Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
308 lines
10 KiB
308 lines
10 KiB
// Copyright 2018 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#include "absl/container/internal/hashtablez_sampler.h" |
|
|
|
#include <atomic> |
|
#include <cassert> |
|
#include <cmath> |
|
#include <functional> |
|
#include <limits> |
|
|
|
#include "absl/base/attributes.h" |
|
#include "absl/container/internal/have_sse.h" |
|
#include "absl/debugging/stacktrace.h" |
|
#include "absl/memory/memory.h" |
|
#include "absl/synchronization/mutex.h" |
|
|
|
namespace absl { |
|
namespace container_internal { |
|
constexpr int HashtablezInfo::kMaxStackDepth; |
|
|
|
namespace { |
|
ABSL_CONST_INIT std::atomic<bool> g_hashtablez_enabled{ |
|
false |
|
}; |
|
ABSL_CONST_INIT std::atomic<int32_t> g_hashtablez_sample_parameter{1 << 10}; |
|
ABSL_CONST_INIT std::atomic<int32_t> g_hashtablez_max_samples{1 << 20}; |
|
|
|
// Returns the next pseudo-random value. |
|
// pRNG is: aX+b mod c with a = 0x5DEECE66D, b = 0xB, c = 1<<48 |
|
// This is the lrand64 generator. |
|
uint64_t NextRandom(uint64_t rnd) { |
|
const uint64_t prng_mult = uint64_t{0x5DEECE66D}; |
|
const uint64_t prng_add = 0xB; |
|
const uint64_t prng_mod_power = 48; |
|
const uint64_t prng_mod_mask = ~(~uint64_t{0} << prng_mod_power); |
|
return (prng_mult * rnd + prng_add) & prng_mod_mask; |
|
} |
|
|
|
// Generates a geometric variable with the specified mean. |
|
// This is done by generating a random number between 0 and 1 and applying |
|
// the inverse cumulative distribution function for an exponential. |
|
// Specifically: Let m be the inverse of the sample period, then |
|
// the probability distribution function is m*exp(-mx) so the CDF is |
|
// p = 1 - exp(-mx), so |
|
// q = 1 - p = exp(-mx) |
|
// log_e(q) = -mx |
|
// -log_e(q)/m = x |
|
// log_2(q) * (-log_e(2) * 1/m) = x |
|
// In the code, q is actually in the range 1 to 2**26, hence the -26 below |
|
// |
|
int64_t GetGeometricVariable(int64_t mean) { |
|
#if ABSL_HAVE_THREAD_LOCAL |
|
thread_local |
|
#else // ABSL_HAVE_THREAD_LOCAL |
|
// SampleSlow and hence GetGeometricVariable is guarded by a single mutex when |
|
// there are not thread locals. Thus, a single global rng is acceptable for |
|
// that case. |
|
static |
|
#endif // ABSL_HAVE_THREAD_LOCAL |
|
uint64_t rng = []() { |
|
// We don't get well distributed numbers from this so we call |
|
// NextRandom() a bunch to mush the bits around. We use a global_rand |
|
// to handle the case where the same thread (by memory address) gets |
|
// created and destroyed repeatedly. |
|
ABSL_CONST_INIT static std::atomic<uint32_t> global_rand(0); |
|
uint64_t r = reinterpret_cast<uint64_t>(&rng) + |
|
global_rand.fetch_add(1, std::memory_order_relaxed); |
|
for (int i = 0; i < 20; ++i) { |
|
r = NextRandom(r); |
|
} |
|
return r; |
|
}(); |
|
|
|
rng = NextRandom(rng); |
|
|
|
// Take the top 26 bits as the random number |
|
// (This plus the 1<<58 sampling bound give a max possible step of |
|
// 5194297183973780480 bytes.) |
|
const uint64_t prng_mod_power = 48; // Number of bits in prng |
|
// The uint32_t cast is to prevent a (hard-to-reproduce) NAN |
|
// under piii debug for some binaries. |
|
double q = static_cast<uint32_t>(rng >> (prng_mod_power - 26)) + 1.0; |
|
// Put the computed p-value through the CDF of a geometric. |
|
double interval = (log2(q) - 26) * (-std::log(2.0) * mean); |
|
|
|
// Very large values of interval overflow int64_t. If we happen to |
|
// hit such improbable condition, we simply cheat and clamp interval |
|
// to largest supported value. |
|
if (interval > static_cast<double>(std::numeric_limits<int64_t>::max() / 2)) { |
|
return std::numeric_limits<int64_t>::max() / 2; |
|
} |
|
|
|
// Small values of interval are equivalent to just sampling next time. |
|
if (interval < 1) { |
|
return 1; |
|
} |
|
return static_cast<int64_t>(interval); |
|
} |
|
|
|
} // namespace |
|
|
|
HashtablezSampler& HashtablezSampler::Global() { |
|
static auto* sampler = new HashtablezSampler(); |
|
return *sampler; |
|
} |
|
|
|
HashtablezSampler::DisposeCallback HashtablezSampler::SetDisposeCallback( |
|
DisposeCallback f) { |
|
return dispose_.exchange(f, std::memory_order_relaxed); |
|
} |
|
|
|
HashtablezInfo::HashtablezInfo() { PrepareForSampling(); } |
|
HashtablezInfo::~HashtablezInfo() = default; |
|
|
|
void HashtablezInfo::PrepareForSampling() { |
|
capacity.store(0, std::memory_order_relaxed); |
|
size.store(0, std::memory_order_relaxed); |
|
num_erases.store(0, std::memory_order_relaxed); |
|
max_probe_length.store(0, std::memory_order_relaxed); |
|
total_probe_length.store(0, std::memory_order_relaxed); |
|
hashes_bitwise_or.store(0, std::memory_order_relaxed); |
|
hashes_bitwise_and.store(~size_t{}, std::memory_order_relaxed); |
|
|
|
create_time = absl::Now(); |
|
// The inliner makes hardcoded skip_count difficult (especially when combined |
|
// with LTO). We use the ability to exclude stacks by regex when encoding |
|
// instead. |
|
depth = absl::GetStackTrace(stack, HashtablezInfo::kMaxStackDepth, |
|
/* skip_count= */ 0); |
|
dead = nullptr; |
|
} |
|
|
|
HashtablezSampler::HashtablezSampler() |
|
: dropped_samples_(0), size_estimate_(0), all_(nullptr), dispose_(nullptr) { |
|
absl::MutexLock l(&graveyard_.init_mu); |
|
graveyard_.dead = &graveyard_; |
|
} |
|
|
|
HashtablezSampler::~HashtablezSampler() { |
|
HashtablezInfo* s = all_.load(std::memory_order_acquire); |
|
while (s != nullptr) { |
|
HashtablezInfo* next = s->next; |
|
delete s; |
|
s = next; |
|
} |
|
} |
|
|
|
void HashtablezSampler::PushNew(HashtablezInfo* sample) { |
|
sample->next = all_.load(std::memory_order_relaxed); |
|
while (!all_.compare_exchange_weak(sample->next, sample, |
|
std::memory_order_release, |
|
std::memory_order_relaxed)) { |
|
} |
|
} |
|
|
|
void HashtablezSampler::PushDead(HashtablezInfo* sample) { |
|
if (auto* dispose = dispose_.load(std::memory_order_relaxed)) { |
|
dispose(*sample); |
|
} |
|
|
|
absl::MutexLock graveyard_lock(&graveyard_.init_mu); |
|
absl::MutexLock sample_lock(&sample->init_mu); |
|
sample->dead = graveyard_.dead; |
|
graveyard_.dead = sample; |
|
} |
|
|
|
HashtablezInfo* HashtablezSampler::PopDead() { |
|
absl::MutexLock graveyard_lock(&graveyard_.init_mu); |
|
|
|
// The list is circular, so eventually it collapses down to |
|
// graveyard_.dead == &graveyard_ |
|
// when it is empty. |
|
HashtablezInfo* sample = graveyard_.dead; |
|
if (sample == &graveyard_) return nullptr; |
|
|
|
absl::MutexLock sample_lock(&sample->init_mu); |
|
graveyard_.dead = sample->dead; |
|
sample->PrepareForSampling(); |
|
return sample; |
|
} |
|
|
|
HashtablezInfo* HashtablezSampler::Register() { |
|
int64_t size = size_estimate_.fetch_add(1, std::memory_order_relaxed); |
|
if (size > g_hashtablez_max_samples.load(std::memory_order_relaxed)) { |
|
size_estimate_.fetch_sub(1, std::memory_order_relaxed); |
|
dropped_samples_.fetch_add(1, std::memory_order_relaxed); |
|
return nullptr; |
|
} |
|
|
|
HashtablezInfo* sample = PopDead(); |
|
if (sample == nullptr) { |
|
// Resurrection failed. Hire a new warlock. |
|
sample = new HashtablezInfo(); |
|
PushNew(sample); |
|
} |
|
|
|
return sample; |
|
} |
|
|
|
void HashtablezSampler::Unregister(HashtablezInfo* sample) { |
|
PushDead(sample); |
|
size_estimate_.fetch_sub(1, std::memory_order_relaxed); |
|
} |
|
|
|
int64_t HashtablezSampler::Iterate( |
|
const std::function<void(const HashtablezInfo& stack)>& f) { |
|
HashtablezInfo* s = all_.load(std::memory_order_acquire); |
|
while (s != nullptr) { |
|
absl::MutexLock l(&s->init_mu); |
|
if (s->dead == nullptr) { |
|
f(*s); |
|
} |
|
s = s->next; |
|
} |
|
|
|
return dropped_samples_.load(std::memory_order_relaxed); |
|
} |
|
|
|
HashtablezInfo* SampleSlow(int64_t* next_sample) { |
|
if (kAbslContainerInternalSampleEverything) { |
|
*next_sample = 1; |
|
return HashtablezSampler::Global().Register(); |
|
} |
|
|
|
bool first = *next_sample < 0; |
|
*next_sample = GetGeometricVariable( |
|
g_hashtablez_sample_parameter.load(std::memory_order_relaxed)); |
|
|
|
// g_hashtablez_enabled can be dynamically flipped, we need to set a threshold |
|
// low enough that we will start sampling in a reasonable time, so we just use |
|
// the default sampling rate. |
|
if (!g_hashtablez_enabled.load(std::memory_order_relaxed)) return nullptr; |
|
|
|
// We will only be negative on our first count, so we should just retry in |
|
// that case. |
|
if (first) { |
|
if (ABSL_PREDICT_TRUE(--*next_sample > 0)) return nullptr; |
|
return SampleSlow(next_sample); |
|
} |
|
|
|
return HashtablezSampler::Global().Register(); |
|
} |
|
|
|
#if ABSL_PER_THREAD_TLS == 1 |
|
ABSL_PER_THREAD_TLS_KEYWORD int64_t global_next_sample = 0; |
|
#endif // ABSL_PER_THREAD_TLS == 1 |
|
|
|
void UnsampleSlow(HashtablezInfo* info) { |
|
HashtablezSampler::Global().Unregister(info); |
|
} |
|
|
|
void RecordInsertSlow(HashtablezInfo* info, size_t hash, |
|
size_t distance_from_desired) { |
|
// SwissTables probe in groups of 16, so scale this to count items probes and |
|
// not offset from desired. |
|
size_t probe_length = distance_from_desired; |
|
#if SWISSTABLE_HAVE_SSE2 |
|
probe_length /= 16; |
|
#else |
|
probe_length /= 8; |
|
#endif |
|
|
|
info->hashes_bitwise_and.fetch_and(hash, std::memory_order_relaxed); |
|
info->hashes_bitwise_or.fetch_or(hash, std::memory_order_relaxed); |
|
info->max_probe_length.store( |
|
std::max(info->max_probe_length.load(std::memory_order_relaxed), |
|
probe_length), |
|
std::memory_order_relaxed); |
|
info->total_probe_length.fetch_add(probe_length, std::memory_order_relaxed); |
|
info->size.fetch_add(1, std::memory_order_relaxed); |
|
} |
|
|
|
void SetHashtablezEnabled(bool enabled) { |
|
g_hashtablez_enabled.store(enabled, std::memory_order_release); |
|
} |
|
|
|
void SetHashtablezSampleParameter(int32_t rate) { |
|
if (rate > 0) { |
|
g_hashtablez_sample_parameter.store(rate, std::memory_order_release); |
|
} else { |
|
ABSL_RAW_LOG(ERROR, "Invalid hashtablez sample rate: %lld", |
|
static_cast<long long>(rate)); // NOLINT(runtime/int) |
|
} |
|
} |
|
|
|
void SetHashtablezMaxSamples(int32_t max) { |
|
if (max > 0) { |
|
g_hashtablez_max_samples.store(max, std::memory_order_release); |
|
} else { |
|
ABSL_RAW_LOG(ERROR, "Invalid hashtablez max samples: %lld", |
|
static_cast<long long>(max)); // NOLINT(runtime/int) |
|
} |
|
} |
|
|
|
} // namespace container_internal |
|
} // namespace absl
|
|
|