Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
245 lines
7.7 KiB
245 lines
7.7 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#ifndef ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_ |
|
#define ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_ |
|
|
|
#include <cassert> |
|
#include <cmath> |
|
#include <istream> |
|
#include <limits> |
|
#include <numeric> |
|
#include <type_traits> |
|
#include <utility> |
|
#include <vector> |
|
|
|
#include "absl/random/bernoulli_distribution.h" |
|
#include "absl/random/internal/iostream_state_saver.h" |
|
#include "absl/random/uniform_int_distribution.h" |
|
|
|
namespace absl { |
|
|
|
// absl::discrete_distribution |
|
// |
|
// A discrete distribution produces random integers i, where 0 <= i < n |
|
// distributed according to the discrete probability function: |
|
// |
|
// P(i|p0,...,pn−1)=pi |
|
// |
|
// This class is an implementation of discrete_distribution (see |
|
// [rand.dist.samp.discrete]). |
|
// |
|
// The algorithm used is Walker's Aliasing algorithm, described in Knuth, Vol 2. |
|
// absl::discrete_distribution takes O(N) time to precompute the probabilities |
|
// (where N is the number of possible outcomes in the distribution) at |
|
// construction, and then takes O(1) time for each variate generation. Many |
|
// other implementations also take O(N) time to construct an ordered sequence of |
|
// partial sums, plus O(log N) time per variate to binary search. |
|
// |
|
template <typename IntType = int> |
|
class discrete_distribution { |
|
public: |
|
using result_type = IntType; |
|
|
|
class param_type { |
|
public: |
|
using distribution_type = discrete_distribution; |
|
|
|
param_type() { init(); } |
|
|
|
template <typename InputIterator> |
|
explicit param_type(InputIterator begin, InputIterator end) |
|
: p_(begin, end) { |
|
init(); |
|
} |
|
|
|
explicit param_type(std::initializer_list<double> weights) : p_(weights) { |
|
init(); |
|
} |
|
|
|
template <class UnaryOperation> |
|
explicit param_type(size_t nw, double xmin, double xmax, |
|
UnaryOperation fw) { |
|
if (nw > 0) { |
|
p_.reserve(nw); |
|
double delta = (xmax - xmin) / static_cast<double>(nw); |
|
assert(delta > 0); |
|
double t = delta * 0.5; |
|
for (size_t i = 0; i < nw; ++i) { |
|
p_.push_back(fw(xmin + i * delta + t)); |
|
} |
|
} |
|
init(); |
|
} |
|
|
|
const std::vector<double>& probabilities() const { return p_; } |
|
size_t n() const { return p_.size() - 1; } |
|
|
|
friend bool operator==(const param_type& a, const param_type& b) { |
|
return a.probabilities() == b.probabilities(); |
|
} |
|
|
|
friend bool operator!=(const param_type& a, const param_type& b) { |
|
return !(a == b); |
|
} |
|
|
|
private: |
|
friend class discrete_distribution; |
|
|
|
void init(); |
|
|
|
std::vector<double> p_; // normalized probabilities |
|
std::vector<std::pair<double, size_t>> q_; // (acceptance, alternate) pairs |
|
|
|
static_assert(std::is_integral<result_type>::value, |
|
"Class-template absl::discrete_distribution<> must be " |
|
"parameterized using an integral type."); |
|
}; |
|
|
|
discrete_distribution() : param_() {} |
|
|
|
explicit discrete_distribution(const param_type& p) : param_(p) {} |
|
|
|
template <typename InputIterator> |
|
explicit discrete_distribution(InputIterator begin, InputIterator end) |
|
: param_(begin, end) {} |
|
|
|
explicit discrete_distribution(std::initializer_list<double> weights) |
|
: param_(weights) {} |
|
|
|
template <class UnaryOperation> |
|
explicit discrete_distribution(size_t nw, double xmin, double xmax, |
|
UnaryOperation fw) |
|
: param_(nw, xmin, xmax, std::move(fw)) {} |
|
|
|
void reset() {} |
|
|
|
// generating functions |
|
template <typename URBG> |
|
result_type operator()(URBG& g) { // NOLINT(runtime/references) |
|
return (*this)(g, param_); |
|
} |
|
|
|
template <typename URBG> |
|
result_type operator()(URBG& g, // NOLINT(runtime/references) |
|
const param_type& p); |
|
|
|
const param_type& param() const { return param_; } |
|
void param(const param_type& p) { param_ = p; } |
|
|
|
result_type(min)() const { return 0; } |
|
result_type(max)() const { |
|
return static_cast<result_type>(param_.n()); |
|
} // inclusive |
|
|
|
// NOTE [rand.dist.sample.discrete] returns a std::vector<double> not a |
|
// const std::vector<double>&. |
|
const std::vector<double>& probabilities() const { |
|
return param_.probabilities(); |
|
} |
|
|
|
friend bool operator==(const discrete_distribution& a, |
|
const discrete_distribution& b) { |
|
return a.param_ == b.param_; |
|
} |
|
friend bool operator!=(const discrete_distribution& a, |
|
const discrete_distribution& b) { |
|
return a.param_ != b.param_; |
|
} |
|
|
|
private: |
|
param_type param_; |
|
}; |
|
|
|
// -------------------------------------------------------------------------- |
|
// Implementation details only below |
|
// -------------------------------------------------------------------------- |
|
|
|
namespace random_internal { |
|
|
|
// Using the vector `*probabilities`, whose values are the weights or |
|
// probabilities of an element being selected, constructs the proportional |
|
// probabilities used by the discrete distribution. `*probabilities` will be |
|
// scaled, if necessary, so that its entries sum to a value sufficiently close |
|
// to 1.0. |
|
std::vector<std::pair<double, size_t>> InitDiscreteDistribution( |
|
std::vector<double>* probabilities); |
|
|
|
} // namespace random_internal |
|
|
|
template <typename IntType> |
|
void discrete_distribution<IntType>::param_type::init() { |
|
if (p_.empty()) { |
|
p_.push_back(1.0); |
|
q_.emplace_back(1.0, 0); |
|
} else { |
|
assert(n() <= (std::numeric_limits<IntType>::max)()); |
|
q_ = random_internal::InitDiscreteDistribution(&p_); |
|
} |
|
} |
|
|
|
template <typename IntType> |
|
template <typename URBG> |
|
typename discrete_distribution<IntType>::result_type |
|
discrete_distribution<IntType>::operator()( |
|
URBG& g, // NOLINT(runtime/references) |
|
const param_type& p) { |
|
const auto idx = absl::uniform_int_distribution<result_type>(0, p.n())(g); |
|
const auto& q = p.q_[idx]; |
|
const bool selected = absl::bernoulli_distribution(q.first)(g); |
|
return selected ? idx : static_cast<result_type>(q.second); |
|
} |
|
|
|
template <typename CharT, typename Traits, typename IntType> |
|
std::basic_ostream<CharT, Traits>& operator<<( |
|
std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references) |
|
const discrete_distribution<IntType>& x) { |
|
auto saver = random_internal::make_ostream_state_saver(os); |
|
const auto& probabilities = x.param().probabilities(); |
|
os << probabilities.size(); |
|
|
|
os.precision(random_internal::stream_precision_helper<double>::kPrecision); |
|
for (const auto& p : probabilities) { |
|
os << os.fill() << p; |
|
} |
|
return os; |
|
} |
|
|
|
template <typename CharT, typename Traits, typename IntType> |
|
std::basic_istream<CharT, Traits>& operator>>( |
|
std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references) |
|
discrete_distribution<IntType>& x) { // NOLINT(runtime/references) |
|
using param_type = typename discrete_distribution<IntType>::param_type; |
|
auto saver = random_internal::make_istream_state_saver(is); |
|
|
|
size_t n; |
|
std::vector<double> p; |
|
|
|
is >> n; |
|
if (is.fail()) return is; |
|
if (n > 0) { |
|
p.reserve(n); |
|
for (IntType i = 0; i < n && !is.fail(); ++i) { |
|
auto tmp = random_internal::read_floating_point<double>(is); |
|
if (is.fail()) return is; |
|
p.push_back(tmp); |
|
} |
|
} |
|
x.param(param_type(p.begin(), p.end())); |
|
return is; |
|
} |
|
|
|
} // namespace absl |
|
|
|
#endif // ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
|
|
|