Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1288 lines
43 KiB
1288 lines
43 KiB
// This file contains std::string processing functions related to |
|
// numeric values. |
|
|
|
#include "absl/strings/numbers.h" |
|
|
|
#include <cassert> |
|
#include <cctype> |
|
#include <cfloat> // for DBL_DIG and FLT_DIG |
|
#include <cmath> // for HUGE_VAL |
|
#include <cstdio> |
|
#include <cstdlib> |
|
#include <cstring> |
|
#include <limits> |
|
#include <memory> |
|
#include <string> |
|
|
|
#include "absl/base/internal/raw_logging.h" |
|
#include "absl/numeric/int128.h" |
|
#include "absl/strings/ascii.h" |
|
#include "absl/strings/internal/memutil.h" |
|
#include "absl/strings/str_cat.h" |
|
|
|
namespace absl { |
|
|
|
bool SimpleAtof(absl::string_view str, float* value) { |
|
*value = 0.0; |
|
if (str.empty()) return false; |
|
char buf[32]; |
|
std::unique_ptr<char[]> bigbuf; |
|
char* ptr = buf; |
|
if (str.size() > sizeof(buf) - 1) { |
|
bigbuf.reset(new char[str.size() + 1]); |
|
ptr = bigbuf.get(); |
|
} |
|
memcpy(ptr, str.data(), str.size()); |
|
ptr[str.size()] = '\0'; |
|
|
|
char* endptr; |
|
*value = strtof(ptr, &endptr); |
|
if (endptr != ptr) { |
|
while (absl::ascii_isspace(*endptr)) ++endptr; |
|
} |
|
// Ignore range errors from strtod/strtof. |
|
// The values it returns on underflow and |
|
// overflow are the right fallback in a |
|
// robust setting. |
|
return *ptr != '\0' && *endptr == '\0'; |
|
} |
|
|
|
bool SimpleAtod(absl::string_view str, double* value) { |
|
*value = 0.0; |
|
if (str.empty()) return false; |
|
char buf[32]; |
|
std::unique_ptr<char[]> bigbuf; |
|
char* ptr = buf; |
|
if (str.size() > sizeof(buf) - 1) { |
|
bigbuf.reset(new char[str.size() + 1]); |
|
ptr = bigbuf.get(); |
|
} |
|
memcpy(ptr, str.data(), str.size()); |
|
ptr[str.size()] = '\0'; |
|
|
|
char* endptr; |
|
*value = strtod(ptr, &endptr); |
|
if (endptr != ptr) { |
|
while (absl::ascii_isspace(*endptr)) ++endptr; |
|
} |
|
// Ignore range errors from strtod. The values it |
|
// returns on underflow and overflow are the right |
|
// fallback in a robust setting. |
|
return *ptr != '\0' && *endptr == '\0'; |
|
} |
|
|
|
namespace { |
|
|
|
// TODO(rogeeff): replace with the real released thing once we figure out what |
|
// it is. |
|
inline bool CaseEqual(absl::string_view piece1, absl::string_view piece2) { |
|
return (piece1.size() == piece2.size() && |
|
0 == strings_internal::memcasecmp(piece1.data(), piece2.data(), |
|
piece1.size())); |
|
} |
|
|
|
// Writes a two-character representation of 'i' to 'buf'. 'i' must be in the |
|
// range 0 <= i < 100, and buf must have space for two characters. Example: |
|
// char buf[2]; |
|
// PutTwoDigits(42, buf); |
|
// // buf[0] == '4' |
|
// // buf[1] == '2' |
|
inline void PutTwoDigits(size_t i, char* buf) { |
|
static const char two_ASCII_digits[100][2] = { |
|
{'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, |
|
{'0', '5'}, {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, |
|
{'1', '0'}, {'1', '1'}, {'1', '2'}, {'1', '3'}, {'1', '4'}, |
|
{'1', '5'}, {'1', '6'}, {'1', '7'}, {'1', '8'}, {'1', '9'}, |
|
{'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'}, {'2', '4'}, |
|
{'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'}, |
|
{'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, |
|
{'3', '5'}, {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, |
|
{'4', '0'}, {'4', '1'}, {'4', '2'}, {'4', '3'}, {'4', '4'}, |
|
{'4', '5'}, {'4', '6'}, {'4', '7'}, {'4', '8'}, {'4', '9'}, |
|
{'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'}, {'5', '4'}, |
|
{'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'}, |
|
{'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, |
|
{'6', '5'}, {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, |
|
{'7', '0'}, {'7', '1'}, {'7', '2'}, {'7', '3'}, {'7', '4'}, |
|
{'7', '5'}, {'7', '6'}, {'7', '7'}, {'7', '8'}, {'7', '9'}, |
|
{'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'}, {'8', '4'}, |
|
{'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'}, |
|
{'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, |
|
{'9', '5'}, {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'} |
|
}; |
|
assert(i < 100); |
|
memcpy(buf, two_ASCII_digits[i], 2); |
|
} |
|
|
|
} // namespace |
|
|
|
bool SimpleAtob(absl::string_view str, bool* value) { |
|
ABSL_RAW_CHECK(value != nullptr, "Output pointer must not be nullptr."); |
|
if (CaseEqual(str, "true") || CaseEqual(str, "t") || |
|
CaseEqual(str, "yes") || CaseEqual(str, "y") || |
|
CaseEqual(str, "1")) { |
|
*value = true; |
|
return true; |
|
} |
|
if (CaseEqual(str, "false") || CaseEqual(str, "f") || |
|
CaseEqual(str, "no") || CaseEqual(str, "n") || |
|
CaseEqual(str, "0")) { |
|
*value = false; |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
// ---------------------------------------------------------------------- |
|
// FastInt32ToBuffer() |
|
// FastUInt32ToBuffer() |
|
// FastInt64ToBuffer() |
|
// FastUInt64ToBuffer() |
|
// |
|
// Like the Fast*ToBuffer() functions above, these are intended for speed. |
|
// Unlike the Fast*ToBuffer() functions, however, these functions write |
|
// their output to the beginning of the buffer (hence the name, as the |
|
// output is left-aligned). The caller is responsible for ensuring that |
|
// the buffer has enough space to hold the output. |
|
// |
|
// Returns a pointer to the end of the std::string (i.e. the null character |
|
// terminating the std::string). |
|
// ---------------------------------------------------------------------- |
|
|
|
namespace { |
|
|
|
// Used to optimize printing a decimal number's final digit. |
|
const char one_ASCII_final_digits[10][2] { |
|
{'0', 0}, {'1', 0}, {'2', 0}, {'3', 0}, {'4', 0}, |
|
{'5', 0}, {'6', 0}, {'7', 0}, {'8', 0}, {'9', 0}, |
|
}; |
|
|
|
} // namespace |
|
|
|
char* numbers_internal::FastUInt32ToBuffer(uint32_t i, char* buffer) { |
|
uint32_t digits; |
|
// The idea of this implementation is to trim the number of divides to as few |
|
// as possible, and also reducing memory stores and branches, by going in |
|
// steps of two digits at a time rather than one whenever possible. |
|
// The huge-number case is first, in the hopes that the compiler will output |
|
// that case in one branch-free block of code, and only output conditional |
|
// branches into it from below. |
|
if (i >= 1000000000) { // >= 1,000,000,000 |
|
digits = i / 100000000; // 100,000,000 |
|
i -= digits * 100000000; |
|
PutTwoDigits(digits, buffer); |
|
buffer += 2; |
|
lt100_000_000: |
|
digits = i / 1000000; // 1,000,000 |
|
i -= digits * 1000000; |
|
PutTwoDigits(digits, buffer); |
|
buffer += 2; |
|
lt1_000_000: |
|
digits = i / 10000; // 10,000 |
|
i -= digits * 10000; |
|
PutTwoDigits(digits, buffer); |
|
buffer += 2; |
|
lt10_000: |
|
digits = i / 100; |
|
i -= digits * 100; |
|
PutTwoDigits(digits, buffer); |
|
buffer += 2; |
|
lt100: |
|
digits = i; |
|
PutTwoDigits(digits, buffer); |
|
buffer += 2; |
|
*buffer = 0; |
|
return buffer; |
|
} |
|
|
|
if (i < 100) { |
|
digits = i; |
|
if (i >= 10) goto lt100; |
|
memcpy(buffer, one_ASCII_final_digits[i], 2); |
|
return buffer + 1; |
|
} |
|
if (i < 10000) { // 10,000 |
|
if (i >= 1000) goto lt10_000; |
|
digits = i / 100; |
|
i -= digits * 100; |
|
*buffer++ = '0' + digits; |
|
goto lt100; |
|
} |
|
if (i < 1000000) { // 1,000,000 |
|
if (i >= 100000) goto lt1_000_000; |
|
digits = i / 10000; // 10,000 |
|
i -= digits * 10000; |
|
*buffer++ = '0' + digits; |
|
goto lt10_000; |
|
} |
|
if (i < 100000000) { // 100,000,000 |
|
if (i >= 10000000) goto lt100_000_000; |
|
digits = i / 1000000; // 1,000,000 |
|
i -= digits * 1000000; |
|
*buffer++ = '0' + digits; |
|
goto lt1_000_000; |
|
} |
|
// we already know that i < 1,000,000,000 |
|
digits = i / 100000000; // 100,000,000 |
|
i -= digits * 100000000; |
|
*buffer++ = '0' + digits; |
|
goto lt100_000_000; |
|
} |
|
|
|
char* numbers_internal::FastInt32ToBuffer(int32_t i, char* buffer) { |
|
uint32_t u = i; |
|
if (i < 0) { |
|
*buffer++ = '-'; |
|
// We need to do the negation in modular (i.e., "unsigned") |
|
// arithmetic; MSVC++ apprently warns for plain "-u", so |
|
// we write the equivalent expression "0 - u" instead. |
|
u = 0 - u; |
|
} |
|
return numbers_internal::FastUInt32ToBuffer(u, buffer); |
|
} |
|
|
|
char* numbers_internal::FastUInt64ToBuffer(uint64_t i, char* buffer) { |
|
uint32_t u32 = static_cast<uint32_t>(i); |
|
if (u32 == i) return numbers_internal::FastUInt32ToBuffer(u32, buffer); |
|
|
|
// Here we know i has at least 10 decimal digits. |
|
uint64_t top_1to11 = i / 1000000000; |
|
u32 = static_cast<uint32_t>(i - top_1to11 * 1000000000); |
|
uint32_t top_1to11_32 = static_cast<uint32_t>(top_1to11); |
|
|
|
if (top_1to11_32 == top_1to11) { |
|
buffer = numbers_internal::FastUInt32ToBuffer(top_1to11_32, buffer); |
|
} else { |
|
// top_1to11 has more than 32 bits too; print it in two steps. |
|
uint32_t top_8to9 = static_cast<uint32_t>(top_1to11 / 100); |
|
uint32_t mid_2 = static_cast<uint32_t>(top_1to11 - top_8to9 * 100); |
|
buffer = numbers_internal::FastUInt32ToBuffer(top_8to9, buffer); |
|
PutTwoDigits(mid_2, buffer); |
|
buffer += 2; |
|
} |
|
|
|
// We have only 9 digits now, again the maximum uint32_t can handle fully. |
|
uint32_t digits = u32 / 10000000; // 10,000,000 |
|
u32 -= digits * 10000000; |
|
PutTwoDigits(digits, buffer); |
|
buffer += 2; |
|
digits = u32 / 100000; // 100,000 |
|
u32 -= digits * 100000; |
|
PutTwoDigits(digits, buffer); |
|
buffer += 2; |
|
digits = u32 / 1000; // 1,000 |
|
u32 -= digits * 1000; |
|
PutTwoDigits(digits, buffer); |
|
buffer += 2; |
|
digits = u32 / 10; |
|
u32 -= digits * 10; |
|
PutTwoDigits(digits, buffer); |
|
buffer += 2; |
|
memcpy(buffer, one_ASCII_final_digits[u32], 2); |
|
return buffer + 1; |
|
} |
|
|
|
char* numbers_internal::FastInt64ToBuffer(int64_t i, char* buffer) { |
|
uint64_t u = i; |
|
if (i < 0) { |
|
*buffer++ = '-'; |
|
u = 0 - u; |
|
} |
|
return numbers_internal::FastUInt64ToBuffer(u, buffer); |
|
} |
|
|
|
// Although DBL_DIG is typically 15, DBL_MAX is normally represented with 17 |
|
// digits of precision. When converted to a std::string value with fewer digits |
|
// of precision using strtod(), the result can be bigger than DBL_MAX due to |
|
// a rounding error. Converting this value back to a double will produce an |
|
// Inf which will trigger a SIGFPE if FP exceptions are enabled. We skip |
|
// the precision check for sufficiently large values to avoid the SIGFPE. |
|
static const double kDoublePrecisionCheckMax = DBL_MAX / 1.000000000000001; |
|
|
|
char* numbers_internal::RoundTripDoubleToBuffer(double d, char* buffer) { |
|
// DBL_DIG is 15 for IEEE-754 doubles, which are used on almost all |
|
// platforms these days. Just in case some system exists where DBL_DIG |
|
// is significantly larger -- and risks overflowing our buffer -- we have |
|
// this assert. |
|
static_assert(DBL_DIG < 20, "DBL_DIG is too big"); |
|
|
|
bool full_precision_needed = true; |
|
if (std::abs(d) <= kDoublePrecisionCheckMax) { |
|
int snprintf_result = snprintf(buffer, numbers_internal::kFastToBufferSize, |
|
"%.*g", DBL_DIG, d); |
|
|
|
// The snprintf should never overflow because the buffer is significantly |
|
// larger than the precision we asked for. |
|
assert(snprintf_result > 0 && |
|
snprintf_result < numbers_internal::kFastToBufferSize); |
|
(void)snprintf_result; |
|
|
|
full_precision_needed = strtod(buffer, nullptr) != d; |
|
} |
|
|
|
if (full_precision_needed) { |
|
int snprintf_result = snprintf(buffer, numbers_internal::kFastToBufferSize, |
|
"%.*g", DBL_DIG + 2, d); |
|
|
|
// Should never overflow; see above. |
|
assert(snprintf_result > 0 && |
|
snprintf_result < numbers_internal::kFastToBufferSize); |
|
(void)snprintf_result; |
|
} |
|
return buffer; |
|
} |
|
// This table is used to quickly calculate the base-ten exponent of a given |
|
// float, and then to provide a multiplier to bring that number into the |
|
// range 1-999,999,999, that is, into uint32_t range. Finally, the exp |
|
// std::string is made available so there is one less int-to-std::string conversion |
|
// to be done. |
|
|
|
struct Spec { |
|
double min_range; |
|
double multiplier; |
|
const char expstr[5]; |
|
}; |
|
const Spec neg_exp_table[] = { |
|
{1.4e-45f, 1e+55, "e-45"}, // |
|
{1e-44f, 1e+54, "e-44"}, // |
|
{1e-43f, 1e+53, "e-43"}, // |
|
{1e-42f, 1e+52, "e-42"}, // |
|
{1e-41f, 1e+51, "e-41"}, // |
|
{1e-40f, 1e+50, "e-40"}, // |
|
{1e-39f, 1e+49, "e-39"}, // |
|
{1e-38f, 1e+48, "e-38"}, // |
|
{1e-37f, 1e+47, "e-37"}, // |
|
{1e-36f, 1e+46, "e-36"}, // |
|
{1e-35f, 1e+45, "e-35"}, // |
|
{1e-34f, 1e+44, "e-34"}, // |
|
{1e-33f, 1e+43, "e-33"}, // |
|
{1e-32f, 1e+42, "e-32"}, // |
|
{1e-31f, 1e+41, "e-31"}, // |
|
{1e-30f, 1e+40, "e-30"}, // |
|
{1e-29f, 1e+39, "e-29"}, // |
|
{1e-28f, 1e+38, "e-28"}, // |
|
{1e-27f, 1e+37, "e-27"}, // |
|
{1e-26f, 1e+36, "e-26"}, // |
|
{1e-25f, 1e+35, "e-25"}, // |
|
{1e-24f, 1e+34, "e-24"}, // |
|
{1e-23f, 1e+33, "e-23"}, // |
|
{1e-22f, 1e+32, "e-22"}, // |
|
{1e-21f, 1e+31, "e-21"}, // |
|
{1e-20f, 1e+30, "e-20"}, // |
|
{1e-19f, 1e+29, "e-19"}, // |
|
{1e-18f, 1e+28, "e-18"}, // |
|
{1e-17f, 1e+27, "e-17"}, // |
|
{1e-16f, 1e+26, "e-16"}, // |
|
{1e-15f, 1e+25, "e-15"}, // |
|
{1e-14f, 1e+24, "e-14"}, // |
|
{1e-13f, 1e+23, "e-13"}, // |
|
{1e-12f, 1e+22, "e-12"}, // |
|
{1e-11f, 1e+21, "e-11"}, // |
|
{1e-10f, 1e+20, "e-10"}, // |
|
{1e-09f, 1e+19, "e-09"}, // |
|
{1e-08f, 1e+18, "e-08"}, // |
|
{1e-07f, 1e+17, "e-07"}, // |
|
{1e-06f, 1e+16, "e-06"}, // |
|
{1e-05f, 1e+15, "e-05"}, // |
|
{1e-04f, 1e+14, "e-04"}, // |
|
}; |
|
|
|
const Spec pos_exp_table[] = { |
|
{1e+08f, 1e+02, "e+08"}, // |
|
{1e+09f, 1e+01, "e+09"}, // |
|
{1e+10f, 1e+00, "e+10"}, // |
|
{1e+11f, 1e-01, "e+11"}, // |
|
{1e+12f, 1e-02, "e+12"}, // |
|
{1e+13f, 1e-03, "e+13"}, // |
|
{1e+14f, 1e-04, "e+14"}, // |
|
{1e+15f, 1e-05, "e+15"}, // |
|
{1e+16f, 1e-06, "e+16"}, // |
|
{1e+17f, 1e-07, "e+17"}, // |
|
{1e+18f, 1e-08, "e+18"}, // |
|
{1e+19f, 1e-09, "e+19"}, // |
|
{1e+20f, 1e-10, "e+20"}, // |
|
{1e+21f, 1e-11, "e+21"}, // |
|
{1e+22f, 1e-12, "e+22"}, // |
|
{1e+23f, 1e-13, "e+23"}, // |
|
{1e+24f, 1e-14, "e+24"}, // |
|
{1e+25f, 1e-15, "e+25"}, // |
|
{1e+26f, 1e-16, "e+26"}, // |
|
{1e+27f, 1e-17, "e+27"}, // |
|
{1e+28f, 1e-18, "e+28"}, // |
|
{1e+29f, 1e-19, "e+29"}, // |
|
{1e+30f, 1e-20, "e+30"}, // |
|
{1e+31f, 1e-21, "e+31"}, // |
|
{1e+32f, 1e-22, "e+32"}, // |
|
{1e+33f, 1e-23, "e+33"}, // |
|
{1e+34f, 1e-24, "e+34"}, // |
|
{1e+35f, 1e-25, "e+35"}, // |
|
{1e+36f, 1e-26, "e+36"}, // |
|
{1e+37f, 1e-27, "e+37"}, // |
|
{1e+38f, 1e-28, "e+38"}, // |
|
{1e+39, 1e-29, "e+39"}, // |
|
}; |
|
|
|
struct ExpCompare { |
|
bool operator()(const Spec& spec, double d) const { |
|
return spec.min_range < d; |
|
} |
|
}; |
|
|
|
// Utility routine(s) for RoundTripFloatToBuffer: |
|
// OutputNecessaryDigits takes two 11-digit numbers, whose integer portion |
|
// represents the fractional part of a floating-point number, and outputs a |
|
// number that is in-between them, with the fewest digits possible. For |
|
// instance, given 12345678900 and 12345876900, it would output "0123457". |
|
// When there are multiple final digits that would satisfy this requirement, |
|
// this routine attempts to use a digit that would represent the average of |
|
// lower_double and upper_double. |
|
// |
|
// Although the routine works using integers, all callers use doubles, so |
|
// for their convenience this routine accepts doubles. |
|
static char* OutputNecessaryDigits(double lower_double, double upper_double, |
|
char* out) { |
|
assert(lower_double > 0); |
|
assert(lower_double < upper_double - 10); |
|
assert(upper_double < 100000000000.0); |
|
|
|
// Narrow the range a bit; without this bias, an input of lower=87654320010.0 |
|
// and upper=87654320100.0 would produce an output of 876543201 |
|
// |
|
// We do this in three steps: first, we lower the upper bound and truncate it |
|
// to an integer. Then, we increase the lower bound by exactly the amount we |
|
// just decreased the upper bound by - at that point, the midpoint is exactly |
|
// where it used to be. Then we truncate the lower bound. |
|
|
|
uint64_t upper64 = upper_double - (1.0 / 1024); |
|
double shrink = upper_double - upper64; |
|
uint64_t lower64 = lower_double + shrink; |
|
|
|
// Theory of operation: we convert the lower number to ascii representation, |
|
// two digits at a time. As we go, we remove the same digits from the upper |
|
// number. When we see the upper number does not share those same digits, we |
|
// know we can stop converting. When we stop, the last digit we output is |
|
// taken from the average of upper and lower values, rounded up. |
|
char buf[2]; |
|
uint32_t lodigits = |
|
static_cast<uint32_t>(lower64 / 1000000000); // 1,000,000,000 |
|
uint64_t mul64 = lodigits * uint64_t{1000000000}; |
|
|
|
PutTwoDigits(lodigits, out); |
|
out += 2; |
|
if (upper64 - mul64 >= 1000000000) { // digit mismatch! |
|
PutTwoDigits(upper64 / 1000000000, buf); |
|
if (out[-2] != buf[0]) { |
|
out[-2] = '0' + (upper64 + lower64 + 10000000000) / 20000000000; |
|
--out; |
|
} else { |
|
PutTwoDigits((upper64 + lower64 + 1000000000) / 2000000000, out - 2); |
|
} |
|
*out = '\0'; |
|
return out; |
|
} |
|
uint32_t lower = static_cast<uint32_t>(lower64 - mul64); |
|
uint32_t upper = static_cast<uint32_t>(upper64 - mul64); |
|
|
|
lodigits = lower / 10000000; // 10,000,000 |
|
uint32_t mul = lodigits * 10000000; |
|
PutTwoDigits(lodigits, out); |
|
out += 2; |
|
if (upper - mul >= 10000000) { // digit mismatch! |
|
PutTwoDigits(upper / 10000000, buf); |
|
if (out[-2] != buf[0]) { |
|
out[-2] = '0' + (upper + lower + 100000000) / 200000000; |
|
--out; |
|
} else { |
|
PutTwoDigits((upper + lower + 10000000) / 20000000, out - 2); |
|
} |
|
*out = '\0'; |
|
return out; |
|
} |
|
lower -= mul; |
|
upper -= mul; |
|
|
|
lodigits = lower / 100000; // 100,000 |
|
mul = lodigits * 100000; |
|
PutTwoDigits(lodigits, out); |
|
out += 2; |
|
if (upper - mul >= 100000) { // digit mismatch! |
|
PutTwoDigits(upper / 100000, buf); |
|
if (out[-2] != buf[0]) { |
|
out[-2] = '0' + (upper + lower + 1000000) / 2000000; |
|
--out; |
|
} else { |
|
PutTwoDigits((upper + lower + 100000) / 200000, out - 2); |
|
} |
|
*out = '\0'; |
|
return out; |
|
} |
|
lower -= mul; |
|
upper -= mul; |
|
|
|
lodigits = lower / 1000; |
|
mul = lodigits * 1000; |
|
PutTwoDigits(lodigits, out); |
|
out += 2; |
|
if (upper - mul >= 1000) { // digit mismatch! |
|
PutTwoDigits(upper / 1000, buf); |
|
if (out[-2] != buf[0]) { |
|
out[-2] = '0' + (upper + lower + 10000) / 20000; |
|
--out; |
|
} else { |
|
PutTwoDigits((upper + lower + 1000) / 2000, out - 2); |
|
} |
|
*out = '\0'; |
|
return out; |
|
} |
|
lower -= mul; |
|
upper -= mul; |
|
|
|
PutTwoDigits(lower / 10, out); |
|
out += 2; |
|
PutTwoDigits(upper / 10, buf); |
|
if (out[-2] != buf[0]) { |
|
out[-2] = '0' + (upper + lower + 100) / 200; |
|
--out; |
|
} else { |
|
PutTwoDigits((upper + lower + 10) / 20, out - 2); |
|
} |
|
*out = '\0'; |
|
return out; |
|
} |
|
|
|
// RoundTripFloatToBuffer converts the given float into a std::string which, if |
|
// passed to strtof, will produce the exact same original float. It does this |
|
// by computing the range of possible doubles which map to the given float, and |
|
// then examining the digits of the doubles in that range. If all the doubles |
|
// in the range start with "2.37", then clearly our float does, too. As soon as |
|
// they diverge, only one more digit is needed. |
|
char* numbers_internal::RoundTripFloatToBuffer(float f, char* buffer) { |
|
static_assert(std::numeric_limits<float>::is_iec559, |
|
"IEEE-754/IEC-559 support only"); |
|
|
|
char* out = buffer; // we write data to out, incrementing as we go, but |
|
// FloatToBuffer always returns the address of the buffer |
|
// passed in. |
|
|
|
if (std::isnan(f)) { |
|
strcpy(out, "nan"); // NOLINT(runtime/printf) |
|
return buffer; |
|
} |
|
if (f == 0) { // +0 and -0 are handled here |
|
if (std::signbit(f)) { |
|
strcpy(out, "-0"); // NOLINT(runtime/printf) |
|
} else { |
|
strcpy(out, "0"); // NOLINT(runtime/printf) |
|
} |
|
return buffer; |
|
} |
|
if (f < 0) { |
|
*out++ = '-'; |
|
f = -f; |
|
} |
|
if (std::isinf(f)) { |
|
strcpy(out, "inf"); // NOLINT(runtime/printf) |
|
return buffer; |
|
} |
|
|
|
double next_lower = nextafterf(f, 0.0f); |
|
// For all doubles in the range lower_bound < f < upper_bound, the |
|
// nearest float is f. |
|
double lower_bound = (f + next_lower) * 0.5; |
|
double upper_bound = f + (f - lower_bound); |
|
// Note: because std::nextafter is slow, we calculate upper_bound |
|
// assuming that it is the same distance from f as lower_bound is. |
|
// For exact powers of two, upper_bound is actually twice as far |
|
// from f as lower_bound is, but this turns out not to matter. |
|
|
|
// Most callers pass floats that are either 0 or within the |
|
// range 0.0001 through 100,000,000, so handle those first, |
|
// since they don't need exponential notation. |
|
const Spec* spec = nullptr; |
|
if (f < 1.0) { |
|
if (f >= 0.0001f) { |
|
// for fractional values, we set up the multiplier at the same |
|
// time as we output the leading "0." / "0.0" / "0.00" / "0.000" |
|
double multiplier = 1e+11; |
|
*out++ = '0'; |
|
*out++ = '.'; |
|
if (f < 0.1f) { |
|
multiplier = 1e+12; |
|
*out++ = '0'; |
|
if (f < 0.01f) { |
|
multiplier = 1e+13; |
|
*out++ = '0'; |
|
if (f < 0.001f) { |
|
multiplier = 1e+14; |
|
*out++ = '0'; |
|
} |
|
} |
|
} |
|
OutputNecessaryDigits(lower_bound * multiplier, upper_bound * multiplier, |
|
out); |
|
return buffer; |
|
} |
|
spec = std::lower_bound(std::begin(neg_exp_table), std::end(neg_exp_table), |
|
double{f}, ExpCompare()); |
|
if (spec == std::end(neg_exp_table)) --spec; |
|
} else if (f < 1e8) { |
|
// Handling non-exponential format greater than 1.0 is similar to the above, |
|
// but instead of 0.0 / 0.00 / 0.000, the prefix is simply the truncated |
|
// integer part of f. |
|
int32_t as_int = f; |
|
out = numbers_internal::FastUInt32ToBuffer(as_int, out); |
|
// Easy: if the integer part is within (lower_bound, upper_bound), then we |
|
// are already done. |
|
if (as_int > lower_bound && as_int < upper_bound) { |
|
return buffer; |
|
} |
|
*out++ = '.'; |
|
OutputNecessaryDigits((lower_bound - as_int) * 1e11, |
|
(upper_bound - as_int) * 1e11, out); |
|
return buffer; |
|
} else { |
|
spec = std::lower_bound(std::begin(pos_exp_table), |
|
std::end(pos_exp_table), |
|
double{f}, ExpCompare()); |
|
if (spec == std::end(pos_exp_table)) --spec; |
|
} |
|
// Exponential notation from here on. "spec" was computed using lower_bound, |
|
// which means it's the first spec from the table where min_range is greater |
|
// or equal to f. |
|
// Unfortunately that's not quite what we want; we want a min_range that is |
|
// less or equal. So first thing, if it was greater, back up one entry. |
|
if (spec->min_range > f) --spec; |
|
|
|
// The digits might be "237000123", but we want "2.37000123", |
|
// so we output the digits one character later, and then move the first |
|
// digit back so we can stick the "." in. |
|
char* start = out; |
|
out = OutputNecessaryDigits(lower_bound * spec->multiplier, |
|
upper_bound * spec->multiplier, start + 1); |
|
start[0] = start[1]; |
|
start[1] = '.'; |
|
|
|
// If it turns out there was only one digit output, then back up over the '.' |
|
if (out == &start[2]) --out; |
|
|
|
// Now add the "e+NN" part. |
|
memcpy(out, spec->expstr, 4); |
|
out[4] = '\0'; |
|
return buffer; |
|
} |
|
|
|
// Returns the number of leading 0 bits in a 64-bit value. |
|
// TODO(jorg): Replace with builtin_clzll if available. |
|
// Are we shipping util/bits in absl? |
|
static inline int CountLeadingZeros64(uint64_t n) { |
|
int zeroes = 60; |
|
if (n >> 32) zeroes -= 32, n >>= 32; |
|
if (n >> 16) zeroes -= 16, n >>= 16; |
|
if (n >> 8) zeroes -= 8, n >>= 8; |
|
if (n >> 4) zeroes -= 4, n >>= 4; |
|
return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0\0"[n] + zeroes; |
|
} |
|
|
|
// Given a 128-bit number expressed as a pair of uint64_t, high half first, |
|
// return that number multiplied by the given 32-bit value. If the result is |
|
// too large to fit in a 128-bit number, divide it by 2 until it fits. |
|
static std::pair<uint64_t, uint64_t> Mul32(std::pair<uint64_t, uint64_t> num, |
|
uint32_t mul) { |
|
uint64_t bits0_31 = num.second & 0xFFFFFFFF; |
|
uint64_t bits32_63 = num.second >> 32; |
|
uint64_t bits64_95 = num.first & 0xFFFFFFFF; |
|
uint64_t bits96_127 = num.first >> 32; |
|
|
|
// The picture so far: each of these 64-bit values has only the lower 32 bits |
|
// filled in. |
|
// bits96_127: [ 00000000 xxxxxxxx ] |
|
// bits64_95: [ 00000000 xxxxxxxx ] |
|
// bits32_63: [ 00000000 xxxxxxxx ] |
|
// bits0_31: [ 00000000 xxxxxxxx ] |
|
|
|
bits0_31 *= mul; |
|
bits32_63 *= mul; |
|
bits64_95 *= mul; |
|
bits96_127 *= mul; |
|
|
|
// Now the top halves may also have value, though all 64 of their bits will |
|
// never be set at the same time, since they are a result of a 32x32 bit |
|
// multiply. This makes the carry calculation slightly easier. |
|
// bits96_127: [ mmmmmmmm | mmmmmmmm ] |
|
// bits64_95: [ | mmmmmmmm mmmmmmmm | ] |
|
// bits32_63: | [ mmmmmmmm | mmmmmmmm ] |
|
// bits0_31: | [ | mmmmmmmm mmmmmmmm ] |
|
// eventually: [ bits128_up | ...bits64_127.... | ..bits0_63... ] |
|
|
|
uint64_t bits0_63 = bits0_31 + (bits32_63 << 32); |
|
uint64_t bits64_127 = bits64_95 + (bits96_127 << 32) + (bits32_63 >> 32) + |
|
(bits0_63 < bits0_31); |
|
uint64_t bits128_up = (bits96_127 >> 32) + (bits64_127 < bits64_95); |
|
if (bits128_up == 0) return {bits64_127, bits0_63}; |
|
|
|
int shift = 64 - CountLeadingZeros64(bits128_up); |
|
uint64_t lo = (bits0_63 >> shift) + (bits64_127 << (64 - shift)); |
|
uint64_t hi = (bits64_127 >> shift) + (bits128_up << (64 - shift)); |
|
return {hi, lo}; |
|
} |
|
|
|
// Compute num * 5 ^ expfive, and return the first 128 bits of the result, |
|
// where the first bit is always a one. So PowFive(1, 0) starts 0b100000, |
|
// PowFive(1, 1) starts 0b101000, PowFive(1, 2) starts 0b110010, etc. |
|
static std::pair<uint64_t, uint64_t> PowFive(uint64_t num, int expfive) { |
|
std::pair<uint64_t, uint64_t> result = {num, 0}; |
|
while (expfive >= 13) { |
|
// 5^13 is the highest power of five that will fit in a 32-bit integer. |
|
result = Mul32(result, 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5); |
|
expfive -= 13; |
|
} |
|
constexpr int powers_of_five[13] = { |
|
1, |
|
5, |
|
5 * 5, |
|
5 * 5 * 5, |
|
5 * 5 * 5 * 5, |
|
5 * 5 * 5 * 5 * 5, |
|
5 * 5 * 5 * 5 * 5 * 5, |
|
5 * 5 * 5 * 5 * 5 * 5 * 5, |
|
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, |
|
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, |
|
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, |
|
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, |
|
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5}; |
|
result = Mul32(result, powers_of_five[expfive & 15]); |
|
int shift = CountLeadingZeros64(result.first); |
|
if (shift != 0) { |
|
result.first = (result.first << shift) + (result.second >> (64 - shift)); |
|
result.second = (result.second << shift); |
|
} |
|
return result; |
|
} |
|
|
|
struct ExpDigits { |
|
int32_t exponent; |
|
char digits[6]; |
|
}; |
|
|
|
// SplitToSix converts value, a positive double-precision floating-point number, |
|
// into a base-10 exponent and 6 ASCII digits, where the first digit is never |
|
// zero. For example, SplitToSix(1) returns an exponent of zero and a digits |
|
// array of {'1', '0', '0', '0', '0', '0'}. If value is exactly halfway between |
|
// two possible representations, e.g. value = 100000.5, then "round to even" is |
|
// performed. |
|
static ExpDigits SplitToSix(const double value) { |
|
ExpDigits exp_dig; |
|
int exp = 5; |
|
double d = value; |
|
// First step: calculate a close approximation of the output, where the |
|
// value d will be between 100,000 and 999,999, representing the digits |
|
// in the output ASCII array, and exp is the base-10 exponent. It would be |
|
// faster to use a table here, and to look up the base-2 exponent of value, |
|
// however value is an IEEE-754 64-bit number, so the table would have 2,000 |
|
// entries, which is not cache-friendly. |
|
if (d >= 999999.5) { |
|
if (d >= 1e+261) exp += 256, d *= 1e-256; |
|
if (d >= 1e+133) exp += 128, d *= 1e-128; |
|
if (d >= 1e+69) exp += 64, d *= 1e-64; |
|
if (d >= 1e+37) exp += 32, d *= 1e-32; |
|
if (d >= 1e+21) exp += 16, d *= 1e-16; |
|
if (d >= 1e+13) exp += 8, d *= 1e-8; |
|
if (d >= 1e+9) exp += 4, d *= 1e-4; |
|
if (d >= 1e+7) exp += 2, d *= 1e-2; |
|
if (d >= 1e+6) exp += 1, d *= 1e-1; |
|
} else { |
|
if (d < 1e-250) exp -= 256, d *= 1e256; |
|
if (d < 1e-122) exp -= 128, d *= 1e128; |
|
if (d < 1e-58) exp -= 64, d *= 1e64; |
|
if (d < 1e-26) exp -= 32, d *= 1e32; |
|
if (d < 1e-10) exp -= 16, d *= 1e16; |
|
if (d < 1e-2) exp -= 8, d *= 1e8; |
|
if (d < 1e+2) exp -= 4, d *= 1e4; |
|
if (d < 1e+4) exp -= 2, d *= 1e2; |
|
if (d < 1e+5) exp -= 1, d *= 1e1; |
|
} |
|
// At this point, d is in the range [99999.5..999999.5) and exp is in the |
|
// range [-324..308]. Since we need to round d up, we want to add a half |
|
// and truncate. |
|
// However, the technique above may have lost some precision, due to its |
|
// repeated multiplication by constants that each may be off by half a bit |
|
// of precision. This only matters if we're close to the edge though. |
|
// Since we'd like to know if the fractional part of d is close to a half, |
|
// we multiply it by 65536 and see if the fractional part is close to 32768. |
|
// (The number doesn't have to be a power of two,but powers of two are faster) |
|
uint64_t d64k = d * 65536; |
|
int dddddd; // A 6-digit decimal integer. |
|
if ((d64k % 65536) == 32767 || (d64k % 65536) == 32768) { |
|
// OK, it's fairly likely that precision was lost above, which is |
|
// not a surprise given only 52 mantissa bits are available. Therefore |
|
// redo the calculation using 128-bit numbers. (64 bits are not enough). |
|
|
|
// Start out with digits rounded down; maybe add one below. |
|
dddddd = static_cast<int>(d64k / 65536); |
|
|
|
// mantissa is a 64-bit integer representing M.mmm... * 2^63. The actual |
|
// value we're representing, of course, is M.mmm... * 2^exp2. |
|
int exp2; |
|
double m = std::frexp(value, &exp2); |
|
uint64_t mantissa = m * (32768.0 * 65536.0 * 65536.0 * 65536.0); |
|
// std::frexp returns an m value in the range [0.5, 1.0), however we |
|
// can't multiply it by 2^64 and convert to an integer because some FPUs |
|
// throw an exception when converting an number higher than 2^63 into an |
|
// integer - even an unsigned 64-bit integer! Fortunately it doesn't matter |
|
// since m only has 52 significant bits anyway. |
|
mantissa <<= 1; |
|
exp2 -= 64; // not needed, but nice for debugging |
|
|
|
// OK, we are here to compare: |
|
// (dddddd + 0.5) * 10^(exp-5) vs. mantissa * 2^exp2 |
|
// so we can round up dddddd if appropriate. Those values span the full |
|
// range of 600 orders of magnitude of IEE 64-bit floating-point. |
|
// Fortunately, we already know they are very close, so we don't need to |
|
// track the base-2 exponent of both sides. This greatly simplifies the |
|
// the math since the 2^exp2 calculation is unnecessary and the power-of-10 |
|
// calculation can become a power-of-5 instead. |
|
|
|
std::pair<uint64_t, uint64_t> edge, val; |
|
if (exp >= 6) { |
|
// Compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa |
|
// Since we're tossing powers of two, 2 * dddddd + 1 is the |
|
// same as dddddd + 0.5 |
|
edge = PowFive(2 * dddddd + 1, exp - 5); |
|
|
|
val.first = mantissa; |
|
val.second = 0; |
|
} else { |
|
// We can't compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa as we did |
|
// above because (exp - 5) is negative. So we compare (dddddd + 0.5) to |
|
// mantissa * 5 ^ (5 - exp) |
|
edge = PowFive(2 * dddddd + 1, 0); |
|
|
|
val = PowFive(mantissa, 5 - exp); |
|
} |
|
// printf("exp=%d %016lx %016lx vs %016lx %016lx\n", exp, val.first, |
|
// val.second, edge.first, edge.second); |
|
if (val > edge) { |
|
dddddd++; |
|
} else if (val == edge) { |
|
dddddd += (dddddd & 1); |
|
} |
|
} else { |
|
// Here, we are not close to the edge. |
|
dddddd = static_cast<int>((d64k + 32768) / 65536); |
|
} |
|
if (dddddd == 1000000) { |
|
dddddd = 100000; |
|
exp += 1; |
|
} |
|
exp_dig.exponent = exp; |
|
|
|
int two_digits = dddddd / 10000; |
|
dddddd -= two_digits * 10000; |
|
PutTwoDigits(two_digits, &exp_dig.digits[0]); |
|
|
|
two_digits = dddddd / 100; |
|
dddddd -= two_digits * 100; |
|
PutTwoDigits(two_digits, &exp_dig.digits[2]); |
|
|
|
PutTwoDigits(dddddd, &exp_dig.digits[4]); |
|
return exp_dig; |
|
} |
|
|
|
// Helper function for fast formatting of floating-point. |
|
// The result is the same as "%g", a.k.a. "%.6g". |
|
size_t numbers_internal::SixDigitsToBuffer(double d, char* const buffer) { |
|
static_assert(std::numeric_limits<float>::is_iec559, |
|
"IEEE-754/IEC-559 support only"); |
|
|
|
char* out = buffer; // we write data to out, incrementing as we go, but |
|
// FloatToBuffer always returns the address of the buffer |
|
// passed in. |
|
|
|
if (std::isnan(d)) { |
|
strcpy(out, "nan"); // NOLINT(runtime/printf) |
|
return 3; |
|
} |
|
if (d == 0) { // +0 and -0 are handled here |
|
if (std::signbit(d)) *out++ = '-'; |
|
*out++ = '0'; |
|
*out = 0; |
|
return out - buffer; |
|
} |
|
if (d < 0) { |
|
*out++ = '-'; |
|
d = -d; |
|
} |
|
if (std::isinf(d)) { |
|
strcpy(out, "inf"); // NOLINT(runtime/printf) |
|
return out + 3 - buffer; |
|
} |
|
|
|
auto exp_dig = SplitToSix(d); |
|
int exp = exp_dig.exponent; |
|
const char* digits = exp_dig.digits; |
|
out[0] = '0'; |
|
out[1] = '.'; |
|
switch (exp) { |
|
case 5: |
|
memcpy(out, &digits[0], 6), out += 6; |
|
*out = 0; |
|
return out - buffer; |
|
case 4: |
|
memcpy(out, &digits[0], 5), out += 5; |
|
if (digits[5] != '0') { |
|
*out++ = '.'; |
|
*out++ = digits[5]; |
|
} |
|
*out = 0; |
|
return out - buffer; |
|
case 3: |
|
memcpy(out, &digits[0], 4), out += 4; |
|
if ((digits[5] | digits[4]) != '0') { |
|
*out++ = '.'; |
|
*out++ = digits[4]; |
|
if (digits[5] != '0') *out++ = digits[5]; |
|
} |
|
*out = 0; |
|
return out - buffer; |
|
case 2: |
|
memcpy(out, &digits[0], 3), out += 3; |
|
*out++ = '.'; |
|
memcpy(out, &digits[3], 3); |
|
out += 3; |
|
while (out[-1] == '0') --out; |
|
if (out[-1] == '.') --out; |
|
*out = 0; |
|
return out - buffer; |
|
case 1: |
|
memcpy(out, &digits[0], 2), out += 2; |
|
*out++ = '.'; |
|
memcpy(out, &digits[2], 4); |
|
out += 4; |
|
while (out[-1] == '0') --out; |
|
if (out[-1] == '.') --out; |
|
*out = 0; |
|
return out - buffer; |
|
case 0: |
|
memcpy(out, &digits[0], 1), out += 1; |
|
*out++ = '.'; |
|
memcpy(out, &digits[1], 5); |
|
out += 5; |
|
while (out[-1] == '0') --out; |
|
if (out[-1] == '.') --out; |
|
*out = 0; |
|
return out - buffer; |
|
case -4: |
|
out[2] = '0'; |
|
++out; |
|
ABSL_FALLTHROUGH_INTENDED; |
|
case -3: |
|
out[2] = '0'; |
|
++out; |
|
ABSL_FALLTHROUGH_INTENDED; |
|
case -2: |
|
out[2] = '0'; |
|
++out; |
|
ABSL_FALLTHROUGH_INTENDED; |
|
case -1: |
|
out += 2; |
|
memcpy(out, &digits[0], 6); |
|
out += 6; |
|
while (out[-1] == '0') --out; |
|
*out = 0; |
|
return out - buffer; |
|
} |
|
assert(exp < -4 || exp >= 6); |
|
out[0] = digits[0]; |
|
assert(out[1] == '.'); |
|
out += 2; |
|
memcpy(out, &digits[1], 5), out += 5; |
|
while (out[-1] == '0') --out; |
|
if (out[-1] == '.') --out; |
|
*out++ = 'e'; |
|
if (exp > 0) { |
|
*out++ = '+'; |
|
} else { |
|
*out++ = '-'; |
|
exp = -exp; |
|
} |
|
if (exp > 99) { |
|
int dig1 = exp / 100; |
|
exp -= dig1 * 100; |
|
*out++ = '0' + dig1; |
|
} |
|
PutTwoDigits(exp, out); |
|
out += 2; |
|
*out = 0; |
|
return out - buffer; |
|
} |
|
|
|
namespace { |
|
// Represents integer values of digits. |
|
// Uses 36 to indicate an invalid character since we support |
|
// bases up to 36. |
|
static const int8_t kAsciiToInt[256] = { |
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // 16 36s. |
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 0, 1, 2, 3, 4, 5, |
|
6, 7, 8, 9, 36, 36, 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, |
|
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, |
|
36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, |
|
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36, |
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36}; |
|
|
|
// Parse the sign and optional hex or oct prefix in text. |
|
inline bool safe_parse_sign_and_base(absl::string_view* text /*inout*/, |
|
int* base_ptr /*inout*/, |
|
bool* negative_ptr /*output*/) { |
|
if (text->data() == nullptr) { |
|
return false; |
|
} |
|
|
|
const char* start = text->data(); |
|
const char* end = start + text->size(); |
|
int base = *base_ptr; |
|
|
|
// Consume whitespace. |
|
while (start < end && absl::ascii_isspace(start[0])) { |
|
++start; |
|
} |
|
while (start < end && absl::ascii_isspace(end[-1])) { |
|
--end; |
|
} |
|
if (start >= end) { |
|
return false; |
|
} |
|
|
|
// Consume sign. |
|
*negative_ptr = (start[0] == '-'); |
|
if (*negative_ptr || start[0] == '+') { |
|
++start; |
|
if (start >= end) { |
|
return false; |
|
} |
|
} |
|
|
|
// Consume base-dependent prefix. |
|
// base 0: "0x" -> base 16, "0" -> base 8, default -> base 10 |
|
// base 16: "0x" -> base 16 |
|
// Also validate the base. |
|
if (base == 0) { |
|
if (end - start >= 2 && start[0] == '0' && |
|
(start[1] == 'x' || start[1] == 'X')) { |
|
base = 16; |
|
start += 2; |
|
if (start >= end) { |
|
// "0x" with no digits after is invalid. |
|
return false; |
|
} |
|
} else if (end - start >= 1 && start[0] == '0') { |
|
base = 8; |
|
start += 1; |
|
} else { |
|
base = 10; |
|
} |
|
} else if (base == 16) { |
|
if (end - start >= 2 && start[0] == '0' && |
|
(start[1] == 'x' || start[1] == 'X')) { |
|
start += 2; |
|
if (start >= end) { |
|
// "0x" with no digits after is invalid. |
|
return false; |
|
} |
|
} |
|
} else if (base >= 2 && base <= 36) { |
|
// okay |
|
} else { |
|
return false; |
|
} |
|
*text = absl::string_view(start, end - start); |
|
*base_ptr = base; |
|
return true; |
|
} |
|
|
|
// Consume digits. |
|
// |
|
// The classic loop: |
|
// |
|
// for each digit |
|
// value = value * base + digit |
|
// value *= sign |
|
// |
|
// The classic loop needs overflow checking. It also fails on the most |
|
// negative integer, -2147483648 in 32-bit two's complement representation. |
|
// |
|
// My improved loop: |
|
// |
|
// if (!negative) |
|
// for each digit |
|
// value = value * base |
|
// value = value + digit |
|
// else |
|
// for each digit |
|
// value = value * base |
|
// value = value - digit |
|
// |
|
// Overflow checking becomes simple. |
|
|
|
// Lookup tables per IntType: |
|
// vmax/base and vmin/base are precomputed because division costs at least 8ns. |
|
// TODO(junyer): Doing this per base instead (i.e. an array of structs, not a |
|
// struct of arrays) would probably be better in terms of d-cache for the most |
|
// commonly used bases. |
|
template <typename IntType> |
|
struct LookupTables { |
|
static const IntType kVmaxOverBase[]; |
|
static const IntType kVminOverBase[]; |
|
}; |
|
|
|
// An array initializer macro for X/base where base in [0, 36]. |
|
// However, note that lookups for base in [0, 1] should never happen because |
|
// base has been validated to be in [2, 36] by safe_parse_sign_and_base(). |
|
#define X_OVER_BASE_INITIALIZER(X) \ |
|
{ \ |
|
0, 0, X / 2, X / 3, X / 4, X / 5, X / 6, X / 7, X / 8, X / 9, X / 10, \ |
|
X / 11, X / 12, X / 13, X / 14, X / 15, X / 16, X / 17, X / 18, \ |
|
X / 19, X / 20, X / 21, X / 22, X / 23, X / 24, X / 25, X / 26, \ |
|
X / 27, X / 28, X / 29, X / 30, X / 31, X / 32, X / 33, X / 34, \ |
|
X / 35, X / 36, \ |
|
} |
|
|
|
template <typename IntType> |
|
const IntType LookupTables<IntType>::kVmaxOverBase[] = |
|
X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::max()); |
|
|
|
template <typename IntType> |
|
const IntType LookupTables<IntType>::kVminOverBase[] = |
|
X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::min()); |
|
|
|
#undef X_OVER_BASE_INITIALIZER |
|
|
|
template <typename IntType> |
|
inline bool safe_parse_positive_int(absl::string_view text, int base, |
|
IntType* value_p) { |
|
IntType value = 0; |
|
const IntType vmax = std::numeric_limits<IntType>::max(); |
|
assert(vmax > 0); |
|
assert(base >= 0); |
|
assert(vmax >= static_cast<IntType>(base)); |
|
const IntType vmax_over_base = LookupTables<IntType>::kVmaxOverBase[base]; |
|
const char* start = text.data(); |
|
const char* end = start + text.size(); |
|
// loop over digits |
|
for (; start < end; ++start) { |
|
unsigned char c = static_cast<unsigned char>(start[0]); |
|
int digit = kAsciiToInt[c]; |
|
if (digit >= base) { |
|
*value_p = value; |
|
return false; |
|
} |
|
if (value > vmax_over_base) { |
|
*value_p = vmax; |
|
return false; |
|
} |
|
value *= base; |
|
if (value > vmax - digit) { |
|
*value_p = vmax; |
|
return false; |
|
} |
|
value += digit; |
|
} |
|
*value_p = value; |
|
return true; |
|
} |
|
|
|
template <typename IntType> |
|
inline bool safe_parse_negative_int(absl::string_view text, int base, |
|
IntType* value_p) { |
|
IntType value = 0; |
|
const IntType vmin = std::numeric_limits<IntType>::min(); |
|
assert(vmin < 0); |
|
assert(vmin <= 0 - base); |
|
IntType vmin_over_base = LookupTables<IntType>::kVminOverBase[base]; |
|
// 2003 c++ standard [expr.mul] |
|
// "... the sign of the remainder is implementation-defined." |
|
// Although (vmin/base)*base + vmin%base is always vmin. |
|
// 2011 c++ standard tightens the spec but we cannot rely on it. |
|
// TODO(junyer): Handle this in the lookup table generation. |
|
if (vmin % base > 0) { |
|
vmin_over_base += 1; |
|
} |
|
const char* start = text.data(); |
|
const char* end = start + text.size(); |
|
// loop over digits |
|
for (; start < end; ++start) { |
|
unsigned char c = static_cast<unsigned char>(start[0]); |
|
int digit = kAsciiToInt[c]; |
|
if (digit >= base) { |
|
*value_p = value; |
|
return false; |
|
} |
|
if (value < vmin_over_base) { |
|
*value_p = vmin; |
|
return false; |
|
} |
|
value *= base; |
|
if (value < vmin + digit) { |
|
*value_p = vmin; |
|
return false; |
|
} |
|
value -= digit; |
|
} |
|
*value_p = value; |
|
return true; |
|
} |
|
|
|
// Input format based on POSIX.1-2008 strtol |
|
// http://pubs.opengroup.org/onlinepubs/9699919799/functions/strtol.html |
|
template <typename IntType> |
|
inline bool safe_int_internal(absl::string_view text, IntType* value_p, |
|
int base) { |
|
*value_p = 0; |
|
bool negative; |
|
if (!safe_parse_sign_and_base(&text, &base, &negative)) { |
|
return false; |
|
} |
|
if (!negative) { |
|
return safe_parse_positive_int(text, base, value_p); |
|
} else { |
|
return safe_parse_negative_int(text, base, value_p); |
|
} |
|
} |
|
|
|
template <typename IntType> |
|
inline bool safe_uint_internal(absl::string_view text, IntType* value_p, |
|
int base) { |
|
*value_p = 0; |
|
bool negative; |
|
if (!safe_parse_sign_and_base(&text, &base, &negative) || negative) { |
|
return false; |
|
} |
|
return safe_parse_positive_int(text, base, value_p); |
|
} |
|
} // anonymous namespace |
|
|
|
namespace numbers_internal { |
|
bool safe_strto32_base(absl::string_view text, int32_t* value, int base) { |
|
return safe_int_internal<int32_t>(text, value, base); |
|
} |
|
|
|
bool safe_strto64_base(absl::string_view text, int64_t* value, int base) { |
|
return safe_int_internal<int64_t>(text, value, base); |
|
} |
|
|
|
bool safe_strtou32_base(absl::string_view text, uint32_t* value, int base) { |
|
return safe_uint_internal<uint32_t>(text, value, base); |
|
} |
|
|
|
bool safe_strtou64_base(absl::string_view text, uint64_t* value, int base) { |
|
return safe_uint_internal<uint64_t>(text, value, base); |
|
} |
|
} // namespace numbers_internal |
|
|
|
} // namespace absl
|
|
|