Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
589 lines
18 KiB
589 lines
18 KiB
// Copyright 2018 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// http://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
// |
|
// This file provides CityHash64() and related functions. |
|
// |
|
// It's probably possible to create even faster hash functions by |
|
// writing a program that systematically explores some of the space of |
|
// possible hash functions, by using SIMD instructions, or by |
|
// compromising on hash quality. |
|
|
|
#include "absl/hash/internal/city.h" |
|
|
|
#include <string.h> // for memcpy and memset |
|
#include <algorithm> |
|
|
|
#include "absl/base/config.h" |
|
#include "absl/base/internal/endian.h" |
|
#include "absl/base/internal/unaligned_access.h" |
|
#include "absl/base/optimization.h" |
|
|
|
namespace absl { |
|
namespace hash_internal { |
|
|
|
#ifdef ABSL_IS_BIG_ENDIAN |
|
#define uint32_in_expected_order(x) (absl::gbswap_32(x)) |
|
#define uint64_in_expected_order(x) (absl::gbswap_64(x)) |
|
#else |
|
#define uint32_in_expected_order(x) (x) |
|
#define uint64_in_expected_order(x) (x) |
|
#endif |
|
|
|
static uint64_t Fetch64(const char *p) { |
|
return uint64_in_expected_order(ABSL_INTERNAL_UNALIGNED_LOAD64(p)); |
|
} |
|
|
|
static uint32_t Fetch32(const char *p) { |
|
return uint32_in_expected_order(ABSL_INTERNAL_UNALIGNED_LOAD32(p)); |
|
} |
|
|
|
// Some primes between 2^63 and 2^64 for various uses. |
|
static const uint64_t k0 = 0xc3a5c85c97cb3127ULL; |
|
static const uint64_t k1 = 0xb492b66fbe98f273ULL; |
|
static const uint64_t k2 = 0x9ae16a3b2f90404fULL; |
|
|
|
// Magic numbers for 32-bit hashing. Copied from Murmur3. |
|
static const uint32_t c1 = 0xcc9e2d51; |
|
static const uint32_t c2 = 0x1b873593; |
|
|
|
// A 32-bit to 32-bit integer hash copied from Murmur3. |
|
static uint32_t fmix(uint32_t h) { |
|
h ^= h >> 16; |
|
h *= 0x85ebca6b; |
|
h ^= h >> 13; |
|
h *= 0xc2b2ae35; |
|
h ^= h >> 16; |
|
return h; |
|
} |
|
|
|
static uint32_t Rotate32(uint32_t val, int shift) { |
|
// Avoid shifting by 32: doing so yields an undefined result. |
|
return shift == 0 ? val : ((val >> shift) | (val << (32 - shift))); |
|
} |
|
|
|
#undef PERMUTE3 |
|
#define PERMUTE3(a, b, c) \ |
|
do { \ |
|
std::swap(a, b); \ |
|
std::swap(a, c); \ |
|
} while (0) |
|
|
|
static uint32_t Mur(uint32_t a, uint32_t h) { |
|
// Helper from Murmur3 for combining two 32-bit values. |
|
a *= c1; |
|
a = Rotate32(a, 17); |
|
a *= c2; |
|
h ^= a; |
|
h = Rotate32(h, 19); |
|
return h * 5 + 0xe6546b64; |
|
} |
|
|
|
static uint32_t Hash32Len13to24(const char *s, size_t len) { |
|
uint32_t a = Fetch32(s - 4 + (len >> 1)); |
|
uint32_t b = Fetch32(s + 4); |
|
uint32_t c = Fetch32(s + len - 8); |
|
uint32_t d = Fetch32(s + (len >> 1)); |
|
uint32_t e = Fetch32(s); |
|
uint32_t f = Fetch32(s + len - 4); |
|
uint32_t h = len; |
|
|
|
return fmix(Mur(f, Mur(e, Mur(d, Mur(c, Mur(b, Mur(a, h))))))); |
|
} |
|
|
|
static uint32_t Hash32Len0to4(const char *s, size_t len) { |
|
uint32_t b = 0; |
|
uint32_t c = 9; |
|
for (size_t i = 0; i < len; i++) { |
|
signed char v = s[i]; |
|
b = b * c1 + v; |
|
c ^= b; |
|
} |
|
return fmix(Mur(b, Mur(len, c))); |
|
} |
|
|
|
static uint32_t Hash32Len5to12(const char *s, size_t len) { |
|
uint32_t a = len, b = len * 5, c = 9, d = b; |
|
a += Fetch32(s); |
|
b += Fetch32(s + len - 4); |
|
c += Fetch32(s + ((len >> 1) & 4)); |
|
return fmix(Mur(c, Mur(b, Mur(a, d)))); |
|
} |
|
|
|
uint32_t CityHash32(const char *s, size_t len) { |
|
if (len <= 24) { |
|
return len <= 12 |
|
? (len <= 4 ? Hash32Len0to4(s, len) : Hash32Len5to12(s, len)) |
|
: Hash32Len13to24(s, len); |
|
} |
|
|
|
// len > 24 |
|
uint32_t h = len, g = c1 * len, f = g; |
|
uint32_t a0 = Rotate32(Fetch32(s + len - 4) * c1, 17) * c2; |
|
uint32_t a1 = Rotate32(Fetch32(s + len - 8) * c1, 17) * c2; |
|
uint32_t a2 = Rotate32(Fetch32(s + len - 16) * c1, 17) * c2; |
|
uint32_t a3 = Rotate32(Fetch32(s + len - 12) * c1, 17) * c2; |
|
uint32_t a4 = Rotate32(Fetch32(s + len - 20) * c1, 17) * c2; |
|
h ^= a0; |
|
h = Rotate32(h, 19); |
|
h = h * 5 + 0xe6546b64; |
|
h ^= a2; |
|
h = Rotate32(h, 19); |
|
h = h * 5 + 0xe6546b64; |
|
g ^= a1; |
|
g = Rotate32(g, 19); |
|
g = g * 5 + 0xe6546b64; |
|
g ^= a3; |
|
g = Rotate32(g, 19); |
|
g = g * 5 + 0xe6546b64; |
|
f += a4; |
|
f = Rotate32(f, 19); |
|
f = f * 5 + 0xe6546b64; |
|
size_t iters = (len - 1) / 20; |
|
do { |
|
uint32_t a0 = Rotate32(Fetch32(s) * c1, 17) * c2; |
|
uint32_t a1 = Fetch32(s + 4); |
|
uint32_t a2 = Rotate32(Fetch32(s + 8) * c1, 17) * c2; |
|
uint32_t a3 = Rotate32(Fetch32(s + 12) * c1, 17) * c2; |
|
uint32_t a4 = Fetch32(s + 16); |
|
h ^= a0; |
|
h = Rotate32(h, 18); |
|
h = h * 5 + 0xe6546b64; |
|
f += a1; |
|
f = Rotate32(f, 19); |
|
f = f * c1; |
|
g += a2; |
|
g = Rotate32(g, 18); |
|
g = g * 5 + 0xe6546b64; |
|
h ^= a3 + a1; |
|
h = Rotate32(h, 19); |
|
h = h * 5 + 0xe6546b64; |
|
g ^= a4; |
|
g = absl::gbswap_32(g) * 5; |
|
h += a4 * 5; |
|
h = absl::gbswap_32(h); |
|
f += a0; |
|
PERMUTE3(f, h, g); |
|
s += 20; |
|
} while (--iters != 0); |
|
g = Rotate32(g, 11) * c1; |
|
g = Rotate32(g, 17) * c1; |
|
f = Rotate32(f, 11) * c1; |
|
f = Rotate32(f, 17) * c1; |
|
h = Rotate32(h + g, 19); |
|
h = h * 5 + 0xe6546b64; |
|
h = Rotate32(h, 17) * c1; |
|
h = Rotate32(h + f, 19); |
|
h = h * 5 + 0xe6546b64; |
|
h = Rotate32(h, 17) * c1; |
|
return h; |
|
} |
|
|
|
// Bitwise right rotate. Normally this will compile to a single |
|
// instruction, especially if the shift is a manifest constant. |
|
static uint64_t Rotate(uint64_t val, int shift) { |
|
// Avoid shifting by 64: doing so yields an undefined result. |
|
return shift == 0 ? val : ((val >> shift) | (val << (64 - shift))); |
|
} |
|
|
|
static uint64_t ShiftMix(uint64_t val) { return val ^ (val >> 47); } |
|
|
|
static uint64_t HashLen16(uint64_t u, uint64_t v) { |
|
return Hash128to64(uint128(u, v)); |
|
} |
|
|
|
static uint64_t HashLen16(uint64_t u, uint64_t v, uint64_t mul) { |
|
// Murmur-inspired hashing. |
|
uint64_t a = (u ^ v) * mul; |
|
a ^= (a >> 47); |
|
uint64_t b = (v ^ a) * mul; |
|
b ^= (b >> 47); |
|
b *= mul; |
|
return b; |
|
} |
|
|
|
static uint64_t HashLen0to16(const char *s, size_t len) { |
|
if (len >= 8) { |
|
uint64_t mul = k2 + len * 2; |
|
uint64_t a = Fetch64(s) + k2; |
|
uint64_t b = Fetch64(s + len - 8); |
|
uint64_t c = Rotate(b, 37) * mul + a; |
|
uint64_t d = (Rotate(a, 25) + b) * mul; |
|
return HashLen16(c, d, mul); |
|
} |
|
if (len >= 4) { |
|
uint64_t mul = k2 + len * 2; |
|
uint64_t a = Fetch32(s); |
|
return HashLen16(len + (a << 3), Fetch32(s + len - 4), mul); |
|
} |
|
if (len > 0) { |
|
uint8_t a = s[0]; |
|
uint8_t b = s[len >> 1]; |
|
uint8_t c = s[len - 1]; |
|
uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8); |
|
uint32_t z = len + (static_cast<uint32_t>(c) << 2); |
|
return ShiftMix(y * k2 ^ z * k0) * k2; |
|
} |
|
return k2; |
|
} |
|
|
|
// This probably works well for 16-byte strings as well, but it may be overkill |
|
// in that case. |
|
static uint64_t HashLen17to32(const char *s, size_t len) { |
|
uint64_t mul = k2 + len * 2; |
|
uint64_t a = Fetch64(s) * k1; |
|
uint64_t b = Fetch64(s + 8); |
|
uint64_t c = Fetch64(s + len - 8) * mul; |
|
uint64_t d = Fetch64(s + len - 16) * k2; |
|
return HashLen16(Rotate(a + b, 43) + Rotate(c, 30) + d, |
|
a + Rotate(b + k2, 18) + c, mul); |
|
} |
|
|
|
// Return a 16-byte hash for 48 bytes. Quick and dirty. |
|
// Callers do best to use "random-looking" values for a and b. |
|
static std::pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(uint64_t w, uint64_t x, |
|
uint64_t y, uint64_t z, |
|
uint64_t a, uint64_t b) { |
|
a += w; |
|
b = Rotate(b + a + z, 21); |
|
uint64_t c = a; |
|
a += x; |
|
a += y; |
|
b += Rotate(a, 44); |
|
return std::make_pair(a + z, b + c); |
|
} |
|
|
|
// Return a 16-byte hash for s[0] ... s[31], a, and b. Quick and dirty. |
|
static std::pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(const char *s, uint64_t a, |
|
uint64_t b) { |
|
return WeakHashLen32WithSeeds(Fetch64(s), Fetch64(s + 8), Fetch64(s + 16), |
|
Fetch64(s + 24), a, b); |
|
} |
|
|
|
// Return an 8-byte hash for 33 to 64 bytes. |
|
static uint64_t HashLen33to64(const char *s, size_t len) { |
|
uint64_t mul = k2 + len * 2; |
|
uint64_t a = Fetch64(s) * k2; |
|
uint64_t b = Fetch64(s + 8); |
|
uint64_t c = Fetch64(s + len - 24); |
|
uint64_t d = Fetch64(s + len - 32); |
|
uint64_t e = Fetch64(s + 16) * k2; |
|
uint64_t f = Fetch64(s + 24) * 9; |
|
uint64_t g = Fetch64(s + len - 8); |
|
uint64_t h = Fetch64(s + len - 16) * mul; |
|
uint64_t u = Rotate(a + g, 43) + (Rotate(b, 30) + c) * 9; |
|
uint64_t v = ((a + g) ^ d) + f + 1; |
|
uint64_t w = absl::gbswap_64((u + v) * mul) + h; |
|
uint64_t x = Rotate(e + f, 42) + c; |
|
uint64_t y = (absl::gbswap_64((v + w) * mul) + g) * mul; |
|
uint64_t z = e + f + c; |
|
a = absl::gbswap_64((x + z) * mul + y) + b; |
|
b = ShiftMix((z + a) * mul + d + h) * mul; |
|
return b + x; |
|
} |
|
|
|
uint64_t CityHash64(const char *s, size_t len) { |
|
if (len <= 32) { |
|
if (len <= 16) { |
|
return HashLen0to16(s, len); |
|
} else { |
|
return HashLen17to32(s, len); |
|
} |
|
} else if (len <= 64) { |
|
return HashLen33to64(s, len); |
|
} |
|
|
|
// For strings over 64 bytes we hash the end first, and then as we |
|
// loop we keep 56 bytes of state: v, w, x, y, and z. |
|
uint64_t x = Fetch64(s + len - 40); |
|
uint64_t y = Fetch64(s + len - 16) + Fetch64(s + len - 56); |
|
uint64_t z = HashLen16(Fetch64(s + len - 48) + len, Fetch64(s + len - 24)); |
|
std::pair<uint64_t, uint64_t> v = WeakHashLen32WithSeeds(s + len - 64, len, z); |
|
std::pair<uint64_t, uint64_t> w = WeakHashLen32WithSeeds(s + len - 32, y + k1, x); |
|
x = x * k1 + Fetch64(s); |
|
|
|
// Decrease len to the nearest multiple of 64, and operate on 64-byte chunks. |
|
len = (len - 1) & ~static_cast<size_t>(63); |
|
do { |
|
x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1; |
|
y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1; |
|
x ^= w.second; |
|
y += v.first + Fetch64(s + 40); |
|
z = Rotate(z + w.first, 33) * k1; |
|
v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first); |
|
w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16)); |
|
std::swap(z, x); |
|
s += 64; |
|
len -= 64; |
|
} while (len != 0); |
|
return HashLen16(HashLen16(v.first, w.first) + ShiftMix(y) * k1 + z, |
|
HashLen16(v.second, w.second) + x); |
|
} |
|
|
|
uint64_t CityHash64WithSeed(const char *s, size_t len, uint64_t seed) { |
|
return CityHash64WithSeeds(s, len, k2, seed); |
|
} |
|
|
|
uint64_t CityHash64WithSeeds(const char *s, size_t len, uint64_t seed0, |
|
uint64_t seed1) { |
|
return HashLen16(CityHash64(s, len) - seed0, seed1); |
|
} |
|
|
|
// A subroutine for CityHash128(). Returns a decent 128-bit hash for strings |
|
// of any length representable in signed long. Based on City and Murmur. |
|
static uint128 CityMurmur(const char *s, size_t len, uint128 seed) { |
|
uint64_t a = Uint128Low64(seed); |
|
uint64_t b = Uint128High64(seed); |
|
uint64_t c = 0; |
|
uint64_t d = 0; |
|
int64_t l = len - 16; |
|
if (l <= 0) { // len <= 16 |
|
a = ShiftMix(a * k1) * k1; |
|
c = b * k1 + HashLen0to16(s, len); |
|
d = ShiftMix(a + (len >= 8 ? Fetch64(s) : c)); |
|
} else { // len > 16 |
|
c = HashLen16(Fetch64(s + len - 8) + k1, a); |
|
d = HashLen16(b + len, c + Fetch64(s + len - 16)); |
|
a += d; |
|
do { |
|
a ^= ShiftMix(Fetch64(s) * k1) * k1; |
|
a *= k1; |
|
b ^= a; |
|
c ^= ShiftMix(Fetch64(s + 8) * k1) * k1; |
|
c *= k1; |
|
d ^= c; |
|
s += 16; |
|
l -= 16; |
|
} while (l > 0); |
|
} |
|
a = HashLen16(a, c); |
|
b = HashLen16(d, b); |
|
return uint128(a ^ b, HashLen16(b, a)); |
|
} |
|
|
|
uint128 CityHash128WithSeed(const char *s, size_t len, uint128 seed) { |
|
if (len < 128) { |
|
return CityMurmur(s, len, seed); |
|
} |
|
|
|
// We expect len >= 128 to be the common case. Keep 56 bytes of state: |
|
// v, w, x, y, and z. |
|
std::pair<uint64_t, uint64_t> v, w; |
|
uint64_t x = Uint128Low64(seed); |
|
uint64_t y = Uint128High64(seed); |
|
uint64_t z = len * k1; |
|
v.first = Rotate(y ^ k1, 49) * k1 + Fetch64(s); |
|
v.second = Rotate(v.first, 42) * k1 + Fetch64(s + 8); |
|
w.first = Rotate(y + z, 35) * k1 + x; |
|
w.second = Rotate(x + Fetch64(s + 88), 53) * k1; |
|
|
|
// This is the same inner loop as CityHash64(), manually unrolled. |
|
do { |
|
x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1; |
|
y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1; |
|
x ^= w.second; |
|
y += v.first + Fetch64(s + 40); |
|
z = Rotate(z + w.first, 33) * k1; |
|
v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first); |
|
w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16)); |
|
std::swap(z, x); |
|
s += 64; |
|
x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1; |
|
y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1; |
|
x ^= w.second; |
|
y += v.first + Fetch64(s + 40); |
|
z = Rotate(z + w.first, 33) * k1; |
|
v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first); |
|
w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16)); |
|
std::swap(z, x); |
|
s += 64; |
|
len -= 128; |
|
} while (ABSL_PREDICT_TRUE(len >= 128)); |
|
x += Rotate(v.first + z, 49) * k0; |
|
y = y * k0 + Rotate(w.second, 37); |
|
z = z * k0 + Rotate(w.first, 27); |
|
w.first *= 9; |
|
v.first *= k0; |
|
// If 0 < len < 128, hash up to 4 chunks of 32 bytes each from the end of s. |
|
for (size_t tail_done = 0; tail_done < len;) { |
|
tail_done += 32; |
|
y = Rotate(x + y, 42) * k0 + v.second; |
|
w.first += Fetch64(s + len - tail_done + 16); |
|
x = x * k0 + w.first; |
|
z += w.second + Fetch64(s + len - tail_done); |
|
w.second += v.first; |
|
v = WeakHashLen32WithSeeds(s + len - tail_done, v.first + z, v.second); |
|
v.first *= k0; |
|
} |
|
// At this point our 56 bytes of state should contain more than |
|
// enough information for a strong 128-bit hash. We use two |
|
// different 56-byte-to-8-byte hashes to get a 16-byte final result. |
|
x = HashLen16(x, v.first); |
|
y = HashLen16(y + z, w.first); |
|
return uint128(HashLen16(x + v.second, w.second) + y, |
|
HashLen16(x + w.second, y + v.second)); |
|
} |
|
|
|
uint128 CityHash128(const char *s, size_t len) { |
|
return len >= 16 |
|
? CityHash128WithSeed(s + 16, len - 16, |
|
uint128(Fetch64(s), Fetch64(s + 8) + k0)) |
|
: CityHash128WithSeed(s, len, uint128(k0, k1)); |
|
} |
|
} // namespace hash_internal |
|
} // namespace absl |
|
|
|
#ifdef __SSE4_2__ |
|
#include <nmmintrin.h> |
|
#include "absl/hash/internal/city_crc.h" |
|
|
|
namespace absl { |
|
namespace hash_internal { |
|
|
|
// Requires len >= 240. |
|
static void CityHashCrc256Long(const char *s, size_t len, uint32_t seed, |
|
uint64_t *result) { |
|
uint64_t a = Fetch64(s + 56) + k0; |
|
uint64_t b = Fetch64(s + 96) + k0; |
|
uint64_t c = result[0] = HashLen16(b, len); |
|
uint64_t d = result[1] = Fetch64(s + 120) * k0 + len; |
|
uint64_t e = Fetch64(s + 184) + seed; |
|
uint64_t f = 0; |
|
uint64_t g = 0; |
|
uint64_t h = c + d; |
|
uint64_t x = seed; |
|
uint64_t y = 0; |
|
uint64_t z = 0; |
|
|
|
// 240 bytes of input per iter. |
|
size_t iters = len / 240; |
|
len -= iters * 240; |
|
do { |
|
#undef CHUNK |
|
#define CHUNK(r) \ |
|
PERMUTE3(x, z, y); \ |
|
b += Fetch64(s); \ |
|
c += Fetch64(s + 8); \ |
|
d += Fetch64(s + 16); \ |
|
e += Fetch64(s + 24); \ |
|
f += Fetch64(s + 32); \ |
|
a += b; \ |
|
h += f; \ |
|
b += c; \ |
|
f += d; \ |
|
g += e; \ |
|
e += z; \ |
|
g += x; \ |
|
z = _mm_crc32_u64(z, b + g); \ |
|
y = _mm_crc32_u64(y, e + h); \ |
|
x = _mm_crc32_u64(x, f + a); \ |
|
e = Rotate(e, r); \ |
|
c += e; \ |
|
s += 40 |
|
|
|
CHUNK(0); |
|
PERMUTE3(a, h, c); |
|
CHUNK(33); |
|
PERMUTE3(a, h, f); |
|
CHUNK(0); |
|
PERMUTE3(b, h, f); |
|
CHUNK(42); |
|
PERMUTE3(b, h, d); |
|
CHUNK(0); |
|
PERMUTE3(b, h, e); |
|
CHUNK(33); |
|
PERMUTE3(a, h, e); |
|
} while (--iters > 0); |
|
|
|
while (len >= 40) { |
|
CHUNK(29); |
|
e ^= Rotate(a, 20); |
|
h += Rotate(b, 30); |
|
g ^= Rotate(c, 40); |
|
f += Rotate(d, 34); |
|
PERMUTE3(c, h, g); |
|
len -= 40; |
|
} |
|
if (len > 0) { |
|
s = s + len - 40; |
|
CHUNK(33); |
|
e ^= Rotate(a, 43); |
|
h += Rotate(b, 42); |
|
g ^= Rotate(c, 41); |
|
f += Rotate(d, 40); |
|
} |
|
result[0] ^= h; |
|
result[1] ^= g; |
|
g += h; |
|
a = HashLen16(a, g + z); |
|
x += y << 32; |
|
b += x; |
|
c = HashLen16(c, z) + h; |
|
d = HashLen16(d, e + result[0]); |
|
g += e; |
|
h += HashLen16(x, f); |
|
e = HashLen16(a, d) + g; |
|
z = HashLen16(b, c) + a; |
|
y = HashLen16(g, h) + c; |
|
result[0] = e + z + y + x; |
|
a = ShiftMix((a + y) * k0) * k0 + b; |
|
result[1] += a + result[0]; |
|
a = ShiftMix(a * k0) * k0 + c; |
|
result[2] = a + result[1]; |
|
a = ShiftMix((a + e) * k0) * k0; |
|
result[3] = a + result[2]; |
|
} |
|
|
|
// Requires len < 240. |
|
static void CityHashCrc256Short(const char *s, size_t len, uint64_t *result) { |
|
char buf[240]; |
|
memcpy(buf, s, len); |
|
memset(buf + len, 0, 240 - len); |
|
CityHashCrc256Long(buf, 240, ~static_cast<uint32_t>(len), result); |
|
} |
|
|
|
void CityHashCrc256(const char *s, size_t len, uint64_t *result) { |
|
if (ABSL_PREDICT_TRUE(len >= 240)) { |
|
CityHashCrc256Long(s, len, 0, result); |
|
} else { |
|
CityHashCrc256Short(s, len, result); |
|
} |
|
} |
|
|
|
uint128 CityHashCrc128WithSeed(const char *s, size_t len, uint128 seed) { |
|
if (len <= 900) { |
|
return CityHash128WithSeed(s, len, seed); |
|
} else { |
|
uint64_t result[4]; |
|
CityHashCrc256(s, len, result); |
|
uint64_t u = Uint128High64(seed) + result[0]; |
|
uint64_t v = Uint128Low64(seed) + result[1]; |
|
return uint128(HashLen16(u, v + result[2]), |
|
HashLen16(Rotate(v, 32), u * k0 + result[3])); |
|
} |
|
} |
|
|
|
uint128 CityHashCrc128(const char *s, size_t len) { |
|
if (len <= 900) { |
|
return CityHash128(s, len); |
|
} else { |
|
uint64_t result[4]; |
|
CityHashCrc256(s, len, result); |
|
return uint128(result[2], result[3]); |
|
} |
|
} |
|
|
|
} // namespace hash_internal |
|
} // namespace absl |
|
|
|
#endif
|
|
|