin() + kBenchmarkValues); |
|
|
|
// Insert the first half of the values (already in random order) |
|
for (size_t i = 0; i < kBenchmarkValues; ++i) { |
|
// remove_keys and add_keys will be swapped before each round, |
|
// therefore fill add_keys here w/ the keys being inserted, so |
|
// they'll be the first to be removed. |
|
remove_keys[i] = i + kBenchmarkValues; |
|
add_keys[i] = i; |
|
} |
|
|
|
for (size_t i = 0; i < kAddRemBatchSize; ++i) { |
|
remove_keys.swap(add_keys); |
|
std::shuffle(remove_keys.begin(), remove_keys.end(), rand); |
|
std::shuffle(add_keys.begin(), add_keys.end(), rand); |
|
|
|
state.ResumeTiming(); |
|
for (size_t idx = 0; idx < kBenchmarkValues; ++idx) { |
|
container.erase(key_of_value(values[remove_keys[idx]])); |
|
container.insert(values[add_keys[idx]]); |
|
} |
|
state.PauseTiming(); |
|
} |
|
state.ResumeTiming(); |
|
} |
|
} |
|
|
|
// Insertion at end, removal from the beginning. This benchmark |
|
// counts two value constructors. |
|
// TODO(ezb): we could add a GenerateNext version of generator that could reduce |
|
// noise for string-like types. |
|
template <typename T> |
|
void BM_Fifo(benchmark::State& state) { |
|
using V = typename remove_pair_const<typename T::value_type>::type; |
|
|
|
T container; |
|
// Need lazy generation of values as state.max_iterations is large. |
|
Generator<V> g(kBenchmarkValues + state.max_iterations); |
|
|
|
for (int i = 0; i < kBenchmarkValues; i++) { |
|
container.insert(g(i)); |
|
} |
|
|
|
while (state.KeepRunning()) { |
|
container.erase(container.begin()); |
|
container.insert(container.end(), g(state.iterations() + kBenchmarkValues)); |
|
} |
|
} |
|
|
|
// Iteration (forward) through the tree |
|
template <typename T> |
|
void BM_FwdIter(benchmark::State& state) { |
|
using V = typename remove_pair_const<typename T::value_type>::type; |
|
using R = typename T::value_type const*; |
|
|
|
std::vector<V> values = GenerateValues<V>(kBenchmarkValues); |
|
T container(values.begin(), values.end()); |
|
|
|
auto iter = container.end(); |
|
|
|
R r = nullptr; |
|
|
|
while (state.KeepRunning()) { |
|
if (iter == container.end()) iter = container.begin(); |
|
r = &(*iter); |
|
++iter; |
|
} |
|
|
|
benchmark::DoNotOptimize(r); |
|
} |
|
|
|
// Benchmark random range-construction of a container. |
|
template <typename T> |
|
void BM_RangeConstructionImpl(benchmark::State& state, bool sorted) { |
|
using V = typename remove_pair_const<typename T::value_type>::type; |
|
|
|
std::vector<V> values = GenerateValues<V>(kBenchmarkValues); |
|
if (sorted) { |
|
std::sort(values.begin(), values.end()); |
|
} |
|
{ |
|
T container(values.begin(), values.end()); |
|
} |
|
|
|
while (state.KeepRunning()) { |
|
T container(values.begin(), values.end()); |
|
benchmark::DoNotOptimize(container); |
|
} |
|
} |
|
|
|
template <typename T> |
|
void BM_InsertRangeRandom(benchmark::State& state) { |
|
BM_RangeConstructionImpl<T>(state, false); |
|
} |
|
|
|
template <typename T> |
|
void BM_InsertRangeSorted(benchmark::State& state) { |
|
BM_RangeConstructionImpl<T>(state, true); |
|
} |
|
|
|
#define STL_ORDERED_TYPES(value) \ |
|
using stl_set_##value = std::set<value>; \ |
|
using stl_map_##value = std::map<value, intptr_t>; \ |
|
using stl_multiset_##value = std::multiset<value>; \ |
|
using stl_multimap_##value = std::multimap<value, intptr_t> |
|
|
|
using StdString = std::string; |
|
STL_ORDERED_TYPES(int32_t); |
|
STL_ORDERED_TYPES(int64_t); |
|
STL_ORDERED_TYPES(StdString); |
|
STL_ORDERED_TYPES(Cord); |
|
STL_ORDERED_TYPES(Time); |
|
|
|
#define STL_UNORDERED_TYPES(value) \ |
|
using stl_unordered_set_##value = std::unordered_set<value>; \ |
|
using stl_unordered_map_##value = std::unordered_map<value, intptr_t>; \ |
|
using flat_hash_set_##value = flat_hash_set<value>; \ |
|
using flat_hash_map_##value = flat_hash_map<value, intptr_t>; \ |
|
using stl_unordered_multiset_##value = std::unordered_multiset<value>; \ |
|
using stl_unordered_multimap_##value = \ |
|
std::unordered_multimap<value, intptr_t> |
|
|
|
#define STL_UNORDERED_TYPES_CUSTOM_HASH(value, hash) \ |
|
using stl_unordered_set_##value = std::unordered_set<value, hash>; \ |
|
using stl_unordered_map_##value = std::unordered_map<value, intptr_t, hash>; \ |
|
using flat_hash_set_##value = flat_hash_set<value, hash>; \ |
|
using flat_hash_map_##value = flat_hash_map<value, intptr_t, hash>; \ |
|
using stl_unordered_multiset_##value = std::unordered_multiset<value, hash>; \ |
|
using stl_unordered_multimap_##value = \ |
|
std::unordered_multimap<value, intptr_t, hash> |
|
|
|
STL_UNORDERED_TYPES_CUSTOM_HASH(Cord, absl::Hash<absl::Cord>); |
|
|
|
STL_UNORDERED_TYPES(int32_t); |
|
STL_UNORDERED_TYPES(int64_t); |
|
STL_UNORDERED_TYPES(StdString); |
|
STL_UNORDERED_TYPES_CUSTOM_HASH(Time, absl::Hash<absl::Time>); |
|
|
|
#define BTREE_TYPES(value) \ |
|
using btree_256_set_##value = \ |
|
btree_set<value, std::less<value>, std::allocator<value>>; \ |
|
using btree_256_map_##value = \ |
|
btree_map<value, intptr_t, std::less<value>, \ |
|
std::allocator<std::pair<const value, intptr_t>>>; \ |
|
using btree_256_multiset_##value = \ |
|
btree_multiset<value, std::less<value>, std::allocator<value>>; \ |
|
using btree_256_multimap_##value = \ |
|
btree_multimap<value, intptr_t, std::less<value>, \ |
|
std::allocator<std::pair<const value, intptr_t>>> |
|
|
|
BTREE_TYPES(int32_t); |
|
BTREE_TYPES(int64_t); |
|
BTREE_TYPES(StdString); |
|
BTREE_TYPES(Cord); |
|
BTREE_TYPES(Time); |
|
|
|
#define MY_BENCHMARK4(type, func) \ |
|
void BM_##type##_##func(benchmark::State& state) { BM_##func<type>(state); } \ |
|
BENCHMARK(BM_##type##_##func) |
|
|
|
#define MY_BENCHMARK3(type) \ |
|
MY_BENCHMARK4(type, Insert); \ |
|
MY_BENCHMARK4(type, InsertSorted); \ |
|
MY_BENCHMARK4(type, InsertEnd); \ |
|
MY_BENCHMARK4(type, InsertSmall); \ |
|
MY_BENCHMARK4(type, Lookup); \ |
|
MY_BENCHMARK4(type, FullLookup); \ |
|
MY_BENCHMARK4(type, Delete); \ |
|
MY_BENCHMARK4(type, DeleteRange); \ |
|
MY_BENCHMARK4(type, QueueAddRem); \ |
|
MY_BENCHMARK4(type, MixedAddRem); \ |
|
MY_BENCHMARK4(type, Fifo); \ |
|
MY_BENCHMARK4(type, FwdIter); \ |
|
MY_BENCHMARK4(type, InsertRangeRandom); \ |
|
MY_BENCHMARK4(type, InsertRangeSorted) |
|
|
|
#define MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(type) \ |
|
MY_BENCHMARK3(stl_##type); \ |
|
MY_BENCHMARK3(stl_unordered_##type); \ |
|
MY_BENCHMARK3(btree_256_##type) |
|
|
|
#define MY_BENCHMARK2(type) \ |
|
MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(type); \ |
|
MY_BENCHMARK3(flat_hash_##type) |
|
|
|
// Define MULTI_TESTING to see benchmarks for multi-containers also. |
|
// |
|
// You can use --copt=-DMULTI_TESTING. |
|
#ifdef MULTI_TESTING |
|
#define MY_BENCHMARK(type) \ |
|
MY_BENCHMARK2(set_##type); \ |
|
MY_BENCHMARK2(map_##type); \ |
|
MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(multiset_##type); \ |
|
MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(multimap_##type) |
|
#else |
|
#define MY_BENCHMARK(type) \ |
|
MY_BENCHMARK2(set_##type); \ |
|
MY_BENCHMARK2(map_##type) |
|
#endif |
|
|
|
MY_BENCHMARK(int32_t); |
|
MY_BENCHMARK(int64_t); |
|
MY_BENCHMARK(StdString); |
|
MY_BENCHMARK(Cord); |
|
MY_BENCHMARK(Time); |
|
|
|
// Define a type whose size and cost of moving are independently customizable. |
|
// When sizeof(value_type) increases, we expect btree to no longer have as much |
|
// cache-locality advantage over STL. When cost of moving increases, we expect |
|
// btree to actually do more work than STL because it has to move values around |
|
// and STL doesn't have to. |
|
template <int Size, int Copies> |
|
struct BigType { |
|
BigType() : BigType(0) {} |
|
explicit BigType(int x) { std::iota(values.begin(), values.end(), x); } |
|
|
|
void Copy(const BigType& other) { |
|
for (int i = 0; i < Size && i < Copies; ++i) values[i] = other.values[i]; |
|
// If Copies > Size, do extra copies. |
|
for (int i = Size, idx = 0; i < Copies; ++i) { |
|
int64_t tmp = other.values[idx]; |
|
benchmark::DoNotOptimize(tmp); |
|
idx = idx + 1 == Size ? 0 : idx + 1; |
|
} |
|
} |
|
|
|
BigType(const BigType& other) { Copy(other); } |
|
BigType& operator=(const BigType& other) { |
|
Copy(other); |
|
return *this; |
|
} |
|
|
|
// Compare only the first Copies elements if Copies is less than Size. |
|
bool operator<(const BigType& other) const { |
|
return std::lexicographical_compare( |
|
values.begin(), values.begin() + std::min(Size, Copies), |
|
other.values.begin(), other.values.begin() + std::min(Size, Copies)); |
|
} |
|
bool operator==(const BigType& other) const { |
|
return std::equal(values.begin(), values.begin() + std::min(Size, Copies), |
|
other.values.begin()); |
|
} |
|
|
|
// Support absl::Hash. |
|
template <typename State> |
|
friend State AbslHashValue(State h, const BigType& b) { |
|
for (int i = 0; i < Size && i < Copies; ++i) |
|
h = State::combine(std::move(h), b.values[i]); |
|
return h; |
|
} |
|
|
|
std::array<int64_t, Size> values; |
|
}; |
|
|
|
#define BIG_TYPE_BENCHMARKS(SIZE, COPIES) \ |
|
using stl_set_size##SIZE##copies##COPIES = std::set<BigType<SIZE, COPIES>>; \ |
|
using stl_map_size##SIZE##copies##COPIES = \ |
|
std::map<BigType<SIZE, COPIES>, intptr_t>; \ |
|
using stl_multiset_size##SIZE##copies##COPIES = \ |
|
std::multiset<BigType<SIZE, COPIES>>; \ |
|
using stl_multimap_size##SIZE##copies##COPIES = \ |
|
std::multimap<BigType<SIZE, COPIES>, intptr_t>; \ |
|
using stl_unordered_set_size##SIZE##copies##COPIES = \ |
|
std::unordered_set<BigType<SIZE, COPIES>, \ |
|
absl::Hash<BigType<SIZE, COPIES>>>; \ |
|
using stl_unordered_map_size##SIZE##copies##COPIES = \ |
|
std::unordered_map<BigType<SIZE, COPIES>, intptr_t, \ |
|
absl::Hash<BigType<SIZE, COPIES>>>; \ |
|
using flat_hash_set_size##SIZE##copies##COPIES = \ |
|
flat_hash_set<BigType<SIZE, COPIES>>; \ |
|
using flat_hash_map_size##SIZE##copies##COPIES = \ |
|
flat_hash_map<BigType<SIZE, COPIES>, intptr_t>; \ |
|
using stl_unordered_multiset_size##SIZE##copies##COPIES = \ |
|
std::unordered_multiset<BigType<SIZE, COPIES>, \ |
|
absl::Hash<BigType<SIZE, COPIES>>>; \ |
|
using stl_unordered_multimap_size##SIZE##copies##COPIES = \ |
|
std::unordered_multimap<BigType<SIZE, COPIES>, intptr_t, \ |
|
absl::Hash<BigType<SIZE, COPIES>>>; \ |
|
using btree_256_set_size##SIZE##copies##COPIES = \ |
|
btree_set<BigType<SIZE, COPIES>>; \ |
|
using btree_256_map_size##SIZE##copies##COPIES = \ |
|
btree_map<BigType<SIZE, COPIES>, intptr_t>; \ |
|
using btree_256_multiset_size##SIZE##copies##COPIES = \ |
|
btree_multiset<BigType<SIZE, COPIES>>; \ |
|
using btree_256_multimap_size##SIZE##copies##COPIES = \ |
|
btree_multimap<BigType<SIZE, COPIES>, intptr_t>; \ |
|
MY_BENCHMARK(size##SIZE##copies##COPIES) |
|
|
|
// Define BIG_TYPE_TESTING to see benchmarks for more big types. |
|
// |
|
// You can use --copt=-DBIG_TYPE_TESTING. |
|
#ifndef NODESIZE_TESTING |
|
#ifdef BIG_TYPE_TESTING |
|
BIG_TYPE_BENCHMARKS(1, 4); |
|
BIG_TYPE_BENCHMARKS(4, 1); |
|
BIG_TYPE_BENCHMARKS(4, 4); |
|
BIG_TYPE_BENCHMARKS(1, 8); |
|
BIG_TYPE_BENCHMARKS(8, 1); |
|
BIG_TYPE_BENCHMARKS(8, 8); |
|
BIG_TYPE_BENCHMARKS(1, 16); |
|
BIG_TYPE_BENCHMARKS(16, 1); |
|
BIG_TYPE_BENCHMARKS(16, 16); |
|
BIG_TYPE_BENCHMARKS(1, 32); |
|
BIG_TYPE_BENCHMARKS(32, 1); |
|
BIG_TYPE_BENCHMARKS(32, 32); |
|
#else |
|
BIG_TYPE_BENCHMARKS(32, 32); |
|
#endif |
|
#endif |
|
|
|
// Benchmark using unique_ptrs to large value types. In order to be able to use |
|
// the same benchmark code as the other types, use a type that holds a |
|
// unique_ptr and has a copy constructor. |
|
template <int Size> |
|
struct BigTypePtr { |
|
BigTypePtr() : BigTypePtr(0) {} |
|
explicit BigTypePtr(int x) { |
|
ptr = absl::make_unique<BigType<Size, Size>>(x); |
|
} |
|
BigTypePtr(const BigTypePtr& other) { |
|
ptr = absl::make_unique<BigType<Size, Size>>(*other.ptr); |
|
} |
|
BigTypePtr(BigTypePtr&& other) noexcept = default; |
|
BigTypePtr& operator=(const BigTypePtr& other) { |
|
ptr = absl::make_unique<BigType<Size, Size>>(*other.ptr); |
|
} |
|
BigTypePtr& operator=(BigTypePtr&& other) noexcept = default; |
|
|
|
bool operator<(const BigTypePtr& other) const { return *ptr < *other.ptr; } |
|
bool operator==(const BigTypePtr& other) const { return *ptr == *other.ptr; } |
|
|
|
std::unique_ptr<BigType<Size, Size>> ptr; |
|
}; |
|
|
|
template <int Size> |
|
double ContainerInfo(const btree_set<BigTypePtr<Size>>& b) { |
|
const double bytes_used = |
|
b.bytes_used() + b.size() * sizeof(BigType<Size, Size>); |
|
const double bytes_per_value = bytes_used / b.size(); |
|
BtreeContainerInfoLog(b, bytes_used, bytes_per_value); |
|
return bytes_per_value; |
|
} |
|
template <int Size> |
|
double ContainerInfo(const btree_map<int, BigTypePtr<Size>>& b) { |
|
const double bytes_used = |
|
b.bytes_used() + b.size() * sizeof(BigType<Size, Size>); |
|
const double bytes_per_value = bytes_used / b.size(); |
|
BtreeContainerInfoLog(b, bytes_used, bytes_per_value); |
|
return bytes_per_value; |
|
} |
|
|
|
#define BIG_TYPE_PTR_BENCHMARKS(SIZE) \ |
|
using stl_set_size##SIZE##copies##SIZE##ptr = std::set<BigType<SIZE, SIZE>>; \ |
|
using stl_map_size##SIZE##copies##SIZE##ptr = \ |
|
std::map<int, BigType<SIZE, SIZE>>; \ |
|
using stl_unordered_set_size##SIZE##copies##SIZE##ptr = \ |
|
std::unordered_set<BigType<SIZE, SIZE>, \ |
|
absl::Hash<BigType<SIZE, SIZE>>>; \ |
|
using stl_unordered_map_size##SIZE##copies##SIZE##ptr = \ |
|
std::unordered_map<int, BigType<SIZE, SIZE>>; \ |
|
using flat_hash_set_size##SIZE##copies##SIZE##ptr = \ |
|
flat_hash_set<BigType<SIZE, SIZE>>; \ |
|
using flat_hash_map_size##SIZE##copies##SIZE##ptr = \ |
|
flat_hash_map<int, BigTypePtr<SIZE>>; \ |
|
using btree_256_set_size##SIZE##copies##SIZE##ptr = \ |
|
btree_set<BigTypePtr<SIZE>>; \ |
|
using btree_256_map_size##SIZE##copies##SIZE##ptr = \ |
|
btree_map<int, BigTypePtr<SIZE>>; \ |
|
MY_BENCHMARK3(stl_set_size##SIZE##copies##SIZE##ptr); \ |
|
MY_BENCHMARK3(stl_unordered_set_size##SIZE##copies##SIZE##ptr); \ |
|
MY_BENCHMARK3(flat_hash_set_size##SIZE##copies##SIZE##ptr); \ |
|
MY_BENCHMARK3(btree_256_set_size##SIZE##copies##SIZE##ptr); \ |
|
MY_BENCHMARK3(stl_map_size##SIZE##copies##SIZE##ptr); \ |
|
MY_BENCHMARK3(stl_unordered_map_size##SIZE##copies##SIZE##ptr); \ |
|
MY_BENCHMARK3(flat_hash_map_size##SIZE##copies##SIZE##ptr); \ |
|
MY_BENCHMARK3(btree_256_map_size##SIZE##copies##SIZE##ptr) |
|
|
|
BIG_TYPE_PTR_BENCHMARKS(32); |
|
|
|
} // namespace |
|
} // namespace container_internal |
|
ABSL_NAMESPACE_END |
|
} // namespace absl
|
|
|