Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2927 lines
108 KiB
2927 lines
108 KiB
// Copyright 2018 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
// A btree implementation of the STL set and map interfaces. A btree is smaller |
|
// and generally also faster than STL set/map (refer to the benchmarks below). |
|
// The red-black tree implementation of STL set/map has an overhead of 3 |
|
// pointers (left, right and parent) plus the node color information for each |
|
// stored value. So a set<int32_t> consumes 40 bytes for each value stored in |
|
// 64-bit mode. This btree implementation stores multiple values on fixed |
|
// size nodes (usually 256 bytes) and doesn't store child pointers for leaf |
|
// nodes. The result is that a btree_set<int32_t> may use much less memory per |
|
// stored value. For the random insertion benchmark in btree_bench.cc, a |
|
// btree_set<int32_t> with node-size of 256 uses 5.1 bytes per stored value. |
|
// |
|
// The packing of multiple values on to each node of a btree has another effect |
|
// besides better space utilization: better cache locality due to fewer cache |
|
// lines being accessed. Better cache locality translates into faster |
|
// operations. |
|
// |
|
// CAVEATS |
|
// |
|
// Insertions and deletions on a btree can cause splitting, merging or |
|
// rebalancing of btree nodes. And even without these operations, insertions |
|
// and deletions on a btree will move values around within a node. In both |
|
// cases, the result is that insertions and deletions can invalidate iterators |
|
// pointing to values other than the one being inserted/deleted. Therefore, this |
|
// container does not provide pointer stability. This is notably different from |
|
// STL set/map which takes care to not invalidate iterators on insert/erase |
|
// except, of course, for iterators pointing to the value being erased. A |
|
// partial workaround when erasing is available: erase() returns an iterator |
|
// pointing to the item just after the one that was erased (or end() if none |
|
// exists). |
|
|
|
#ifndef ABSL_CONTAINER_INTERNAL_BTREE_H_ |
|
#define ABSL_CONTAINER_INTERNAL_BTREE_H_ |
|
|
|
#include <algorithm> |
|
#include <cassert> |
|
#include <cstddef> |
|
#include <cstdint> |
|
#include <cstring> |
|
#include <functional> |
|
#include <iterator> |
|
#include <limits> |
|
#include <new> |
|
#include <string> |
|
#include <type_traits> |
|
#include <utility> |
|
|
|
#include "absl/base/internal/raw_logging.h" |
|
#include "absl/base/macros.h" |
|
#include "absl/container/internal/common.h" |
|
#include "absl/container/internal/common_policy_traits.h" |
|
#include "absl/container/internal/compressed_tuple.h" |
|
#include "absl/container/internal/container_memory.h" |
|
#include "absl/container/internal/layout.h" |
|
#include "absl/memory/memory.h" |
|
#include "absl/meta/type_traits.h" |
|
#include "absl/strings/cord.h" |
|
#include "absl/strings/string_view.h" |
|
#include "absl/types/compare.h" |
|
#include "absl/utility/utility.h" |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
namespace container_internal { |
|
|
|
#ifdef ABSL_BTREE_ENABLE_GENERATIONS |
|
#error ABSL_BTREE_ENABLE_GENERATIONS cannot be directly set |
|
#elif defined(ABSL_HAVE_ADDRESS_SANITIZER) || \ |
|
defined(ABSL_HAVE_MEMORY_SANITIZER) |
|
// When compiled in sanitizer mode, we add generation integers to the nodes and |
|
// iterators. When iterators are used, we validate that the container has not |
|
// been mutated since the iterator was constructed. |
|
#define ABSL_BTREE_ENABLE_GENERATIONS |
|
#endif |
|
|
|
template <typename Compare, typename T, typename U> |
|
using compare_result_t = absl::result_of_t<const Compare(const T &, const U &)>; |
|
|
|
// A helper class that indicates if the Compare parameter is a key-compare-to |
|
// comparator. |
|
template <typename Compare, typename T> |
|
using btree_is_key_compare_to = |
|
std::is_convertible<compare_result_t<Compare, T, T>, absl::weak_ordering>; |
|
|
|
struct StringBtreeDefaultLess { |
|
using is_transparent = void; |
|
|
|
StringBtreeDefaultLess() = default; |
|
|
|
// Compatibility constructor. |
|
StringBtreeDefaultLess(std::less<std::string>) {} // NOLINT |
|
StringBtreeDefaultLess(std::less<absl::string_view>) {} // NOLINT |
|
|
|
// Allow converting to std::less for use in key_comp()/value_comp(). |
|
explicit operator std::less<std::string>() const { return {}; } |
|
explicit operator std::less<absl::string_view>() const { return {}; } |
|
explicit operator std::less<absl::Cord>() const { return {}; } |
|
|
|
absl::weak_ordering operator()(absl::string_view lhs, |
|
absl::string_view rhs) const { |
|
return compare_internal::compare_result_as_ordering(lhs.compare(rhs)); |
|
} |
|
StringBtreeDefaultLess(std::less<absl::Cord>) {} // NOLINT |
|
absl::weak_ordering operator()(const absl::Cord &lhs, |
|
const absl::Cord &rhs) const { |
|
return compare_internal::compare_result_as_ordering(lhs.Compare(rhs)); |
|
} |
|
absl::weak_ordering operator()(const absl::Cord &lhs, |
|
absl::string_view rhs) const { |
|
return compare_internal::compare_result_as_ordering(lhs.Compare(rhs)); |
|
} |
|
absl::weak_ordering operator()(absl::string_view lhs, |
|
const absl::Cord &rhs) const { |
|
return compare_internal::compare_result_as_ordering(-rhs.Compare(lhs)); |
|
} |
|
}; |
|
|
|
struct StringBtreeDefaultGreater { |
|
using is_transparent = void; |
|
|
|
StringBtreeDefaultGreater() = default; |
|
|
|
StringBtreeDefaultGreater(std::greater<std::string>) {} // NOLINT |
|
StringBtreeDefaultGreater(std::greater<absl::string_view>) {} // NOLINT |
|
|
|
// Allow converting to std::greater for use in key_comp()/value_comp(). |
|
explicit operator std::greater<std::string>() const { return {}; } |
|
explicit operator std::greater<absl::string_view>() const { return {}; } |
|
explicit operator std::greater<absl::Cord>() const { return {}; } |
|
|
|
absl::weak_ordering operator()(absl::string_view lhs, |
|
absl::string_view rhs) const { |
|
return compare_internal::compare_result_as_ordering(rhs.compare(lhs)); |
|
} |
|
StringBtreeDefaultGreater(std::greater<absl::Cord>) {} // NOLINT |
|
absl::weak_ordering operator()(const absl::Cord &lhs, |
|
const absl::Cord &rhs) const { |
|
return compare_internal::compare_result_as_ordering(rhs.Compare(lhs)); |
|
} |
|
absl::weak_ordering operator()(const absl::Cord &lhs, |
|
absl::string_view rhs) const { |
|
return compare_internal::compare_result_as_ordering(-lhs.Compare(rhs)); |
|
} |
|
absl::weak_ordering operator()(absl::string_view lhs, |
|
const absl::Cord &rhs) const { |
|
return compare_internal::compare_result_as_ordering(rhs.Compare(lhs)); |
|
} |
|
}; |
|
|
|
// See below comments for checked_compare. |
|
template <typename Compare, bool is_class = std::is_class<Compare>::value> |
|
struct checked_compare_base : Compare { |
|
using Compare::Compare; |
|
explicit checked_compare_base(Compare c) : Compare(std::move(c)) {} |
|
const Compare &comp() const { return *this; } |
|
}; |
|
template <typename Compare> |
|
struct checked_compare_base<Compare, false> { |
|
explicit checked_compare_base(Compare c) : compare(std::move(c)) {} |
|
const Compare &comp() const { return compare; } |
|
Compare compare; |
|
}; |
|
|
|
// A mechanism for opting out of checked_compare for use only in btree_test.cc. |
|
struct BtreeTestOnlyCheckedCompareOptOutBase {}; |
|
|
|
// A helper class to adapt the specified comparator for two use cases: |
|
// (1) When using common Abseil string types with common comparison functors, |
|
// convert a boolean comparison into a three-way comparison that returns an |
|
// `absl::weak_ordering`. This helper class is specialized for |
|
// less<std::string>, greater<std::string>, less<string_view>, |
|
// greater<string_view>, less<absl::Cord>, and greater<absl::Cord>. |
|
// (2) Adapt the comparator to diagnose cases of non-strict-weak-ordering (see |
|
// https://en.cppreference.com/w/cpp/named_req/Compare) in debug mode. Whenever |
|
// a comparison is made, we will make assertions to verify that the comparator |
|
// is valid. |
|
template <typename Compare, typename Key> |
|
struct key_compare_adapter { |
|
// Inherit from checked_compare_base to support function pointers and also |
|
// keep empty-base-optimization (EBO) support for classes. |
|
// Note: we can't use CompressedTuple here because that would interfere |
|
// with the EBO for `btree::rightmost_`. `btree::rightmost_` is itself a |
|
// CompressedTuple and nested `CompressedTuple`s don't support EBO. |
|
// TODO(b/214288561): use CompressedTuple instead once it supports EBO for |
|
// nested `CompressedTuple`s. |
|
struct checked_compare : checked_compare_base<Compare> { |
|
private: |
|
using Base = typename checked_compare::checked_compare_base; |
|
using Base::comp; |
|
|
|
// If possible, returns whether `t` is equivalent to itself. We can only do |
|
// this for `Key`s because we can't be sure that it's safe to call |
|
// `comp()(k, k)` otherwise. Even if SFINAE allows it, there could be a |
|
// compilation failure inside the implementation of the comparison operator. |
|
bool is_self_equivalent(const Key &k) const { |
|
// Note: this works for both boolean and three-way comparators. |
|
return comp()(k, k) == 0; |
|
} |
|
// If we can't compare `t` with itself, returns true unconditionally. |
|
template <typename T> |
|
bool is_self_equivalent(const T &) const { |
|
return true; |
|
} |
|
|
|
public: |
|
using Base::Base; |
|
checked_compare(Compare comp) : Base(std::move(comp)) {} // NOLINT |
|
|
|
// Allow converting to Compare for use in key_comp()/value_comp(). |
|
explicit operator Compare() const { return comp(); } |
|
|
|
template <typename T, typename U, |
|
absl::enable_if_t< |
|
std::is_same<bool, compare_result_t<Compare, T, U>>::value, |
|
int> = 0> |
|
bool operator()(const T &lhs, const U &rhs) const { |
|
// NOTE: if any of these assertions fail, then the comparator does not |
|
// establish a strict-weak-ordering (see |
|
// https://en.cppreference.com/w/cpp/named_req/Compare). |
|
assert(is_self_equivalent(lhs)); |
|
assert(is_self_equivalent(rhs)); |
|
const bool lhs_comp_rhs = comp()(lhs, rhs); |
|
assert(!lhs_comp_rhs || !comp()(rhs, lhs)); |
|
return lhs_comp_rhs; |
|
} |
|
|
|
template < |
|
typename T, typename U, |
|
absl::enable_if_t<std::is_convertible<compare_result_t<Compare, T, U>, |
|
absl::weak_ordering>::value, |
|
int> = 0> |
|
absl::weak_ordering operator()(const T &lhs, const U &rhs) const { |
|
// NOTE: if any of these assertions fail, then the comparator does not |
|
// establish a strict-weak-ordering (see |
|
// https://en.cppreference.com/w/cpp/named_req/Compare). |
|
assert(is_self_equivalent(lhs)); |
|
assert(is_self_equivalent(rhs)); |
|
const absl::weak_ordering lhs_comp_rhs = comp()(lhs, rhs); |
|
#ifndef NDEBUG |
|
const absl::weak_ordering rhs_comp_lhs = comp()(rhs, lhs); |
|
if (lhs_comp_rhs > 0) { |
|
assert(rhs_comp_lhs < 0 && "lhs_comp_rhs > 0 -> rhs_comp_lhs < 0"); |
|
} else if (lhs_comp_rhs == 0) { |
|
assert(rhs_comp_lhs == 0 && "lhs_comp_rhs == 0 -> rhs_comp_lhs == 0"); |
|
} else { |
|
assert(rhs_comp_lhs > 0 && "lhs_comp_rhs < 0 -> rhs_comp_lhs > 0"); |
|
} |
|
#endif |
|
return lhs_comp_rhs; |
|
} |
|
}; |
|
using type = absl::conditional_t< |
|
std::is_base_of<BtreeTestOnlyCheckedCompareOptOutBase, Compare>::value, |
|
Compare, checked_compare>; |
|
}; |
|
|
|
template <> |
|
struct key_compare_adapter<std::less<std::string>, std::string> { |
|
using type = StringBtreeDefaultLess; |
|
}; |
|
|
|
template <> |
|
struct key_compare_adapter<std::greater<std::string>, std::string> { |
|
using type = StringBtreeDefaultGreater; |
|
}; |
|
|
|
template <> |
|
struct key_compare_adapter<std::less<absl::string_view>, absl::string_view> { |
|
using type = StringBtreeDefaultLess; |
|
}; |
|
|
|
template <> |
|
struct key_compare_adapter<std::greater<absl::string_view>, absl::string_view> { |
|
using type = StringBtreeDefaultGreater; |
|
}; |
|
|
|
template <> |
|
struct key_compare_adapter<std::less<absl::Cord>, absl::Cord> { |
|
using type = StringBtreeDefaultLess; |
|
}; |
|
|
|
template <> |
|
struct key_compare_adapter<std::greater<absl::Cord>, absl::Cord> { |
|
using type = StringBtreeDefaultGreater; |
|
}; |
|
|
|
// Detects an 'absl_btree_prefer_linear_node_search' member. This is |
|
// a protocol used as an opt-in or opt-out of linear search. |
|
// |
|
// For example, this would be useful for key types that wrap an integer |
|
// and define their own cheap operator<(). For example: |
|
// |
|
// class K { |
|
// public: |
|
// using absl_btree_prefer_linear_node_search = std::true_type; |
|
// ... |
|
// private: |
|
// friend bool operator<(K a, K b) { return a.k_ < b.k_; } |
|
// int k_; |
|
// }; |
|
// |
|
// btree_map<K, V> m; // Uses linear search |
|
// |
|
// If T has the preference tag, then it has a preference. |
|
// Btree will use the tag's truth value. |
|
template <typename T, typename = void> |
|
struct has_linear_node_search_preference : std::false_type {}; |
|
template <typename T, typename = void> |
|
struct prefers_linear_node_search : std::false_type {}; |
|
template <typename T> |
|
struct has_linear_node_search_preference< |
|
T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>> |
|
: std::true_type {}; |
|
template <typename T> |
|
struct prefers_linear_node_search< |
|
T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>> |
|
: T::absl_btree_prefer_linear_node_search {}; |
|
|
|
template <typename Compare, typename Key> |
|
constexpr bool compare_has_valid_result_type() { |
|
using compare_result_type = compare_result_t<Compare, Key, Key>; |
|
return std::is_same<compare_result_type, bool>::value || |
|
std::is_convertible<compare_result_type, absl::weak_ordering>::value; |
|
} |
|
|
|
template <typename original_key_compare, typename value_type> |
|
class map_value_compare { |
|
template <typename Params> |
|
friend class btree; |
|
|
|
// Note: this `protected` is part of the API of std::map::value_compare. See |
|
// https://en.cppreference.com/w/cpp/container/map/value_compare. |
|
protected: |
|
explicit map_value_compare(original_key_compare c) : comp(std::move(c)) {} |
|
|
|
original_key_compare comp; // NOLINT |
|
|
|
public: |
|
auto operator()(const value_type &lhs, const value_type &rhs) const |
|
-> decltype(comp(lhs.first, rhs.first)) { |
|
return comp(lhs.first, rhs.first); |
|
} |
|
}; |
|
|
|
template <typename Key, typename Compare, typename Alloc, int TargetNodeSize, |
|
bool IsMulti, bool IsMap, typename SlotPolicy> |
|
struct common_params : common_policy_traits<SlotPolicy> { |
|
using original_key_compare = Compare; |
|
|
|
// If Compare is a common comparator for a string-like type, then we adapt it |
|
// to use heterogeneous lookup and to be a key-compare-to comparator. |
|
// We also adapt the comparator to diagnose invalid comparators in debug mode. |
|
// We disable this when `Compare` is invalid in a way that will cause |
|
// adaptation to fail (having invalid return type) so that we can give a |
|
// better compilation failure in static_assert_validation. If we don't do |
|
// this, then there will be cascading compilation failures that are confusing |
|
// for users. |
|
using key_compare = |
|
absl::conditional_t<!compare_has_valid_result_type<Compare, Key>(), |
|
Compare, |
|
typename key_compare_adapter<Compare, Key>::type>; |
|
|
|
static constexpr bool kIsKeyCompareStringAdapted = |
|
std::is_same<key_compare, StringBtreeDefaultLess>::value || |
|
std::is_same<key_compare, StringBtreeDefaultGreater>::value; |
|
static constexpr bool kIsKeyCompareTransparent = |
|
IsTransparent<original_key_compare>::value || kIsKeyCompareStringAdapted; |
|
static constexpr bool kEnableGenerations = |
|
#ifdef ABSL_BTREE_ENABLE_GENERATIONS |
|
true; |
|
#else |
|
false; |
|
#endif |
|
|
|
// A type which indicates if we have a key-compare-to functor or a plain old |
|
// key-compare functor. |
|
using is_key_compare_to = btree_is_key_compare_to<key_compare, Key>; |
|
|
|
using allocator_type = Alloc; |
|
using key_type = Key; |
|
using size_type = size_t; |
|
using difference_type = ptrdiff_t; |
|
|
|
using slot_policy = SlotPolicy; |
|
using slot_type = typename slot_policy::slot_type; |
|
using value_type = typename slot_policy::value_type; |
|
using init_type = typename slot_policy::mutable_value_type; |
|
using pointer = value_type *; |
|
using const_pointer = const value_type *; |
|
using reference = value_type &; |
|
using const_reference = const value_type &; |
|
|
|
using value_compare = |
|
absl::conditional_t<IsMap, |
|
map_value_compare<original_key_compare, value_type>, |
|
original_key_compare>; |
|
using is_map_container = std::integral_constant<bool, IsMap>; |
|
|
|
// For the given lookup key type, returns whether we can have multiple |
|
// equivalent keys in the btree. If this is a multi-container, then we can. |
|
// Otherwise, we can have multiple equivalent keys only if all of the |
|
// following conditions are met: |
|
// - The comparator is transparent. |
|
// - The lookup key type is not the same as key_type. |
|
// - The comparator is not a StringBtreeDefault{Less,Greater} comparator |
|
// that we know has the same equivalence classes for all lookup types. |
|
template <typename LookupKey> |
|
constexpr static bool can_have_multiple_equivalent_keys() { |
|
return IsMulti || (IsTransparent<key_compare>::value && |
|
!std::is_same<LookupKey, Key>::value && |
|
!kIsKeyCompareStringAdapted); |
|
} |
|
|
|
enum { |
|
kTargetNodeSize = TargetNodeSize, |
|
|
|
// Upper bound for the available space for slots. This is largest for leaf |
|
// nodes, which have overhead of at least a pointer + 4 bytes (for storing |
|
// 3 field_types and an enum). |
|
kNodeSlotSpace = TargetNodeSize - /*minimum overhead=*/(sizeof(void *) + 4), |
|
}; |
|
|
|
// This is an integral type large enough to hold as many slots as will fit a |
|
// node of TargetNodeSize bytes. |
|
using node_count_type = |
|
absl::conditional_t<(kNodeSlotSpace / sizeof(slot_type) > |
|
(std::numeric_limits<uint8_t>::max)()), |
|
uint16_t, uint8_t>; // NOLINT |
|
}; |
|
|
|
// An adapter class that converts a lower-bound compare into an upper-bound |
|
// compare. Note: there is no need to make a version of this adapter specialized |
|
// for key-compare-to functors because the upper-bound (the first value greater |
|
// than the input) is never an exact match. |
|
template <typename Compare> |
|
struct upper_bound_adapter { |
|
explicit upper_bound_adapter(const Compare &c) : comp(c) {} |
|
template <typename K1, typename K2> |
|
bool operator()(const K1 &a, const K2 &b) const { |
|
// Returns true when a is not greater than b. |
|
return !compare_internal::compare_result_as_less_than(comp(b, a)); |
|
} |
|
|
|
private: |
|
Compare comp; |
|
}; |
|
|
|
enum class MatchKind : uint8_t { kEq, kNe }; |
|
|
|
template <typename V, bool IsCompareTo> |
|
struct SearchResult { |
|
V value; |
|
MatchKind match; |
|
|
|
static constexpr bool HasMatch() { return true; } |
|
bool IsEq() const { return match == MatchKind::kEq; } |
|
}; |
|
|
|
// When we don't use CompareTo, `match` is not present. |
|
// This ensures that callers can't use it accidentally when it provides no |
|
// useful information. |
|
template <typename V> |
|
struct SearchResult<V, false> { |
|
SearchResult() {} |
|
explicit SearchResult(V v) : value(v) {} |
|
SearchResult(V v, MatchKind /*match*/) : value(v) {} |
|
|
|
V value; |
|
|
|
static constexpr bool HasMatch() { return false; } |
|
static constexpr bool IsEq() { return false; } |
|
}; |
|
|
|
// A node in the btree holding. The same node type is used for both internal |
|
// and leaf nodes in the btree, though the nodes are allocated in such a way |
|
// that the children array is only valid in internal nodes. |
|
template <typename Params> |
|
class btree_node { |
|
using is_key_compare_to = typename Params::is_key_compare_to; |
|
using field_type = typename Params::node_count_type; |
|
using allocator_type = typename Params::allocator_type; |
|
using slot_type = typename Params::slot_type; |
|
using original_key_compare = typename Params::original_key_compare; |
|
|
|
public: |
|
using params_type = Params; |
|
using key_type = typename Params::key_type; |
|
using value_type = typename Params::value_type; |
|
using pointer = typename Params::pointer; |
|
using const_pointer = typename Params::const_pointer; |
|
using reference = typename Params::reference; |
|
using const_reference = typename Params::const_reference; |
|
using key_compare = typename Params::key_compare; |
|
using size_type = typename Params::size_type; |
|
using difference_type = typename Params::difference_type; |
|
|
|
// Btree decides whether to use linear node search as follows: |
|
// - If the comparator expresses a preference, use that. |
|
// - If the key expresses a preference, use that. |
|
// - If the key is arithmetic and the comparator is std::less or |
|
// std::greater, choose linear. |
|
// - Otherwise, choose binary. |
|
// TODO(ezb): Might make sense to add condition(s) based on node-size. |
|
using use_linear_search = std::integral_constant< |
|
bool, has_linear_node_search_preference<original_key_compare>::value |
|
? prefers_linear_node_search<original_key_compare>::value |
|
: has_linear_node_search_preference<key_type>::value |
|
? prefers_linear_node_search<key_type>::value |
|
: std::is_arithmetic<key_type>::value && |
|
(std::is_same<std::less<key_type>, |
|
original_key_compare>::value || |
|
std::is_same<std::greater<key_type>, |
|
original_key_compare>::value)>; |
|
|
|
// This class is organized by absl::container_internal::Layout as if it had |
|
// the following structure: |
|
// // A pointer to the node's parent. |
|
// btree_node *parent; |
|
// |
|
// // When ABSL_BTREE_ENABLE_GENERATIONS is defined, we also have a |
|
// // generation integer in order to check that when iterators are |
|
// // used, they haven't been invalidated already. Only the generation on |
|
// // the root is used, but we have one on each node because whether a node |
|
// // is root or not can change. |
|
// uint32_t generation; |
|
// |
|
// // The position of the node in the node's parent. |
|
// field_type position; |
|
// // The index of the first populated value in `values`. |
|
// // TODO(ezb): right now, `start` is always 0. Update insertion/merge |
|
// // logic to allow for floating storage within nodes. |
|
// field_type start; |
|
// // The index after the last populated value in `values`. Currently, this |
|
// // is the same as the count of values. |
|
// field_type finish; |
|
// // The maximum number of values the node can hold. This is an integer in |
|
// // [1, kNodeSlots] for root leaf nodes, kNodeSlots for non-root leaf |
|
// // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal |
|
// // nodes (even though there are still kNodeSlots values in the node). |
|
// // TODO(ezb): make max_count use only 4 bits and record log2(capacity) |
|
// // to free extra bits for is_root, etc. |
|
// field_type max_count; |
|
// |
|
// // The array of values. The capacity is `max_count` for leaf nodes and |
|
// // kNodeSlots for internal nodes. Only the values in |
|
// // [start, finish) have been initialized and are valid. |
|
// slot_type values[max_count]; |
|
// |
|
// // The array of child pointers. The keys in children[i] are all less |
|
// // than key(i). The keys in children[i + 1] are all greater than key(i). |
|
// // There are 0 children for leaf nodes and kNodeSlots + 1 children for |
|
// // internal nodes. |
|
// btree_node *children[kNodeSlots + 1]; |
|
// |
|
// This class is only constructed by EmptyNodeType. Normally, pointers to the |
|
// layout above are allocated, cast to btree_node*, and de-allocated within |
|
// the btree implementation. |
|
~btree_node() = default; |
|
btree_node(btree_node const &) = delete; |
|
btree_node &operator=(btree_node const &) = delete; |
|
|
|
// Public for EmptyNodeType. |
|
constexpr static size_type Alignment() { |
|
static_assert(LeafLayout(1).Alignment() == InternalLayout().Alignment(), |
|
"Alignment of all nodes must be equal."); |
|
return InternalLayout().Alignment(); |
|
} |
|
|
|
protected: |
|
btree_node() = default; |
|
|
|
private: |
|
using layout_type = |
|
absl::container_internal::Layout<btree_node *, uint32_t, field_type, |
|
slot_type, btree_node *>; |
|
constexpr static size_type SizeWithNSlots(size_type n) { |
|
return layout_type( |
|
/*parent*/ 1, |
|
/*generation*/ params_type::kEnableGenerations ? 1 : 0, |
|
/*position, start, finish, max_count*/ 4, |
|
/*slots*/ n, |
|
/*children*/ 0) |
|
.AllocSize(); |
|
} |
|
// A lower bound for the overhead of fields other than slots in a leaf node. |
|
constexpr static size_type MinimumOverhead() { |
|
return SizeWithNSlots(1) - sizeof(slot_type); |
|
} |
|
|
|
// Compute how many values we can fit onto a leaf node taking into account |
|
// padding. |
|
constexpr static size_type NodeTargetSlots(const size_type begin, |
|
const size_type end) { |
|
return begin == end ? begin |
|
: SizeWithNSlots((begin + end) / 2 + 1) > |
|
params_type::kTargetNodeSize |
|
? NodeTargetSlots(begin, (begin + end) / 2) |
|
: NodeTargetSlots((begin + end) / 2 + 1, end); |
|
} |
|
|
|
constexpr static size_type kTargetNodeSize = params_type::kTargetNodeSize; |
|
constexpr static size_type kNodeTargetSlots = |
|
NodeTargetSlots(0, kTargetNodeSize); |
|
|
|
// We need a minimum of 3 slots per internal node in order to perform |
|
// splitting (1 value for the two nodes involved in the split and 1 value |
|
// propagated to the parent as the delimiter for the split). For performance |
|
// reasons, we don't allow 3 slots-per-node due to bad worst case occupancy of |
|
// 1/3 (for a node, not a b-tree). |
|
constexpr static size_type kMinNodeSlots = 4; |
|
|
|
constexpr static size_type kNodeSlots = |
|
kNodeTargetSlots >= kMinNodeSlots ? kNodeTargetSlots : kMinNodeSlots; |
|
|
|
// The node is internal (i.e. is not a leaf node) if and only if `max_count` |
|
// has this value. |
|
constexpr static field_type kInternalNodeMaxCount = 0; |
|
|
|
// Leaves can have less than kNodeSlots values. |
|
constexpr static layout_type LeafLayout( |
|
const size_type slot_count = kNodeSlots) { |
|
return layout_type( |
|
/*parent*/ 1, |
|
/*generation*/ params_type::kEnableGenerations ? 1 : 0, |
|
/*position, start, finish, max_count*/ 4, |
|
/*slots*/ slot_count, |
|
/*children*/ 0); |
|
} |
|
constexpr static layout_type InternalLayout() { |
|
return layout_type( |
|
/*parent*/ 1, |
|
/*generation*/ params_type::kEnableGenerations ? 1 : 0, |
|
/*position, start, finish, max_count*/ 4, |
|
/*slots*/ kNodeSlots, |
|
/*children*/ kNodeSlots + 1); |
|
} |
|
constexpr static size_type LeafSize(const size_type slot_count = kNodeSlots) { |
|
return LeafLayout(slot_count).AllocSize(); |
|
} |
|
constexpr static size_type InternalSize() { |
|
return InternalLayout().AllocSize(); |
|
} |
|
|
|
// N is the index of the type in the Layout definition. |
|
// ElementType<N> is the Nth type in the Layout definition. |
|
template <size_type N> |
|
inline typename layout_type::template ElementType<N> *GetField() { |
|
// We assert that we don't read from values that aren't there. |
|
assert(N < 4 || is_internal()); |
|
return InternalLayout().template Pointer<N>(reinterpret_cast<char *>(this)); |
|
} |
|
template <size_type N> |
|
inline const typename layout_type::template ElementType<N> *GetField() const { |
|
assert(N < 4 || is_internal()); |
|
return InternalLayout().template Pointer<N>( |
|
reinterpret_cast<const char *>(this)); |
|
} |
|
void set_parent(btree_node *p) { *GetField<0>() = p; } |
|
field_type &mutable_finish() { return GetField<2>()[2]; } |
|
slot_type *slot(size_type i) { return &GetField<3>()[i]; } |
|
slot_type *start_slot() { return slot(start()); } |
|
slot_type *finish_slot() { return slot(finish()); } |
|
const slot_type *slot(size_type i) const { return &GetField<3>()[i]; } |
|
void set_position(field_type v) { GetField<2>()[0] = v; } |
|
void set_start(field_type v) { GetField<2>()[1] = v; } |
|
void set_finish(field_type v) { GetField<2>()[2] = v; } |
|
// This method is only called by the node init methods. |
|
void set_max_count(field_type v) { GetField<2>()[3] = v; } |
|
|
|
public: |
|
// Whether this is a leaf node or not. This value doesn't change after the |
|
// node is created. |
|
bool is_leaf() const { return GetField<2>()[3] != kInternalNodeMaxCount; } |
|
// Whether this is an internal node or not. This value doesn't change after |
|
// the node is created. |
|
bool is_internal() const { return !is_leaf(); } |
|
|
|
// Getter for the position of this node in its parent. |
|
field_type position() const { return GetField<2>()[0]; } |
|
|
|
// Getter for the offset of the first value in the `values` array. |
|
field_type start() const { |
|
// TODO(ezb): when floating storage is implemented, return GetField<2>()[1]; |
|
assert(GetField<2>()[1] == 0); |
|
return 0; |
|
} |
|
|
|
// Getter for the offset after the last value in the `values` array. |
|
field_type finish() const { return GetField<2>()[2]; } |
|
|
|
// Getters for the number of values stored in this node. |
|
field_type count() const { |
|
assert(finish() >= start()); |
|
return finish() - start(); |
|
} |
|
field_type max_count() const { |
|
// Internal nodes have max_count==kInternalNodeMaxCount. |
|
// Leaf nodes have max_count in [1, kNodeSlots]. |
|
const field_type max_count = GetField<2>()[3]; |
|
return max_count == field_type{kInternalNodeMaxCount} |
|
? field_type{kNodeSlots} |
|
: max_count; |
|
} |
|
|
|
// Getter for the parent of this node. |
|
btree_node *parent() const { return *GetField<0>(); } |
|
// Getter for whether the node is the root of the tree. The parent of the |
|
// root of the tree is the leftmost node in the tree which is guaranteed to |
|
// be a leaf. |
|
bool is_root() const { return parent()->is_leaf(); } |
|
void make_root() { |
|
assert(parent()->is_root()); |
|
set_generation(parent()->generation()); |
|
set_parent(parent()->parent()); |
|
} |
|
|
|
// Gets the root node's generation integer, which is the one used by the tree. |
|
uint32_t *get_root_generation() const { |
|
assert(params_type::kEnableGenerations); |
|
const btree_node *curr = this; |
|
for (; !curr->is_root(); curr = curr->parent()) continue; |
|
return const_cast<uint32_t *>(&curr->GetField<1>()[0]); |
|
} |
|
|
|
// Returns the generation for iterator validation. |
|
uint32_t generation() const { |
|
return params_type::kEnableGenerations ? *get_root_generation() : 0; |
|
} |
|
// Updates generation. Should only be called on a root node or during node |
|
// initialization. |
|
void set_generation(uint32_t generation) { |
|
if (params_type::kEnableGenerations) GetField<1>()[0] = generation; |
|
} |
|
// Updates the generation. We do this whenever the node is mutated. |
|
void next_generation() { |
|
if (params_type::kEnableGenerations) ++*get_root_generation(); |
|
} |
|
|
|
// Getters for the key/value at position i in the node. |
|
const key_type &key(size_type i) const { return params_type::key(slot(i)); } |
|
reference value(size_type i) { return params_type::element(slot(i)); } |
|
const_reference value(size_type i) const { |
|
return params_type::element(slot(i)); |
|
} |
|
|
|
// Getters/setter for the child at position i in the node. |
|
btree_node *child(field_type i) const { return GetField<4>()[i]; } |
|
btree_node *start_child() const { return child(start()); } |
|
btree_node *&mutable_child(field_type i) { return GetField<4>()[i]; } |
|
void clear_child(field_type i) { |
|
absl::container_internal::SanitizerPoisonObject(&mutable_child(i)); |
|
} |
|
void set_child(field_type i, btree_node *c) { |
|
absl::container_internal::SanitizerUnpoisonObject(&mutable_child(i)); |
|
mutable_child(i) = c; |
|
c->set_position(i); |
|
} |
|
void init_child(field_type i, btree_node *c) { |
|
set_child(i, c); |
|
c->set_parent(this); |
|
} |
|
|
|
// Returns the position of the first value whose key is not less than k. |
|
template <typename K> |
|
SearchResult<size_type, is_key_compare_to::value> lower_bound( |
|
const K &k, const key_compare &comp) const { |
|
return use_linear_search::value ? linear_search(k, comp) |
|
: binary_search(k, comp); |
|
} |
|
// Returns the position of the first value whose key is greater than k. |
|
template <typename K> |
|
size_type upper_bound(const K &k, const key_compare &comp) const { |
|
auto upper_compare = upper_bound_adapter<key_compare>(comp); |
|
return use_linear_search::value ? linear_search(k, upper_compare).value |
|
: binary_search(k, upper_compare).value; |
|
} |
|
|
|
template <typename K, typename Compare> |
|
SearchResult<size_type, btree_is_key_compare_to<Compare, key_type>::value> |
|
linear_search(const K &k, const Compare &comp) const { |
|
return linear_search_impl(k, start(), finish(), comp, |
|
btree_is_key_compare_to<Compare, key_type>()); |
|
} |
|
|
|
template <typename K, typename Compare> |
|
SearchResult<size_type, btree_is_key_compare_to<Compare, key_type>::value> |
|
binary_search(const K &k, const Compare &comp) const { |
|
return binary_search_impl(k, start(), finish(), comp, |
|
btree_is_key_compare_to<Compare, key_type>()); |
|
} |
|
|
|
// Returns the position of the first value whose key is not less than k using |
|
// linear search performed using plain compare. |
|
template <typename K, typename Compare> |
|
SearchResult<size_type, false> linear_search_impl( |
|
const K &k, size_type s, const size_type e, const Compare &comp, |
|
std::false_type /* IsCompareTo */) const { |
|
while (s < e) { |
|
if (!comp(key(s), k)) { |
|
break; |
|
} |
|
++s; |
|
} |
|
return SearchResult<size_type, false>{s}; |
|
} |
|
|
|
// Returns the position of the first value whose key is not less than k using |
|
// linear search performed using compare-to. |
|
template <typename K, typename Compare> |
|
SearchResult<size_type, true> linear_search_impl( |
|
const K &k, size_type s, const size_type e, const Compare &comp, |
|
std::true_type /* IsCompareTo */) const { |
|
while (s < e) { |
|
const absl::weak_ordering c = comp(key(s), k); |
|
if (c == 0) { |
|
return {s, MatchKind::kEq}; |
|
} else if (c > 0) { |
|
break; |
|
} |
|
++s; |
|
} |
|
return {s, MatchKind::kNe}; |
|
} |
|
|
|
// Returns the position of the first value whose key is not less than k using |
|
// binary search performed using plain compare. |
|
template <typename K, typename Compare> |
|
SearchResult<size_type, false> binary_search_impl( |
|
const K &k, size_type s, size_type e, const Compare &comp, |
|
std::false_type /* IsCompareTo */) const { |
|
while (s != e) { |
|
const size_type mid = (s + e) >> 1; |
|
if (comp(key(mid), k)) { |
|
s = mid + 1; |
|
} else { |
|
e = mid; |
|
} |
|
} |
|
return SearchResult<size_type, false>{s}; |
|
} |
|
|
|
// Returns the position of the first value whose key is not less than k using |
|
// binary search performed using compare-to. |
|
template <typename K, typename CompareTo> |
|
SearchResult<size_type, true> binary_search_impl( |
|
const K &k, size_type s, size_type e, const CompareTo &comp, |
|
std::true_type /* IsCompareTo */) const { |
|
if (params_type::template can_have_multiple_equivalent_keys<K>()) { |
|
MatchKind exact_match = MatchKind::kNe; |
|
while (s != e) { |
|
const size_type mid = (s + e) >> 1; |
|
const absl::weak_ordering c = comp(key(mid), k); |
|
if (c < 0) { |
|
s = mid + 1; |
|
} else { |
|
e = mid; |
|
if (c == 0) { |
|
// Need to return the first value whose key is not less than k, |
|
// which requires continuing the binary search if there could be |
|
// multiple equivalent keys. |
|
exact_match = MatchKind::kEq; |
|
} |
|
} |
|
} |
|
return {s, exact_match}; |
|
} else { // Can't have multiple equivalent keys. |
|
while (s != e) { |
|
const size_type mid = (s + e) >> 1; |
|
const absl::weak_ordering c = comp(key(mid), k); |
|
if (c < 0) { |
|
s = mid + 1; |
|
} else if (c > 0) { |
|
e = mid; |
|
} else { |
|
return {mid, MatchKind::kEq}; |
|
} |
|
} |
|
return {s, MatchKind::kNe}; |
|
} |
|
} |
|
|
|
// Emplaces a value at position i, shifting all existing values and |
|
// children at positions >= i to the right by 1. |
|
template <typename... Args> |
|
void emplace_value(field_type i, allocator_type *alloc, Args &&...args); |
|
|
|
// Removes the values at positions [i, i + to_erase), shifting all existing |
|
// values and children after that range to the left by to_erase. Clears all |
|
// children between [i, i + to_erase). |
|
void remove_values(field_type i, field_type to_erase, allocator_type *alloc); |
|
|
|
// Rebalances a node with its right sibling. |
|
void rebalance_right_to_left(field_type to_move, btree_node *right, |
|
allocator_type *alloc); |
|
void rebalance_left_to_right(field_type to_move, btree_node *right, |
|
allocator_type *alloc); |
|
|
|
// Splits a node, moving a portion of the node's values to its right sibling. |
|
void split(int insert_position, btree_node *dest, allocator_type *alloc); |
|
|
|
// Merges a node with its right sibling, moving all of the values and the |
|
// delimiting key in the parent node onto itself, and deleting the src node. |
|
void merge(btree_node *src, allocator_type *alloc); |
|
|
|
// Node allocation/deletion routines. |
|
void init_leaf(field_type max_count, btree_node *parent) { |
|
set_generation(0); |
|
set_parent(parent); |
|
set_position(0); |
|
set_start(0); |
|
set_finish(0); |
|
set_max_count(max_count); |
|
absl::container_internal::SanitizerPoisonMemoryRegion( |
|
start_slot(), max_count * sizeof(slot_type)); |
|
} |
|
void init_internal(btree_node *parent) { |
|
init_leaf(kNodeSlots, parent); |
|
// Set `max_count` to a sentinel value to indicate that this node is |
|
// internal. |
|
set_max_count(kInternalNodeMaxCount); |
|
absl::container_internal::SanitizerPoisonMemoryRegion( |
|
&mutable_child(start()), (kNodeSlots + 1) * sizeof(btree_node *)); |
|
} |
|
|
|
static void deallocate(const size_type size, btree_node *node, |
|
allocator_type *alloc) { |
|
absl::container_internal::SanitizerUnpoisonMemoryRegion(node, size); |
|
absl::container_internal::Deallocate<Alignment()>(alloc, node, size); |
|
} |
|
|
|
// Deletes a node and all of its children. |
|
static void clear_and_delete(btree_node *node, allocator_type *alloc); |
|
|
|
private: |
|
template <typename... Args> |
|
void value_init(const field_type i, allocator_type *alloc, Args &&...args) { |
|
next_generation(); |
|
absl::container_internal::SanitizerUnpoisonObject(slot(i)); |
|
params_type::construct(alloc, slot(i), std::forward<Args>(args)...); |
|
} |
|
void value_destroy(const field_type i, allocator_type *alloc) { |
|
next_generation(); |
|
params_type::destroy(alloc, slot(i)); |
|
absl::container_internal::SanitizerPoisonObject(slot(i)); |
|
} |
|
void value_destroy_n(const field_type i, const field_type n, |
|
allocator_type *alloc) { |
|
next_generation(); |
|
for (slot_type *s = slot(i), *end = slot(i + n); s != end; ++s) { |
|
params_type::destroy(alloc, s); |
|
absl::container_internal::SanitizerPoisonObject(s); |
|
} |
|
} |
|
|
|
static void transfer(slot_type *dest, slot_type *src, allocator_type *alloc) { |
|
absl::container_internal::SanitizerUnpoisonObject(dest); |
|
params_type::transfer(alloc, dest, src); |
|
absl::container_internal::SanitizerPoisonObject(src); |
|
} |
|
|
|
// Transfers value from slot `src_i` in `src_node` to slot `dest_i` in `this`. |
|
void transfer(const size_type dest_i, const size_type src_i, |
|
btree_node *src_node, allocator_type *alloc) { |
|
next_generation(); |
|
transfer(slot(dest_i), src_node->slot(src_i), alloc); |
|
} |
|
|
|
// Transfers `n` values starting at value `src_i` in `src_node` into the |
|
// values starting at value `dest_i` in `this`. |
|
void transfer_n(const size_type n, const size_type dest_i, |
|
const size_type src_i, btree_node *src_node, |
|
allocator_type *alloc) { |
|
next_generation(); |
|
for (slot_type *src = src_node->slot(src_i), *end = src + n, |
|
*dest = slot(dest_i); |
|
src != end; ++src, ++dest) { |
|
transfer(dest, src, alloc); |
|
} |
|
} |
|
|
|
// Same as above, except that we start at the end and work our way to the |
|
// beginning. |
|
void transfer_n_backward(const size_type n, const size_type dest_i, |
|
const size_type src_i, btree_node *src_node, |
|
allocator_type *alloc) { |
|
next_generation(); |
|
for (slot_type *src = src_node->slot(src_i + n), *end = src - n, |
|
*dest = slot(dest_i + n); |
|
src != end; --src, --dest) { |
|
// If we modified the loop index calculations above to avoid the -1s here, |
|
// it would result in UB in the computation of `end` (and possibly `src` |
|
// as well, if n == 0), since slot() is effectively an array index and it |
|
// is UB to compute the address of any out-of-bounds array element except |
|
// for one-past-the-end. |
|
transfer(dest - 1, src - 1, alloc); |
|
} |
|
} |
|
|
|
template <typename P> |
|
friend class btree; |
|
template <typename N, typename R, typename P> |
|
friend class btree_iterator; |
|
friend class BtreeNodePeer; |
|
friend struct btree_access; |
|
}; |
|
|
|
template <typename Node, typename Reference, typename Pointer> |
|
class btree_iterator { |
|
using field_type = typename Node::field_type; |
|
using key_type = typename Node::key_type; |
|
using size_type = typename Node::size_type; |
|
using params_type = typename Node::params_type; |
|
using is_map_container = typename params_type::is_map_container; |
|
|
|
using node_type = Node; |
|
using normal_node = typename std::remove_const<Node>::type; |
|
using const_node = const Node; |
|
using normal_pointer = typename params_type::pointer; |
|
using normal_reference = typename params_type::reference; |
|
using const_pointer = typename params_type::const_pointer; |
|
using const_reference = typename params_type::const_reference; |
|
using slot_type = typename params_type::slot_type; |
|
|
|
using iterator = |
|
btree_iterator<normal_node, normal_reference, normal_pointer>; |
|
using const_iterator = |
|
btree_iterator<const_node, const_reference, const_pointer>; |
|
|
|
public: |
|
// These aliases are public for std::iterator_traits. |
|
using difference_type = typename Node::difference_type; |
|
using value_type = typename params_type::value_type; |
|
using pointer = Pointer; |
|
using reference = Reference; |
|
using iterator_category = std::bidirectional_iterator_tag; |
|
|
|
btree_iterator() : btree_iterator(nullptr, -1) {} |
|
explicit btree_iterator(Node *n) : btree_iterator(n, n->start()) {} |
|
btree_iterator(Node *n, int p) : node_(n), position_(p) { |
|
#ifdef ABSL_BTREE_ENABLE_GENERATIONS |
|
// Use `~uint32_t{}` as a sentinel value for iterator generations so it |
|
// doesn't match the initial value for the actual generation. |
|
generation_ = n != nullptr ? n->generation() : ~uint32_t{}; |
|
#endif |
|
} |
|
|
|
// NOTE: this SFINAE allows for implicit conversions from iterator to |
|
// const_iterator, but it specifically avoids hiding the copy constructor so |
|
// that the trivial one will be used when possible. |
|
template <typename N, typename R, typename P, |
|
absl::enable_if_t< |
|
std::is_same<btree_iterator<N, R, P>, iterator>::value && |
|
std::is_same<btree_iterator, const_iterator>::value, |
|
int> = 0> |
|
btree_iterator(const btree_iterator<N, R, P> other) // NOLINT |
|
: node_(other.node_), position_(other.position_) { |
|
#ifdef ABSL_BTREE_ENABLE_GENERATIONS |
|
generation_ = other.generation_; |
|
#endif |
|
} |
|
|
|
bool operator==(const iterator &other) const { |
|
return node_ == other.node_ && position_ == other.position_; |
|
} |
|
bool operator==(const const_iterator &other) const { |
|
return node_ == other.node_ && position_ == other.position_; |
|
} |
|
bool operator!=(const iterator &other) const { |
|
return node_ != other.node_ || position_ != other.position_; |
|
} |
|
bool operator!=(const const_iterator &other) const { |
|
return node_ != other.node_ || position_ != other.position_; |
|
} |
|
|
|
// Returns n such that n calls to ++other yields *this. |
|
// Precondition: n exists. |
|
difference_type operator-(const_iterator other) const { |
|
if (node_ == other.node_) { |
|
if (node_->is_leaf()) return position_ - other.position_; |
|
if (position_ == other.position_) return 0; |
|
} |
|
return distance_slow(other); |
|
} |
|
|
|
// Accessors for the key/value the iterator is pointing at. |
|
reference operator*() const { |
|
ABSL_HARDENING_ASSERT(node_ != nullptr); |
|
ABSL_HARDENING_ASSERT(node_->start() <= position_); |
|
ABSL_HARDENING_ASSERT(node_->finish() > position_); |
|
assert_valid_generation(); |
|
return node_->value(static_cast<field_type>(position_)); |
|
} |
|
pointer operator->() const { return &operator*(); } |
|
|
|
btree_iterator &operator++() { |
|
increment(); |
|
return *this; |
|
} |
|
btree_iterator &operator--() { |
|
decrement(); |
|
return *this; |
|
} |
|
btree_iterator operator++(int) { |
|
btree_iterator tmp = *this; |
|
++*this; |
|
return tmp; |
|
} |
|
btree_iterator operator--(int) { |
|
btree_iterator tmp = *this; |
|
--*this; |
|
return tmp; |
|
} |
|
|
|
private: |
|
friend iterator; |
|
friend const_iterator; |
|
template <typename Params> |
|
friend class btree; |
|
template <typename Tree> |
|
friend class btree_container; |
|
template <typename Tree> |
|
friend class btree_set_container; |
|
template <typename Tree> |
|
friend class btree_map_container; |
|
template <typename Tree> |
|
friend class btree_multiset_container; |
|
template <typename TreeType, typename CheckerType> |
|
friend class base_checker; |
|
friend struct btree_access; |
|
|
|
// This SFINAE allows explicit conversions from const_iterator to |
|
// iterator, but also avoids hiding the copy constructor. |
|
// NOTE: the const_cast is safe because this constructor is only called by |
|
// non-const methods and the container owns the nodes. |
|
template <typename N, typename R, typename P, |
|
absl::enable_if_t< |
|
std::is_same<btree_iterator<N, R, P>, const_iterator>::value && |
|
std::is_same<btree_iterator, iterator>::value, |
|
int> = 0> |
|
explicit btree_iterator(const btree_iterator<N, R, P> other) |
|
: node_(const_cast<node_type *>(other.node_)), |
|
position_(other.position_) { |
|
#ifdef ABSL_BTREE_ENABLE_GENERATIONS |
|
generation_ = other.generation_; |
|
#endif |
|
} |
|
|
|
// Returns n such that n calls to ++other yields *this. |
|
// Precondition: n exists && (this->node_ != other.node_ || |
|
// !this->node_->is_leaf() || this->position_ != other.position_). |
|
difference_type distance_slow(const_iterator other) const; |
|
|
|
// Increment/decrement the iterator. |
|
void increment() { |
|
assert_valid_generation(); |
|
if (node_->is_leaf() && ++position_ < node_->finish()) { |
|
return; |
|
} |
|
increment_slow(); |
|
} |
|
void increment_slow(); |
|
|
|
void decrement() { |
|
assert_valid_generation(); |
|
if (node_->is_leaf() && --position_ >= node_->start()) { |
|
return; |
|
} |
|
decrement_slow(); |
|
} |
|
void decrement_slow(); |
|
|
|
// Updates the generation. For use internally right before we return an |
|
// iterator to the user. |
|
void update_generation() { |
|
#ifdef ABSL_BTREE_ENABLE_GENERATIONS |
|
if (node_ != nullptr) generation_ = node_->generation(); |
|
#endif |
|
} |
|
|
|
const key_type &key() const { |
|
return node_->key(static_cast<size_type>(position_)); |
|
} |
|
decltype(std::declval<Node *>()->slot(0)) slot() { |
|
return node_->slot(static_cast<size_type>(position_)); |
|
} |
|
|
|
void assert_valid_generation() const { |
|
#ifdef ABSL_BTREE_ENABLE_GENERATIONS |
|
if (node_ != nullptr && node_->generation() != generation_) { |
|
ABSL_INTERNAL_LOG( |
|
FATAL, |
|
"Attempting to use an invalidated iterator. The corresponding b-tree " |
|
"container has been mutated since this iterator was constructed."); |
|
} |
|
#endif |
|
} |
|
|
|
// The node in the tree the iterator is pointing at. |
|
Node *node_; |
|
// The position within the node of the tree the iterator is pointing at. |
|
// NOTE: this is an int rather than a field_type because iterators can point |
|
// to invalid positions (such as -1) in certain circumstances. |
|
int position_; |
|
#ifdef ABSL_BTREE_ENABLE_GENERATIONS |
|
// Used to check that the iterator hasn't been invalidated. |
|
uint32_t generation_; |
|
#endif |
|
}; |
|
|
|
template <typename Params> |
|
class btree { |
|
using node_type = btree_node<Params>; |
|
using is_key_compare_to = typename Params::is_key_compare_to; |
|
using field_type = typename node_type::field_type; |
|
|
|
// We use a static empty node for the root/leftmost/rightmost of empty btrees |
|
// in order to avoid branching in begin()/end(). |
|
struct alignas(node_type::Alignment()) EmptyNodeType : node_type { |
|
using field_type = typename node_type::field_type; |
|
node_type *parent; |
|
#ifdef ABSL_BTREE_ENABLE_GENERATIONS |
|
uint32_t generation = 0; |
|
#endif |
|
field_type position = 0; |
|
field_type start = 0; |
|
field_type finish = 0; |
|
// max_count must be != kInternalNodeMaxCount (so that this node is regarded |
|
// as a leaf node). max_count() is never called when the tree is empty. |
|
field_type max_count = node_type::kInternalNodeMaxCount + 1; |
|
|
|
#ifdef _MSC_VER |
|
// MSVC has constexpr code generations bugs here. |
|
EmptyNodeType() : parent(this) {} |
|
#else |
|
explicit constexpr EmptyNodeType(node_type *p) : parent(p) {} |
|
#endif |
|
}; |
|
|
|
static node_type *EmptyNode() { |
|
#ifdef _MSC_VER |
|
static EmptyNodeType *empty_node = new EmptyNodeType; |
|
// This assert fails on some other construction methods. |
|
assert(empty_node->parent == empty_node); |
|
return empty_node; |
|
#else |
|
static constexpr EmptyNodeType empty_node( |
|
const_cast<EmptyNodeType *>(&empty_node)); |
|
return const_cast<EmptyNodeType *>(&empty_node); |
|
#endif |
|
} |
|
|
|
enum : uint32_t { |
|
kNodeSlots = node_type::kNodeSlots, |
|
kMinNodeValues = kNodeSlots / 2, |
|
}; |
|
|
|
struct node_stats { |
|
using size_type = typename Params::size_type; |
|
|
|
node_stats(size_type l, size_type i) : leaf_nodes(l), internal_nodes(i) {} |
|
|
|
node_stats &operator+=(const node_stats &other) { |
|
leaf_nodes += other.leaf_nodes; |
|
internal_nodes += other.internal_nodes; |
|
return *this; |
|
} |
|
|
|
size_type leaf_nodes; |
|
size_type internal_nodes; |
|
}; |
|
|
|
public: |
|
using key_type = typename Params::key_type; |
|
using value_type = typename Params::value_type; |
|
using size_type = typename Params::size_type; |
|
using difference_type = typename Params::difference_type; |
|
using key_compare = typename Params::key_compare; |
|
using original_key_compare = typename Params::original_key_compare; |
|
using value_compare = typename Params::value_compare; |
|
using allocator_type = typename Params::allocator_type; |
|
using reference = typename Params::reference; |
|
using const_reference = typename Params::const_reference; |
|
using pointer = typename Params::pointer; |
|
using const_pointer = typename Params::const_pointer; |
|
using iterator = |
|
typename btree_iterator<node_type, reference, pointer>::iterator; |
|
using const_iterator = typename iterator::const_iterator; |
|
using reverse_iterator = std::reverse_iterator<iterator>; |
|
using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
|
using node_handle_type = node_handle<Params, Params, allocator_type>; |
|
|
|
// Internal types made public for use by btree_container types. |
|
using params_type = Params; |
|
using slot_type = typename Params::slot_type; |
|
|
|
private: |
|
// Copies or moves (depending on the template parameter) the values in |
|
// other into this btree in their order in other. This btree must be empty |
|
// before this method is called. This method is used in copy construction, |
|
// copy assignment, and move assignment. |
|
template <typename Btree> |
|
void copy_or_move_values_in_order(Btree &other); |
|
|
|
// Validates that various assumptions/requirements are true at compile time. |
|
constexpr static bool static_assert_validation(); |
|
|
|
public: |
|
btree(const key_compare &comp, const allocator_type &alloc) |
|
: root_(EmptyNode()), rightmost_(comp, alloc, EmptyNode()), size_(0) {} |
|
|
|
btree(const btree &other) : btree(other, other.allocator()) {} |
|
btree(const btree &other, const allocator_type &alloc) |
|
: btree(other.key_comp(), alloc) { |
|
copy_or_move_values_in_order(other); |
|
} |
|
btree(btree &&other) noexcept |
|
: root_(absl::exchange(other.root_, EmptyNode())), |
|
rightmost_(std::move(other.rightmost_)), |
|
size_(absl::exchange(other.size_, 0u)) { |
|
other.mutable_rightmost() = EmptyNode(); |
|
} |
|
btree(btree &&other, const allocator_type &alloc) |
|
: btree(other.key_comp(), alloc) { |
|
if (alloc == other.allocator()) { |
|
swap(other); |
|
} else { |
|
// Move values from `other` one at a time when allocators are different. |
|
copy_or_move_values_in_order(other); |
|
} |
|
} |
|
|
|
~btree() { |
|
// Put static_asserts in destructor to avoid triggering them before the type |
|
// is complete. |
|
static_assert(static_assert_validation(), "This call must be elided."); |
|
clear(); |
|
} |
|
|
|
// Assign the contents of other to *this. |
|
btree &operator=(const btree &other); |
|
btree &operator=(btree &&other) noexcept; |
|
|
|
iterator begin() { return iterator(leftmost()); } |
|
const_iterator begin() const { return const_iterator(leftmost()); } |
|
iterator end() { return iterator(rightmost(), rightmost()->finish()); } |
|
const_iterator end() const { |
|
return const_iterator(rightmost(), rightmost()->finish()); |
|
} |
|
reverse_iterator rbegin() { return reverse_iterator(end()); } |
|
const_reverse_iterator rbegin() const { |
|
return const_reverse_iterator(end()); |
|
} |
|
reverse_iterator rend() { return reverse_iterator(begin()); } |
|
const_reverse_iterator rend() const { |
|
return const_reverse_iterator(begin()); |
|
} |
|
|
|
// Finds the first element whose key is not less than `key`. |
|
template <typename K> |
|
iterator lower_bound(const K &key) { |
|
return internal_end(internal_lower_bound(key).value); |
|
} |
|
template <typename K> |
|
const_iterator lower_bound(const K &key) const { |
|
return internal_end(internal_lower_bound(key).value); |
|
} |
|
|
|
// Finds the first element whose key is not less than `key` and also returns |
|
// whether that element is equal to `key`. |
|
template <typename K> |
|
std::pair<iterator, bool> lower_bound_equal(const K &key) const; |
|
|
|
// Finds the first element whose key is greater than `key`. |
|
template <typename K> |
|
iterator upper_bound(const K &key) { |
|
return internal_end(internal_upper_bound(key)); |
|
} |
|
template <typename K> |
|
const_iterator upper_bound(const K &key) const { |
|
return internal_end(internal_upper_bound(key)); |
|
} |
|
|
|
// Finds the range of values which compare equal to key. The first member of |
|
// the returned pair is equal to lower_bound(key). The second member of the |
|
// pair is equal to upper_bound(key). |
|
template <typename K> |
|
std::pair<iterator, iterator> equal_range(const K &key); |
|
template <typename K> |
|
std::pair<const_iterator, const_iterator> equal_range(const K &key) const { |
|
return const_cast<btree *>(this)->equal_range(key); |
|
} |
|
|
|
// Inserts a value into the btree only if it does not already exist. The |
|
// boolean return value indicates whether insertion succeeded or failed. |
|
// Requirement: if `key` already exists in the btree, does not consume `args`. |
|
// Requirement: `key` is never referenced after consuming `args`. |
|
template <typename K, typename... Args> |
|
std::pair<iterator, bool> insert_unique(const K &key, Args &&...args); |
|
|
|
// Inserts with hint. Checks to see if the value should be placed immediately |
|
// before `position` in the tree. If so, then the insertion will take |
|
// amortized constant time. If not, the insertion will take amortized |
|
// logarithmic time as if a call to insert_unique() were made. |
|
// Requirement: if `key` already exists in the btree, does not consume `args`. |
|
// Requirement: `key` is never referenced after consuming `args`. |
|
template <typename K, typename... Args> |
|
std::pair<iterator, bool> insert_hint_unique(iterator position, const K &key, |
|
Args &&...args); |
|
|
|
// Insert a range of values into the btree. |
|
// Note: the first overload avoids constructing a value_type if the key |
|
// already exists in the btree. |
|
template <typename InputIterator, |
|
typename = decltype(std::declval<const key_compare &>()( |
|
params_type::key(*std::declval<InputIterator>()), |
|
std::declval<const key_type &>()))> |
|
void insert_iterator_unique(InputIterator b, InputIterator e, int); |
|
// We need the second overload for cases in which we need to construct a |
|
// value_type in order to compare it with the keys already in the btree. |
|
template <typename InputIterator> |
|
void insert_iterator_unique(InputIterator b, InputIterator e, char); |
|
|
|
// Inserts a value into the btree. |
|
template <typename ValueType> |
|
iterator insert_multi(const key_type &key, ValueType &&v); |
|
|
|
// Inserts a value into the btree. |
|
template <typename ValueType> |
|
iterator insert_multi(ValueType &&v) { |
|
return insert_multi(params_type::key(v), std::forward<ValueType>(v)); |
|
} |
|
|
|
// Insert with hint. Check to see if the value should be placed immediately |
|
// before position in the tree. If it does, then the insertion will take |
|
// amortized constant time. If not, the insertion will take amortized |
|
// logarithmic time as if a call to insert_multi(v) were made. |
|
template <typename ValueType> |
|
iterator insert_hint_multi(iterator position, ValueType &&v); |
|
|
|
// Insert a range of values into the btree. |
|
template <typename InputIterator> |
|
void insert_iterator_multi(InputIterator b, InputIterator e); |
|
|
|
// Erase the specified iterator from the btree. The iterator must be valid |
|
// (i.e. not equal to end()). Return an iterator pointing to the node after |
|
// the one that was erased (or end() if none exists). |
|
// Requirement: does not read the value at `*iter`. |
|
iterator erase(iterator iter); |
|
|
|
// Erases range. Returns the number of keys erased and an iterator pointing |
|
// to the element after the last erased element. |
|
std::pair<size_type, iterator> erase_range(iterator begin, iterator end); |
|
|
|
// Finds an element with key equivalent to `key` or returns `end()` if `key` |
|
// is not present. |
|
template <typename K> |
|
iterator find(const K &key) { |
|
return internal_end(internal_find(key)); |
|
} |
|
template <typename K> |
|
const_iterator find(const K &key) const { |
|
return internal_end(internal_find(key)); |
|
} |
|
|
|
// Clear the btree, deleting all of the values it contains. |
|
void clear(); |
|
|
|
// Swaps the contents of `this` and `other`. |
|
void swap(btree &other); |
|
|
|
const key_compare &key_comp() const noexcept { |
|
return rightmost_.template get<0>(); |
|
} |
|
template <typename K1, typename K2> |
|
bool compare_keys(const K1 &a, const K2 &b) const { |
|
return compare_internal::compare_result_as_less_than(key_comp()(a, b)); |
|
} |
|
|
|
value_compare value_comp() const { |
|
return value_compare(original_key_compare(key_comp())); |
|
} |
|
|
|
// Verifies the structure of the btree. |
|
void verify() const; |
|
|
|
// Size routines. |
|
size_type size() const { return size_; } |
|
size_type max_size() const { return (std::numeric_limits<size_type>::max)(); } |
|
bool empty() const { return size_ == 0; } |
|
|
|
// The height of the btree. An empty tree will have height 0. |
|
size_type height() const { |
|
size_type h = 0; |
|
if (!empty()) { |
|
// Count the length of the chain from the leftmost node up to the |
|
// root. We actually count from the root back around to the level below |
|
// the root, but the calculation is the same because of the circularity |
|
// of that traversal. |
|
const node_type *n = root(); |
|
do { |
|
++h; |
|
n = n->parent(); |
|
} while (n != root()); |
|
} |
|
return h; |
|
} |
|
|
|
// The number of internal, leaf and total nodes used by the btree. |
|
size_type leaf_nodes() const { return internal_stats(root()).leaf_nodes; } |
|
size_type internal_nodes() const { |
|
return internal_stats(root()).internal_nodes; |
|
} |
|
size_type nodes() const { |
|
node_stats stats = internal_stats(root()); |
|
return stats.leaf_nodes + stats.internal_nodes; |
|
} |
|
|
|
// The total number of bytes used by the btree. |
|
// TODO(b/169338300): update to support node_btree_*. |
|
size_type bytes_used() const { |
|
node_stats stats = internal_stats(root()); |
|
if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) { |
|
return sizeof(*this) + node_type::LeafSize(root()->max_count()); |
|
} else { |
|
return sizeof(*this) + stats.leaf_nodes * node_type::LeafSize() + |
|
stats.internal_nodes * node_type::InternalSize(); |
|
} |
|
} |
|
|
|
// The average number of bytes used per value stored in the btree assuming |
|
// random insertion order. |
|
static double average_bytes_per_value() { |
|
// The expected number of values per node with random insertion order is the |
|
// average of the maximum and minimum numbers of values per node. |
|
const double expected_values_per_node = (kNodeSlots + kMinNodeValues) / 2.0; |
|
return node_type::LeafSize() / expected_values_per_node; |
|
} |
|
|
|
// The fullness of the btree. Computed as the number of elements in the btree |
|
// divided by the maximum number of elements a tree with the current number |
|
// of nodes could hold. A value of 1 indicates perfect space |
|
// utilization. Smaller values indicate space wastage. |
|
// Returns 0 for empty trees. |
|
double fullness() const { |
|
if (empty()) return 0.0; |
|
return static_cast<double>(size()) / (nodes() * kNodeSlots); |
|
} |
|
// The overhead of the btree structure in bytes per node. Computed as the |
|
// total number of bytes used by the btree minus the number of bytes used for |
|
// storing elements divided by the number of elements. |
|
// Returns 0 for empty trees. |
|
double overhead() const { |
|
if (empty()) return 0.0; |
|
return (bytes_used() - size() * sizeof(value_type)) / |
|
static_cast<double>(size()); |
|
} |
|
|
|
// The allocator used by the btree. |
|
allocator_type get_allocator() const { return allocator(); } |
|
|
|
private: |
|
friend struct btree_access; |
|
|
|
// Internal accessor routines. |
|
node_type *root() { return root_; } |
|
const node_type *root() const { return root_; } |
|
node_type *&mutable_root() noexcept { return root_; } |
|
node_type *rightmost() { return rightmost_.template get<2>(); } |
|
const node_type *rightmost() const { return rightmost_.template get<2>(); } |
|
node_type *&mutable_rightmost() noexcept { |
|
return rightmost_.template get<2>(); |
|
} |
|
key_compare *mutable_key_comp() noexcept { |
|
return &rightmost_.template get<0>(); |
|
} |
|
|
|
// The leftmost node is stored as the parent of the root node. |
|
node_type *leftmost() { return root()->parent(); } |
|
const node_type *leftmost() const { return root()->parent(); } |
|
|
|
// Allocator routines. |
|
allocator_type *mutable_allocator() noexcept { |
|
return &rightmost_.template get<1>(); |
|
} |
|
const allocator_type &allocator() const noexcept { |
|
return rightmost_.template get<1>(); |
|
} |
|
|
|
// Allocates a correctly aligned node of at least size bytes using the |
|
// allocator. |
|
node_type *allocate(size_type size) { |
|
return reinterpret_cast<node_type *>( |
|
absl::container_internal::Allocate<node_type::Alignment()>( |
|
mutable_allocator(), size)); |
|
} |
|
|
|
// Node creation/deletion routines. |
|
node_type *new_internal_node(node_type *parent) { |
|
node_type *n = allocate(node_type::InternalSize()); |
|
n->init_internal(parent); |
|
return n; |
|
} |
|
node_type *new_leaf_node(node_type *parent) { |
|
node_type *n = allocate(node_type::LeafSize()); |
|
n->init_leaf(kNodeSlots, parent); |
|
return n; |
|
} |
|
node_type *new_leaf_root_node(field_type max_count) { |
|
node_type *n = allocate(node_type::LeafSize(max_count)); |
|
n->init_leaf(max_count, /*parent=*/n); |
|
return n; |
|
} |
|
|
|
// Deletion helper routines. |
|
iterator rebalance_after_delete(iterator iter); |
|
|
|
// Rebalances or splits the node iter points to. |
|
void rebalance_or_split(iterator *iter); |
|
|
|
// Merges the values of left, right and the delimiting key on their parent |
|
// onto left, removing the delimiting key and deleting right. |
|
void merge_nodes(node_type *left, node_type *right); |
|
|
|
// Tries to merge node with its left or right sibling, and failing that, |
|
// rebalance with its left or right sibling. Returns true if a merge |
|
// occurred, at which point it is no longer valid to access node. Returns |
|
// false if no merging took place. |
|
bool try_merge_or_rebalance(iterator *iter); |
|
|
|
// Tries to shrink the height of the tree by 1. |
|
void try_shrink(); |
|
|
|
iterator internal_end(iterator iter) { |
|
return iter.node_ != nullptr ? iter : end(); |
|
} |
|
const_iterator internal_end(const_iterator iter) const { |
|
return iter.node_ != nullptr ? iter : end(); |
|
} |
|
|
|
// Emplaces a value into the btree immediately before iter. Requires that |
|
// key(v) <= iter.key() and (--iter).key() <= key(v). |
|
template <typename... Args> |
|
iterator internal_emplace(iterator iter, Args &&...args); |
|
|
|
// Returns an iterator pointing to the first value >= the value "iter" is |
|
// pointing at. Note that "iter" might be pointing to an invalid location such |
|
// as iter.position_ == iter.node_->finish(). This routine simply moves iter |
|
// up in the tree to a valid location. Requires: iter.node_ is non-null. |
|
template <typename IterType> |
|
static IterType internal_last(IterType iter); |
|
|
|
// Returns an iterator pointing to the leaf position at which key would |
|
// reside in the tree, unless there is an exact match - in which case, the |
|
// result may not be on a leaf. When there's a three-way comparator, we can |
|
// return whether there was an exact match. This allows the caller to avoid a |
|
// subsequent comparison to determine if an exact match was made, which is |
|
// important for keys with expensive comparison, such as strings. |
|
template <typename K> |
|
SearchResult<iterator, is_key_compare_to::value> internal_locate( |
|
const K &key) const; |
|
|
|
// Internal routine which implements lower_bound(). |
|
template <typename K> |
|
SearchResult<iterator, is_key_compare_to::value> internal_lower_bound( |
|
const K &key) const; |
|
|
|
// Internal routine which implements upper_bound(). |
|
template <typename K> |
|
iterator internal_upper_bound(const K &key) const; |
|
|
|
// Internal routine which implements find(). |
|
template <typename K> |
|
iterator internal_find(const K &key) const; |
|
|
|
// Verifies the tree structure of node. |
|
size_type internal_verify(const node_type *node, const key_type *lo, |
|
const key_type *hi) const; |
|
|
|
node_stats internal_stats(const node_type *node) const { |
|
// The root can be a static empty node. |
|
if (node == nullptr || (node == root() && empty())) { |
|
return node_stats(0, 0); |
|
} |
|
if (node->is_leaf()) { |
|
return node_stats(1, 0); |
|
} |
|
node_stats res(0, 1); |
|
for (int i = node->start(); i <= node->finish(); ++i) { |
|
res += internal_stats(node->child(i)); |
|
} |
|
return res; |
|
} |
|
|
|
node_type *root_; |
|
|
|
// A pointer to the rightmost node. Note that the leftmost node is stored as |
|
// the root's parent. We use compressed tuple in order to save space because |
|
// key_compare and allocator_type are usually empty. |
|
absl::container_internal::CompressedTuple<key_compare, allocator_type, |
|
node_type *> |
|
rightmost_; |
|
|
|
// Number of values. |
|
size_type size_; |
|
}; |
|
|
|
//// |
|
// btree_node methods |
|
template <typename P> |
|
template <typename... Args> |
|
inline void btree_node<P>::emplace_value(const field_type i, |
|
allocator_type *alloc, |
|
Args &&...args) { |
|
assert(i >= start()); |
|
assert(i <= finish()); |
|
// Shift old values to create space for new value and then construct it in |
|
// place. |
|
if (i < finish()) { |
|
transfer_n_backward(finish() - i, /*dest_i=*/i + 1, /*src_i=*/i, this, |
|
alloc); |
|
} |
|
value_init(static_cast<field_type>(i), alloc, std::forward<Args>(args)...); |
|
set_finish(finish() + 1); |
|
|
|
if (is_internal() && finish() > i + 1) { |
|
for (field_type j = finish(); j > i + 1; --j) { |
|
set_child(j, child(j - 1)); |
|
} |
|
clear_child(i + 1); |
|
} |
|
} |
|
|
|
template <typename P> |
|
inline void btree_node<P>::remove_values(const field_type i, |
|
const field_type to_erase, |
|
allocator_type *alloc) { |
|
// Transfer values after the removed range into their new places. |
|
value_destroy_n(i, to_erase, alloc); |
|
const field_type orig_finish = finish(); |
|
const field_type src_i = i + to_erase; |
|
transfer_n(orig_finish - src_i, i, src_i, this, alloc); |
|
|
|
if (is_internal()) { |
|
// Delete all children between begin and end. |
|
for (field_type j = 0; j < to_erase; ++j) { |
|
clear_and_delete(child(i + j + 1), alloc); |
|
} |
|
// Rotate children after end into new positions. |
|
for (field_type j = i + to_erase + 1; j <= orig_finish; ++j) { |
|
set_child(j - to_erase, child(j)); |
|
clear_child(j); |
|
} |
|
} |
|
set_finish(orig_finish - to_erase); |
|
} |
|
|
|
template <typename P> |
|
void btree_node<P>::rebalance_right_to_left(field_type to_move, |
|
btree_node *right, |
|
allocator_type *alloc) { |
|
assert(parent() == right->parent()); |
|
assert(position() + 1 == right->position()); |
|
assert(right->count() >= count()); |
|
assert(to_move >= 1); |
|
assert(to_move <= right->count()); |
|
|
|
// 1) Move the delimiting value in the parent to the left node. |
|
transfer(finish(), position(), parent(), alloc); |
|
|
|
// 2) Move the (to_move - 1) values from the right node to the left node. |
|
transfer_n(to_move - 1, finish() + 1, right->start(), right, alloc); |
|
|
|
// 3) Move the new delimiting value to the parent from the right node. |
|
parent()->transfer(position(), right->start() + to_move - 1, right, alloc); |
|
|
|
// 4) Shift the values in the right node to their correct positions. |
|
right->transfer_n(right->count() - to_move, right->start(), |
|
right->start() + to_move, right, alloc); |
|
|
|
if (is_internal()) { |
|
// Move the child pointers from the right to the left node. |
|
for (field_type i = 0; i < to_move; ++i) { |
|
init_child(finish() + i + 1, right->child(i)); |
|
} |
|
for (field_type i = right->start(); i <= right->finish() - to_move; ++i) { |
|
assert(i + to_move <= right->max_count()); |
|
right->init_child(i, right->child(i + to_move)); |
|
right->clear_child(i + to_move); |
|
} |
|
} |
|
|
|
// Fixup `finish` on the left and right nodes. |
|
set_finish(finish() + to_move); |
|
right->set_finish(right->finish() - to_move); |
|
} |
|
|
|
template <typename P> |
|
void btree_node<P>::rebalance_left_to_right(field_type to_move, |
|
btree_node *right, |
|
allocator_type *alloc) { |
|
assert(parent() == right->parent()); |
|
assert(position() + 1 == right->position()); |
|
assert(count() >= right->count()); |
|
assert(to_move >= 1); |
|
assert(to_move <= count()); |
|
|
|
// Values in the right node are shifted to the right to make room for the |
|
// new to_move values. Then, the delimiting value in the parent and the |
|
// other (to_move - 1) values in the left node are moved into the right node. |
|
// Lastly, a new delimiting value is moved from the left node into the |
|
// parent, and the remaining empty left node entries are destroyed. |
|
|
|
// 1) Shift existing values in the right node to their correct positions. |
|
right->transfer_n_backward(right->count(), right->start() + to_move, |
|
right->start(), right, alloc); |
|
|
|
// 2) Move the delimiting value in the parent to the right node. |
|
right->transfer(right->start() + to_move - 1, position(), parent(), alloc); |
|
|
|
// 3) Move the (to_move - 1) values from the left node to the right node. |
|
right->transfer_n(to_move - 1, right->start(), finish() - (to_move - 1), this, |
|
alloc); |
|
|
|
// 4) Move the new delimiting value to the parent from the left node. |
|
parent()->transfer(position(), finish() - to_move, this, alloc); |
|
|
|
if (is_internal()) { |
|
// Move the child pointers from the left to the right node. |
|
for (field_type i = right->finish() + 1; i > right->start(); --i) { |
|
right->init_child(i - 1 + to_move, right->child(i - 1)); |
|
right->clear_child(i - 1); |
|
} |
|
for (field_type i = 1; i <= to_move; ++i) { |
|
right->init_child(i - 1, child(finish() - to_move + i)); |
|
clear_child(finish() - to_move + i); |
|
} |
|
} |
|
|
|
// Fixup the counts on the left and right nodes. |
|
set_finish(finish() - to_move); |
|
right->set_finish(right->finish() + to_move); |
|
} |
|
|
|
template <typename P> |
|
void btree_node<P>::split(const int insert_position, btree_node *dest, |
|
allocator_type *alloc) { |
|
assert(dest->count() == 0); |
|
assert(max_count() == kNodeSlots); |
|
|
|
// We bias the split based on the position being inserted. If we're |
|
// inserting at the beginning of the left node then bias the split to put |
|
// more values on the right node. If we're inserting at the end of the |
|
// right node then bias the split to put more values on the left node. |
|
if (insert_position == start()) { |
|
dest->set_finish(dest->start() + finish() - 1); |
|
} else if (insert_position == kNodeSlots) { |
|
dest->set_finish(dest->start()); |
|
} else { |
|
dest->set_finish(dest->start() + count() / 2); |
|
} |
|
set_finish(finish() - dest->count()); |
|
assert(count() >= 1); |
|
|
|
// Move values from the left sibling to the right sibling. |
|
dest->transfer_n(dest->count(), dest->start(), finish(), this, alloc); |
|
|
|
// The split key is the largest value in the left sibling. |
|
--mutable_finish(); |
|
parent()->emplace_value(position(), alloc, finish_slot()); |
|
value_destroy(finish(), alloc); |
|
parent()->init_child(position() + 1, dest); |
|
|
|
if (is_internal()) { |
|
for (field_type i = dest->start(), j = finish() + 1; i <= dest->finish(); |
|
++i, ++j) { |
|
assert(child(j) != nullptr); |
|
dest->init_child(i, child(j)); |
|
clear_child(j); |
|
} |
|
} |
|
} |
|
|
|
template <typename P> |
|
void btree_node<P>::merge(btree_node *src, allocator_type *alloc) { |
|
assert(parent() == src->parent()); |
|
assert(position() + 1 == src->position()); |
|
|
|
// Move the delimiting value to the left node. |
|
value_init(finish(), alloc, parent()->slot(position())); |
|
|
|
// Move the values from the right to the left node. |
|
transfer_n(src->count(), finish() + 1, src->start(), src, alloc); |
|
|
|
if (is_internal()) { |
|
// Move the child pointers from the right to the left node. |
|
for (field_type i = src->start(), j = finish() + 1; i <= src->finish(); |
|
++i, ++j) { |
|
init_child(j, src->child(i)); |
|
src->clear_child(i); |
|
} |
|
} |
|
|
|
// Fixup `finish` on the src and dest nodes. |
|
set_finish(start() + 1 + count() + src->count()); |
|
src->set_finish(src->start()); |
|
|
|
// Remove the value on the parent node and delete the src node. |
|
parent()->remove_values(position(), /*to_erase=*/1, alloc); |
|
} |
|
|
|
template <typename P> |
|
void btree_node<P>::clear_and_delete(btree_node *node, allocator_type *alloc) { |
|
if (node->is_leaf()) { |
|
node->value_destroy_n(node->start(), node->count(), alloc); |
|
deallocate(LeafSize(node->max_count()), node, alloc); |
|
return; |
|
} |
|
if (node->count() == 0) { |
|
deallocate(InternalSize(), node, alloc); |
|
return; |
|
} |
|
|
|
// The parent of the root of the subtree we are deleting. |
|
btree_node *delete_root_parent = node->parent(); |
|
|
|
// Navigate to the leftmost leaf under node, and then delete upwards. |
|
while (node->is_internal()) node = node->start_child(); |
|
#ifdef ABSL_BTREE_ENABLE_GENERATIONS |
|
// When generations are enabled, we delete the leftmost leaf last in case it's |
|
// the parent of the root and we need to check whether it's a leaf before we |
|
// can update the root's generation. |
|
// TODO(ezb): if we change btree_node::is_root to check a bool inside the node |
|
// instead of checking whether the parent is a leaf, we can remove this logic. |
|
btree_node *leftmost_leaf = node; |
|
#endif |
|
// Use `size_type` because `pos` needs to be able to hold `kNodeSlots+1`, |
|
// which isn't guaranteed to be a valid `field_type`. |
|
size_type pos = node->position(); |
|
btree_node *parent = node->parent(); |
|
for (;;) { |
|
// In each iteration of the next loop, we delete one leaf node and go right. |
|
assert(pos <= parent->finish()); |
|
do { |
|
node = parent->child(static_cast<field_type>(pos)); |
|
if (node->is_internal()) { |
|
// Navigate to the leftmost leaf under node. |
|
while (node->is_internal()) node = node->start_child(); |
|
pos = node->position(); |
|
parent = node->parent(); |
|
} |
|
node->value_destroy_n(node->start(), node->count(), alloc); |
|
#ifdef ABSL_BTREE_ENABLE_GENERATIONS |
|
if (leftmost_leaf != node) |
|
#endif |
|
deallocate(LeafSize(node->max_count()), node, alloc); |
|
++pos; |
|
} while (pos <= parent->finish()); |
|
|
|
// Once we've deleted all children of parent, delete parent and go up/right. |
|
assert(pos > parent->finish()); |
|
do { |
|
node = parent; |
|
pos = node->position(); |
|
parent = node->parent(); |
|
node->value_destroy_n(node->start(), node->count(), alloc); |
|
deallocate(InternalSize(), node, alloc); |
|
if (parent == delete_root_parent) { |
|
#ifdef ABSL_BTREE_ENABLE_GENERATIONS |
|
deallocate(LeafSize(leftmost_leaf->max_count()), leftmost_leaf, alloc); |
|
#endif |
|
return; |
|
} |
|
++pos; |
|
} while (pos > parent->finish()); |
|
} |
|
} |
|
|
|
//// |
|
// btree_iterator methods |
|
|
|
// Note: the implementation here is based on btree_node::clear_and_delete. |
|
template <typename N, typename R, typename P> |
|
auto btree_iterator<N, R, P>::distance_slow(const_iterator other) const |
|
-> difference_type { |
|
const_iterator begin = other; |
|
const_iterator end = *this; |
|
assert(begin.node_ != end.node_ || !begin.node_->is_leaf() || |
|
begin.position_ != end.position_); |
|
|
|
const node_type *node = begin.node_; |
|
// We need to compensate for double counting if begin.node_ is a leaf node. |
|
difference_type count = node->is_leaf() ? -begin.position_ : 0; |
|
|
|
// First navigate to the leftmost leaf node past begin. |
|
if (node->is_internal()) { |
|
++count; |
|
node = node->child(begin.position_ + 1); |
|
} |
|
while (node->is_internal()) node = node->start_child(); |
|
|
|
// Use `size_type` because `pos` needs to be able to hold `kNodeSlots+1`, |
|
// which isn't guaranteed to be a valid `field_type`. |
|
size_type pos = node->position(); |
|
const node_type *parent = node->parent(); |
|
for (;;) { |
|
// In each iteration of the next loop, we count one leaf node and go right. |
|
assert(pos <= parent->finish()); |
|
do { |
|
node = parent->child(static_cast<field_type>(pos)); |
|
if (node->is_internal()) { |
|
// Navigate to the leftmost leaf under node. |
|
while (node->is_internal()) node = node->start_child(); |
|
pos = node->position(); |
|
parent = node->parent(); |
|
} |
|
if (node == end.node_) return count + end.position_; |
|
if (parent == end.node_ && pos == static_cast<size_type>(end.position_)) |
|
return count + node->count(); |
|
// +1 is for the next internal node value. |
|
count += node->count() + 1; |
|
++pos; |
|
} while (pos <= parent->finish()); |
|
|
|
// Once we've counted all children of parent, go up/right. |
|
assert(pos > parent->finish()); |
|
do { |
|
node = parent; |
|
pos = node->position(); |
|
parent = node->parent(); |
|
// -1 because we counted the value at end and shouldn't. |
|
if (parent == end.node_ && pos == static_cast<size_type>(end.position_)) |
|
return count - 1; |
|
++pos; |
|
} while (pos > parent->finish()); |
|
} |
|
} |
|
|
|
template <typename N, typename R, typename P> |
|
void btree_iterator<N, R, P>::increment_slow() { |
|
if (node_->is_leaf()) { |
|
assert(position_ >= node_->finish()); |
|
btree_iterator save(*this); |
|
while (position_ == node_->finish() && !node_->is_root()) { |
|
assert(node_->parent()->child(node_->position()) == node_); |
|
position_ = node_->position(); |
|
node_ = node_->parent(); |
|
} |
|
// TODO(ezb): assert we aren't incrementing end() instead of handling. |
|
if (position_ == node_->finish()) { |
|
*this = save; |
|
} |
|
} else { |
|
assert(position_ < node_->finish()); |
|
node_ = node_->child(static_cast<field_type>(position_ + 1)); |
|
while (node_->is_internal()) { |
|
node_ = node_->start_child(); |
|
} |
|
position_ = node_->start(); |
|
} |
|
} |
|
|
|
template <typename N, typename R, typename P> |
|
void btree_iterator<N, R, P>::decrement_slow() { |
|
if (node_->is_leaf()) { |
|
assert(position_ <= -1); |
|
btree_iterator save(*this); |
|
while (position_ < node_->start() && !node_->is_root()) { |
|
assert(node_->parent()->child(node_->position()) == node_); |
|
position_ = node_->position() - 1; |
|
node_ = node_->parent(); |
|
} |
|
// TODO(ezb): assert we aren't decrementing begin() instead of handling. |
|
if (position_ < node_->start()) { |
|
*this = save; |
|
} |
|
} else { |
|
assert(position_ >= node_->start()); |
|
node_ = node_->child(static_cast<field_type>(position_)); |
|
while (node_->is_internal()) { |
|
node_ = node_->child(node_->finish()); |
|
} |
|
position_ = node_->finish() - 1; |
|
} |
|
} |
|
|
|
//// |
|
// btree methods |
|
template <typename P> |
|
template <typename Btree> |
|
void btree<P>::copy_or_move_values_in_order(Btree &other) { |
|
static_assert(std::is_same<btree, Btree>::value || |
|
std::is_same<const btree, Btree>::value, |
|
"Btree type must be same or const."); |
|
assert(empty()); |
|
|
|
// We can avoid key comparisons because we know the order of the |
|
// values is the same order we'll store them in. |
|
auto iter = other.begin(); |
|
if (iter == other.end()) return; |
|
insert_multi(iter.slot()); |
|
++iter; |
|
for (; iter != other.end(); ++iter) { |
|
// If the btree is not empty, we can just insert the new value at the end |
|
// of the tree. |
|
internal_emplace(end(), iter.slot()); |
|
} |
|
} |
|
|
|
template <typename P> |
|
constexpr bool btree<P>::static_assert_validation() { |
|
static_assert(std::is_nothrow_copy_constructible<key_compare>::value, |
|
"Key comparison must be nothrow copy constructible"); |
|
static_assert(std::is_nothrow_copy_constructible<allocator_type>::value, |
|
"Allocator must be nothrow copy constructible"); |
|
static_assert(type_traits_internal::is_trivially_copyable<iterator>::value, |
|
"iterator not trivially copyable."); |
|
|
|
// Note: We assert that kTargetValues, which is computed from |
|
// Params::kTargetNodeSize, must fit the node_type::field_type. |
|
static_assert( |
|
kNodeSlots < (1 << (8 * sizeof(typename node_type::field_type))), |
|
"target node size too large"); |
|
|
|
// Verify that key_compare returns an absl::{weak,strong}_ordering or bool. |
|
static_assert( |
|
compare_has_valid_result_type<key_compare, key_type>(), |
|
"key comparison function must return absl::{weak,strong}_ordering or " |
|
"bool."); |
|
|
|
// Test the assumption made in setting kNodeSlotSpace. |
|
static_assert(node_type::MinimumOverhead() >= sizeof(void *) + 4, |
|
"node space assumption incorrect"); |
|
|
|
return true; |
|
} |
|
|
|
template <typename P> |
|
template <typename K> |
|
auto btree<P>::lower_bound_equal(const K &key) const |
|
-> std::pair<iterator, bool> { |
|
const SearchResult<iterator, is_key_compare_to::value> res = |
|
internal_lower_bound(key); |
|
const iterator lower = iterator(internal_end(res.value)); |
|
const bool equal = res.HasMatch() |
|
? res.IsEq() |
|
: lower != end() && !compare_keys(key, lower.key()); |
|
return {lower, equal}; |
|
} |
|
|
|
template <typename P> |
|
template <typename K> |
|
auto btree<P>::equal_range(const K &key) -> std::pair<iterator, iterator> { |
|
const std::pair<iterator, bool> lower_and_equal = lower_bound_equal(key); |
|
const iterator lower = lower_and_equal.first; |
|
if (!lower_and_equal.second) { |
|
return {lower, lower}; |
|
} |
|
|
|
const iterator next = std::next(lower); |
|
if (!params_type::template can_have_multiple_equivalent_keys<K>()) { |
|
// The next iterator after lower must point to a key greater than `key`. |
|
// Note: if this assert fails, then it may indicate that the comparator does |
|
// not meet the equivalence requirements for Compare |
|
// (see https://en.cppreference.com/w/cpp/named_req/Compare). |
|
assert(next == end() || compare_keys(key, next.key())); |
|
return {lower, next}; |
|
} |
|
// Try once more to avoid the call to upper_bound() if there's only one |
|
// equivalent key. This should prevent all calls to upper_bound() in cases of |
|
// unique-containers with heterogeneous comparators in which all comparison |
|
// operators have the same equivalence classes. |
|
if (next == end() || compare_keys(key, next.key())) return {lower, next}; |
|
|
|
// In this case, we need to call upper_bound() to avoid worst case O(N) |
|
// behavior if we were to iterate over equal keys. |
|
return {lower, upper_bound(key)}; |
|
} |
|
|
|
template <typename P> |
|
template <typename K, typename... Args> |
|
auto btree<P>::insert_unique(const K &key, Args &&...args) |
|
-> std::pair<iterator, bool> { |
|
if (empty()) { |
|
mutable_root() = mutable_rightmost() = new_leaf_root_node(1); |
|
} |
|
|
|
SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key); |
|
iterator iter = res.value; |
|
|
|
if (res.HasMatch()) { |
|
if (res.IsEq()) { |
|
// The key already exists in the tree, do nothing. |
|
return {iter, false}; |
|
} |
|
} else { |
|
iterator last = internal_last(iter); |
|
if (last.node_ && !compare_keys(key, last.key())) { |
|
// The key already exists in the tree, do nothing. |
|
return {last, false}; |
|
} |
|
} |
|
return {internal_emplace(iter, std::forward<Args>(args)...), true}; |
|
} |
|
|
|
template <typename P> |
|
template <typename K, typename... Args> |
|
inline auto btree<P>::insert_hint_unique(iterator position, const K &key, |
|
Args &&...args) |
|
-> std::pair<iterator, bool> { |
|
if (!empty()) { |
|
if (position == end() || compare_keys(key, position.key())) { |
|
if (position == begin() || compare_keys(std::prev(position).key(), key)) { |
|
// prev.key() < key < position.key() |
|
return {internal_emplace(position, std::forward<Args>(args)...), true}; |
|
} |
|
} else if (compare_keys(position.key(), key)) { |
|
++position; |
|
if (position == end() || compare_keys(key, position.key())) { |
|
// {original `position`}.key() < key < {current `position`}.key() |
|
return {internal_emplace(position, std::forward<Args>(args)...), true}; |
|
} |
|
} else { |
|
// position.key() == key |
|
return {position, false}; |
|
} |
|
} |
|
return insert_unique(key, std::forward<Args>(args)...); |
|
} |
|
|
|
template <typename P> |
|
template <typename InputIterator, typename> |
|
void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, int) { |
|
for (; b != e; ++b) { |
|
insert_hint_unique(end(), params_type::key(*b), *b); |
|
} |
|
} |
|
|
|
template <typename P> |
|
template <typename InputIterator> |
|
void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, char) { |
|
for (; b != e; ++b) { |
|
// Use a node handle to manage a temp slot. |
|
auto node_handle = |
|
CommonAccess::Construct<node_handle_type>(get_allocator(), *b); |
|
slot_type *slot = CommonAccess::GetSlot(node_handle); |
|
insert_hint_unique(end(), params_type::key(slot), slot); |
|
} |
|
} |
|
|
|
template <typename P> |
|
template <typename ValueType> |
|
auto btree<P>::insert_multi(const key_type &key, ValueType &&v) -> iterator { |
|
if (empty()) { |
|
mutable_root() = mutable_rightmost() = new_leaf_root_node(1); |
|
} |
|
|
|
iterator iter = internal_upper_bound(key); |
|
if (iter.node_ == nullptr) { |
|
iter = end(); |
|
} |
|
return internal_emplace(iter, std::forward<ValueType>(v)); |
|
} |
|
|
|
template <typename P> |
|
template <typename ValueType> |
|
auto btree<P>::insert_hint_multi(iterator position, ValueType &&v) -> iterator { |
|
if (!empty()) { |
|
const key_type &key = params_type::key(v); |
|
if (position == end() || !compare_keys(position.key(), key)) { |
|
if (position == begin() || |
|
!compare_keys(key, std::prev(position).key())) { |
|
// prev.key() <= key <= position.key() |
|
return internal_emplace(position, std::forward<ValueType>(v)); |
|
} |
|
} else { |
|
++position; |
|
if (position == end() || !compare_keys(position.key(), key)) { |
|
// {original `position`}.key() < key < {current `position`}.key() |
|
return internal_emplace(position, std::forward<ValueType>(v)); |
|
} |
|
} |
|
} |
|
return insert_multi(std::forward<ValueType>(v)); |
|
} |
|
|
|
template <typename P> |
|
template <typename InputIterator> |
|
void btree<P>::insert_iterator_multi(InputIterator b, InputIterator e) { |
|
for (; b != e; ++b) { |
|
insert_hint_multi(end(), *b); |
|
} |
|
} |
|
|
|
template <typename P> |
|
auto btree<P>::operator=(const btree &other) -> btree & { |
|
if (this != &other) { |
|
clear(); |
|
|
|
*mutable_key_comp() = other.key_comp(); |
|
if (absl::allocator_traits< |
|
allocator_type>::propagate_on_container_copy_assignment::value) { |
|
*mutable_allocator() = other.allocator(); |
|
} |
|
|
|
copy_or_move_values_in_order(other); |
|
} |
|
return *this; |
|
} |
|
|
|
template <typename P> |
|
auto btree<P>::operator=(btree &&other) noexcept -> btree & { |
|
if (this != &other) { |
|
clear(); |
|
|
|
using std::swap; |
|
if (absl::allocator_traits< |
|
allocator_type>::propagate_on_container_copy_assignment::value) { |
|
swap(root_, other.root_); |
|
// Note: `rightmost_` also contains the allocator and the key comparator. |
|
swap(rightmost_, other.rightmost_); |
|
swap(size_, other.size_); |
|
} else { |
|
if (allocator() == other.allocator()) { |
|
swap(mutable_root(), other.mutable_root()); |
|
swap(*mutable_key_comp(), *other.mutable_key_comp()); |
|
swap(mutable_rightmost(), other.mutable_rightmost()); |
|
swap(size_, other.size_); |
|
} else { |
|
// We aren't allowed to propagate the allocator and the allocator is |
|
// different so we can't take over its memory. We must move each element |
|
// individually. We need both `other` and `this` to have `other`s key |
|
// comparator while moving the values so we can't swap the key |
|
// comparators. |
|
*mutable_key_comp() = other.key_comp(); |
|
copy_or_move_values_in_order(other); |
|
} |
|
} |
|
} |
|
return *this; |
|
} |
|
|
|
template <typename P> |
|
auto btree<P>::erase(iterator iter) -> iterator { |
|
iter.node_->value_destroy(static_cast<field_type>(iter.position_), |
|
mutable_allocator()); |
|
iter.update_generation(); |
|
|
|
const bool internal_delete = iter.node_->is_internal(); |
|
if (internal_delete) { |
|
// Deletion of a value on an internal node. First, transfer the largest |
|
// value from our left child here, then erase/rebalance from that position. |
|
// We can get to the largest value from our left child by decrementing iter. |
|
iterator internal_iter(iter); |
|
--iter; |
|
assert(iter.node_->is_leaf()); |
|
internal_iter.node_->transfer( |
|
static_cast<size_type>(internal_iter.position_), |
|
static_cast<size_type>(iter.position_), iter.node_, |
|
mutable_allocator()); |
|
} else { |
|
// Shift values after erased position in leaf. In the internal case, we |
|
// don't need to do this because the leaf position is the end of the node. |
|
const field_type transfer_from = |
|
static_cast<field_type>(iter.position_ + 1); |
|
const field_type num_to_transfer = iter.node_->finish() - transfer_from; |
|
iter.node_->transfer_n(num_to_transfer, |
|
static_cast<size_type>(iter.position_), |
|
transfer_from, iter.node_, mutable_allocator()); |
|
} |
|
// Update node finish and container size. |
|
iter.node_->set_finish(iter.node_->finish() - 1); |
|
--size_; |
|
|
|
// We want to return the next value after the one we just erased. If we |
|
// erased from an internal node (internal_delete == true), then the next |
|
// value is ++(++iter). If we erased from a leaf node (internal_delete == |
|
// false) then the next value is ++iter. Note that ++iter may point to an |
|
// internal node and the value in the internal node may move to a leaf node |
|
// (iter.node_) when rebalancing is performed at the leaf level. |
|
|
|
iterator res = rebalance_after_delete(iter); |
|
|
|
// If we erased from an internal node, advance the iterator. |
|
if (internal_delete) { |
|
++res; |
|
} |
|
return res; |
|
} |
|
|
|
template <typename P> |
|
auto btree<P>::rebalance_after_delete(iterator iter) -> iterator { |
|
// Merge/rebalance as we walk back up the tree. |
|
iterator res(iter); |
|
bool first_iteration = true; |
|
for (;;) { |
|
if (iter.node_ == root()) { |
|
try_shrink(); |
|
if (empty()) { |
|
return end(); |
|
} |
|
break; |
|
} |
|
if (iter.node_->count() >= kMinNodeValues) { |
|
break; |
|
} |
|
bool merged = try_merge_or_rebalance(&iter); |
|
// On the first iteration, we should update `res` with `iter` because `res` |
|
// may have been invalidated. |
|
if (first_iteration) { |
|
res = iter; |
|
first_iteration = false; |
|
} |
|
if (!merged) { |
|
break; |
|
} |
|
iter.position_ = iter.node_->position(); |
|
iter.node_ = iter.node_->parent(); |
|
} |
|
res.update_generation(); |
|
|
|
// Adjust our return value. If we're pointing at the end of a node, advance |
|
// the iterator. |
|
if (res.position_ == res.node_->finish()) { |
|
res.position_ = res.node_->finish() - 1; |
|
++res; |
|
} |
|
|
|
return res; |
|
} |
|
|
|
template <typename P> |
|
auto btree<P>::erase_range(iterator begin, iterator end) |
|
-> std::pair<size_type, iterator> { |
|
size_type count = static_cast<size_type>(std::distance(begin, end)); |
|
assert(count >= 0); |
|
|
|
if (count == 0) { |
|
return {0, begin}; |
|
} |
|
|
|
if (static_cast<size_type>(count) == size_) { |
|
clear(); |
|
return {count, this->end()}; |
|
} |
|
|
|
if (begin.node_ == end.node_) { |
|
assert(end.position_ > begin.position_); |
|
begin.node_->remove_values( |
|
static_cast<field_type>(begin.position_), |
|
static_cast<field_type>(end.position_ - begin.position_), |
|
mutable_allocator()); |
|
size_ -= count; |
|
return {count, rebalance_after_delete(begin)}; |
|
} |
|
|
|
const size_type target_size = size_ - count; |
|
while (size_ > target_size) { |
|
if (begin.node_->is_leaf()) { |
|
const size_type remaining_to_erase = size_ - target_size; |
|
const size_type remaining_in_node = |
|
static_cast<size_type>(begin.node_->finish() - begin.position_); |
|
const field_type to_erase = static_cast<field_type>( |
|
(std::min)(remaining_to_erase, remaining_in_node)); |
|
begin.node_->remove_values(static_cast<field_type>(begin.position_), |
|
to_erase, mutable_allocator()); |
|
size_ -= to_erase; |
|
begin = rebalance_after_delete(begin); |
|
} else { |
|
begin = erase(begin); |
|
} |
|
} |
|
begin.update_generation(); |
|
return {count, begin}; |
|
} |
|
|
|
template <typename P> |
|
void btree<P>::clear() { |
|
if (!empty()) { |
|
node_type::clear_and_delete(root(), mutable_allocator()); |
|
} |
|
mutable_root() = mutable_rightmost() = EmptyNode(); |
|
size_ = 0; |
|
} |
|
|
|
template <typename P> |
|
void btree<P>::swap(btree &other) { |
|
using std::swap; |
|
if (absl::allocator_traits< |
|
allocator_type>::propagate_on_container_swap::value) { |
|
// Note: `rightmost_` also contains the allocator and the key comparator. |
|
swap(rightmost_, other.rightmost_); |
|
} else { |
|
// It's undefined behavior if the allocators are unequal here. |
|
assert(allocator() == other.allocator()); |
|
swap(mutable_rightmost(), other.mutable_rightmost()); |
|
swap(*mutable_key_comp(), *other.mutable_key_comp()); |
|
} |
|
swap(mutable_root(), other.mutable_root()); |
|
swap(size_, other.size_); |
|
} |
|
|
|
template <typename P> |
|
void btree<P>::verify() const { |
|
assert(root() != nullptr); |
|
assert(leftmost() != nullptr); |
|
assert(rightmost() != nullptr); |
|
assert(empty() || size() == internal_verify(root(), nullptr, nullptr)); |
|
assert(leftmost() == (++const_iterator(root(), -1)).node_); |
|
assert(rightmost() == (--const_iterator(root(), root()->finish())).node_); |
|
assert(leftmost()->is_leaf()); |
|
assert(rightmost()->is_leaf()); |
|
} |
|
|
|
template <typename P> |
|
void btree<P>::rebalance_or_split(iterator *iter) { |
|
node_type *&node = iter->node_; |
|
int &insert_position = iter->position_; |
|
assert(node->count() == node->max_count()); |
|
assert(kNodeSlots == node->max_count()); |
|
|
|
// First try to make room on the node by rebalancing. |
|
node_type *parent = node->parent(); |
|
if (node != root()) { |
|
if (node->position() > parent->start()) { |
|
// Try rebalancing with our left sibling. |
|
node_type *left = parent->child(node->position() - 1); |
|
assert(left->max_count() == kNodeSlots); |
|
if (left->count() < kNodeSlots) { |
|
// We bias rebalancing based on the position being inserted. If we're |
|
// inserting at the end of the right node then we bias rebalancing to |
|
// fill up the left node. |
|
field_type to_move = |
|
(kNodeSlots - left->count()) / |
|
(1 + (static_cast<field_type>(insert_position) < kNodeSlots)); |
|
to_move = (std::max)(field_type{1}, to_move); |
|
|
|
if (static_cast<field_type>(insert_position) - to_move >= |
|
node->start() || |
|
left->count() + to_move < kNodeSlots) { |
|
left->rebalance_right_to_left(to_move, node, mutable_allocator()); |
|
|
|
assert(node->max_count() - node->count() == to_move); |
|
insert_position = static_cast<int>( |
|
static_cast<field_type>(insert_position) - to_move); |
|
if (insert_position < node->start()) { |
|
insert_position = insert_position + left->count() + 1; |
|
node = left; |
|
} |
|
|
|
assert(node->count() < node->max_count()); |
|
return; |
|
} |
|
} |
|
} |
|
|
|
if (node->position() < parent->finish()) { |
|
// Try rebalancing with our right sibling. |
|
node_type *right = parent->child(node->position() + 1); |
|
assert(right->max_count() == kNodeSlots); |
|
if (right->count() < kNodeSlots) { |
|
// We bias rebalancing based on the position being inserted. If we're |
|
// inserting at the beginning of the left node then we bias rebalancing |
|
// to fill up the right node. |
|
field_type to_move = (kNodeSlots - right->count()) / |
|
(1 + (insert_position > node->start())); |
|
to_move = (std::max)(field_type{1}, to_move); |
|
|
|
if (static_cast<field_type>(insert_position) <= |
|
node->finish() - to_move || |
|
right->count() + to_move < kNodeSlots) { |
|
node->rebalance_left_to_right(to_move, right, mutable_allocator()); |
|
|
|
if (insert_position > node->finish()) { |
|
insert_position = insert_position - node->count() - 1; |
|
node = right; |
|
} |
|
|
|
assert(node->count() < node->max_count()); |
|
return; |
|
} |
|
} |
|
} |
|
|
|
// Rebalancing failed, make sure there is room on the parent node for a new |
|
// value. |
|
assert(parent->max_count() == kNodeSlots); |
|
if (parent->count() == kNodeSlots) { |
|
iterator parent_iter(node->parent(), node->position()); |
|
rebalance_or_split(&parent_iter); |
|
} |
|
} else { |
|
// Rebalancing not possible because this is the root node. |
|
// Create a new root node and set the current root node as the child of the |
|
// new root. |
|
parent = new_internal_node(parent); |
|
parent->set_generation(root()->generation()); |
|
parent->init_child(parent->start(), root()); |
|
mutable_root() = parent; |
|
// If the former root was a leaf node, then it's now the rightmost node. |
|
assert(parent->start_child()->is_internal() || |
|
parent->start_child() == rightmost()); |
|
} |
|
|
|
// Split the node. |
|
node_type *split_node; |
|
if (node->is_leaf()) { |
|
split_node = new_leaf_node(parent); |
|
node->split(insert_position, split_node, mutable_allocator()); |
|
if (rightmost() == node) mutable_rightmost() = split_node; |
|
} else { |
|
split_node = new_internal_node(parent); |
|
node->split(insert_position, split_node, mutable_allocator()); |
|
} |
|
|
|
if (insert_position > node->finish()) { |
|
insert_position = insert_position - node->count() - 1; |
|
node = split_node; |
|
} |
|
} |
|
|
|
template <typename P> |
|
void btree<P>::merge_nodes(node_type *left, node_type *right) { |
|
left->merge(right, mutable_allocator()); |
|
if (rightmost() == right) mutable_rightmost() = left; |
|
} |
|
|
|
template <typename P> |
|
bool btree<P>::try_merge_or_rebalance(iterator *iter) { |
|
node_type *parent = iter->node_->parent(); |
|
if (iter->node_->position() > parent->start()) { |
|
// Try merging with our left sibling. |
|
node_type *left = parent->child(iter->node_->position() - 1); |
|
assert(left->max_count() == kNodeSlots); |
|
if (1U + left->count() + iter->node_->count() <= kNodeSlots) { |
|
iter->position_ += 1 + left->count(); |
|
merge_nodes(left, iter->node_); |
|
iter->node_ = left; |
|
return true; |
|
} |
|
} |
|
if (iter->node_->position() < parent->finish()) { |
|
// Try merging with our right sibling. |
|
node_type *right = parent->child(iter->node_->position() + 1); |
|
assert(right->max_count() == kNodeSlots); |
|
if (1U + iter->node_->count() + right->count() <= kNodeSlots) { |
|
merge_nodes(iter->node_, right); |
|
return true; |
|
} |
|
// Try rebalancing with our right sibling. We don't perform rebalancing if |
|
// we deleted the first element from iter->node_ and the node is not |
|
// empty. This is a small optimization for the common pattern of deleting |
|
// from the front of the tree. |
|
if (right->count() > kMinNodeValues && |
|
(iter->node_->count() == 0 || iter->position_ > iter->node_->start())) { |
|
field_type to_move = (right->count() - iter->node_->count()) / 2; |
|
to_move = |
|
(std::min)(to_move, static_cast<field_type>(right->count() - 1)); |
|
iter->node_->rebalance_right_to_left(to_move, right, mutable_allocator()); |
|
return false; |
|
} |
|
} |
|
if (iter->node_->position() > parent->start()) { |
|
// Try rebalancing with our left sibling. We don't perform rebalancing if |
|
// we deleted the last element from iter->node_ and the node is not |
|
// empty. This is a small optimization for the common pattern of deleting |
|
// from the back of the tree. |
|
node_type *left = parent->child(iter->node_->position() - 1); |
|
if (left->count() > kMinNodeValues && |
|
(iter->node_->count() == 0 || |
|
iter->position_ < iter->node_->finish())) { |
|
field_type to_move = (left->count() - iter->node_->count()) / 2; |
|
to_move = (std::min)(to_move, static_cast<field_type>(left->count() - 1)); |
|
left->rebalance_left_to_right(to_move, iter->node_, mutable_allocator()); |
|
iter->position_ += to_move; |
|
return false; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
template <typename P> |
|
void btree<P>::try_shrink() { |
|
node_type *orig_root = root(); |
|
if (orig_root->count() > 0) { |
|
return; |
|
} |
|
// Deleted the last item on the root node, shrink the height of the tree. |
|
if (orig_root->is_leaf()) { |
|
assert(size() == 0); |
|
mutable_root() = mutable_rightmost() = EmptyNode(); |
|
} else { |
|
node_type *child = orig_root->start_child(); |
|
child->make_root(); |
|
mutable_root() = child; |
|
} |
|
node_type::clear_and_delete(orig_root, mutable_allocator()); |
|
} |
|
|
|
template <typename P> |
|
template <typename IterType> |
|
inline IterType btree<P>::internal_last(IterType iter) { |
|
assert(iter.node_ != nullptr); |
|
while (iter.position_ == iter.node_->finish()) { |
|
iter.position_ = iter.node_->position(); |
|
iter.node_ = iter.node_->parent(); |
|
if (iter.node_->is_leaf()) { |
|
iter.node_ = nullptr; |
|
break; |
|
} |
|
} |
|
iter.update_generation(); |
|
return iter; |
|
} |
|
|
|
template <typename P> |
|
template <typename... Args> |
|
inline auto btree<P>::internal_emplace(iterator iter, Args &&...args) |
|
-> iterator { |
|
if (iter.node_->is_internal()) { |
|
// We can't insert on an internal node. Instead, we'll insert after the |
|
// previous value which is guaranteed to be on a leaf node. |
|
--iter; |
|
++iter.position_; |
|
} |
|
const field_type max_count = iter.node_->max_count(); |
|
allocator_type *alloc = mutable_allocator(); |
|
if (iter.node_->count() == max_count) { |
|
// Make room in the leaf for the new item. |
|
if (max_count < kNodeSlots) { |
|
// Insertion into the root where the root is smaller than the full node |
|
// size. Simply grow the size of the root node. |
|
assert(iter.node_ == root()); |
|
iter.node_ = new_leaf_root_node(static_cast<field_type>( |
|
(std::min)(static_cast<int>(kNodeSlots), 2 * max_count))); |
|
// Transfer the values from the old root to the new root. |
|
node_type *old_root = root(); |
|
node_type *new_root = iter.node_; |
|
new_root->transfer_n(old_root->count(), new_root->start(), |
|
old_root->start(), old_root, alloc); |
|
new_root->set_finish(old_root->finish()); |
|
old_root->set_finish(old_root->start()); |
|
new_root->set_generation(old_root->generation()); |
|
node_type::clear_and_delete(old_root, alloc); |
|
mutable_root() = mutable_rightmost() = new_root; |
|
} else { |
|
rebalance_or_split(&iter); |
|
} |
|
} |
|
iter.node_->emplace_value(static_cast<field_type>(iter.position_), alloc, |
|
std::forward<Args>(args)...); |
|
++size_; |
|
iter.update_generation(); |
|
return iter; |
|
} |
|
|
|
template <typename P> |
|
template <typename K> |
|
inline auto btree<P>::internal_locate(const K &key) const |
|
-> SearchResult<iterator, is_key_compare_to::value> { |
|
iterator iter(const_cast<node_type *>(root())); |
|
for (;;) { |
|
SearchResult<size_type, is_key_compare_to::value> res = |
|
iter.node_->lower_bound(key, key_comp()); |
|
iter.position_ = static_cast<int>(res.value); |
|
if (res.IsEq()) { |
|
return {iter, MatchKind::kEq}; |
|
} |
|
// Note: in the non-key-compare-to case, we don't need to walk all the way |
|
// down the tree if the keys are equal, but determining equality would |
|
// require doing an extra comparison on each node on the way down, and we |
|
// will need to go all the way to the leaf node in the expected case. |
|
if (iter.node_->is_leaf()) { |
|
break; |
|
} |
|
iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_)); |
|
} |
|
// Note: in the non-key-compare-to case, the key may actually be equivalent |
|
// here (and the MatchKind::kNe is ignored). |
|
return {iter, MatchKind::kNe}; |
|
} |
|
|
|
template <typename P> |
|
template <typename K> |
|
auto btree<P>::internal_lower_bound(const K &key) const |
|
-> SearchResult<iterator, is_key_compare_to::value> { |
|
if (!params_type::template can_have_multiple_equivalent_keys<K>()) { |
|
SearchResult<iterator, is_key_compare_to::value> ret = internal_locate(key); |
|
ret.value = internal_last(ret.value); |
|
return ret; |
|
} |
|
iterator iter(const_cast<node_type *>(root())); |
|
SearchResult<size_type, is_key_compare_to::value> res; |
|
bool seen_eq = false; |
|
for (;;) { |
|
res = iter.node_->lower_bound(key, key_comp()); |
|
iter.position_ = static_cast<int>(res.value); |
|
if (iter.node_->is_leaf()) { |
|
break; |
|
} |
|
seen_eq = seen_eq || res.IsEq(); |
|
iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_)); |
|
} |
|
if (res.IsEq()) return {iter, MatchKind::kEq}; |
|
return {internal_last(iter), seen_eq ? MatchKind::kEq : MatchKind::kNe}; |
|
} |
|
|
|
template <typename P> |
|
template <typename K> |
|
auto btree<P>::internal_upper_bound(const K &key) const -> iterator { |
|
iterator iter(const_cast<node_type *>(root())); |
|
for (;;) { |
|
iter.position_ = static_cast<int>(iter.node_->upper_bound(key, key_comp())); |
|
if (iter.node_->is_leaf()) { |
|
break; |
|
} |
|
iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_)); |
|
} |
|
return internal_last(iter); |
|
} |
|
|
|
template <typename P> |
|
template <typename K> |
|
auto btree<P>::internal_find(const K &key) const -> iterator { |
|
SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key); |
|
if (res.HasMatch()) { |
|
if (res.IsEq()) { |
|
return res.value; |
|
} |
|
} else { |
|
const iterator iter = internal_last(res.value); |
|
if (iter.node_ != nullptr && !compare_keys(key, iter.key())) { |
|
return iter; |
|
} |
|
} |
|
return {nullptr, 0}; |
|
} |
|
|
|
template <typename P> |
|
typename btree<P>::size_type btree<P>::internal_verify( |
|
const node_type *node, const key_type *lo, const key_type *hi) const { |
|
assert(node->count() > 0); |
|
assert(node->count() <= node->max_count()); |
|
if (lo) { |
|
assert(!compare_keys(node->key(node->start()), *lo)); |
|
} |
|
if (hi) { |
|
assert(!compare_keys(*hi, node->key(node->finish() - 1))); |
|
} |
|
for (int i = node->start() + 1; i < node->finish(); ++i) { |
|
assert(!compare_keys(node->key(i), node->key(i - 1))); |
|
} |
|
size_type count = node->count(); |
|
if (node->is_internal()) { |
|
for (field_type i = node->start(); i <= node->finish(); ++i) { |
|
assert(node->child(i) != nullptr); |
|
assert(node->child(i)->parent() == node); |
|
assert(node->child(i)->position() == i); |
|
count += internal_verify(node->child(i), |
|
i == node->start() ? lo : &node->key(i - 1), |
|
i == node->finish() ? hi : &node->key(i)); |
|
} |
|
} |
|
return count; |
|
} |
|
|
|
struct btree_access { |
|
template <typename BtreeContainer, typename Pred> |
|
static auto erase_if(BtreeContainer &container, Pred pred) -> |
|
typename BtreeContainer::size_type { |
|
const auto initial_size = container.size(); |
|
auto &tree = container.tree_; |
|
auto *alloc = tree.mutable_allocator(); |
|
for (auto it = container.begin(); it != container.end();) { |
|
if (!pred(*it)) { |
|
++it; |
|
continue; |
|
} |
|
auto *node = it.node_; |
|
if (node->is_internal()) { |
|
// Handle internal nodes normally. |
|
it = container.erase(it); |
|
continue; |
|
} |
|
// If this is a leaf node, then we do all the erases from this node |
|
// at once before doing rebalancing. |
|
|
|
// The current position to transfer slots to. |
|
int to_pos = it.position_; |
|
node->value_destroy(it.position_, alloc); |
|
while (++it.position_ < node->finish()) { |
|
it.update_generation(); |
|
if (pred(*it)) { |
|
node->value_destroy(it.position_, alloc); |
|
} else { |
|
node->transfer(node->slot(to_pos++), node->slot(it.position_), alloc); |
|
} |
|
} |
|
const int num_deleted = node->finish() - to_pos; |
|
tree.size_ -= num_deleted; |
|
node->set_finish(to_pos); |
|
it.position_ = to_pos; |
|
it = tree.rebalance_after_delete(it); |
|
} |
|
return initial_size - container.size(); |
|
} |
|
}; |
|
|
|
#undef ABSL_BTREE_ENABLE_GENERATIONS |
|
|
|
} // namespace container_internal |
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
|
|
#endif // ABSL_CONTAINER_INTERNAL_BTREE_H_
|
|
|