Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
259 lines
8.8 KiB
259 lines
8.8 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#include "absl/random/uniform_int_distribution.h" |
|
|
|
#include <cmath> |
|
#include <cstdint> |
|
#include <iterator> |
|
#include <random> |
|
#include <sstream> |
|
#include <vector> |
|
|
|
#include "gmock/gmock.h" |
|
#include "gtest/gtest.h" |
|
#include "absl/base/internal/raw_logging.h" |
|
#include "absl/random/internal/chi_square.h" |
|
#include "absl/random/internal/distribution_test_util.h" |
|
#include "absl/random/internal/pcg_engine.h" |
|
#include "absl/random/internal/sequence_urbg.h" |
|
#include "absl/random/random.h" |
|
#include "absl/strings/str_cat.h" |
|
|
|
namespace { |
|
|
|
template <typename IntType> |
|
class UniformIntDistributionTest : public ::testing::Test {}; |
|
|
|
using IntTypes = ::testing::Types<int8_t, uint8_t, int16_t, uint16_t, int32_t, |
|
uint32_t, int64_t, uint64_t>; |
|
TYPED_TEST_SUITE(UniformIntDistributionTest, IntTypes); |
|
|
|
TYPED_TEST(UniformIntDistributionTest, ParamSerializeTest) { |
|
// This test essentially ensures that the parameters serialize, |
|
// not that the values generated cover the full range. |
|
using Limits = std::numeric_limits<TypeParam>; |
|
using param_type = |
|
typename absl::uniform_int_distribution<TypeParam>::param_type; |
|
const TypeParam kMin = std::is_unsigned<TypeParam>::value ? 37 : -105; |
|
const TypeParam kNegOneOrZero = std::is_unsigned<TypeParam>::value ? 0 : -1; |
|
|
|
constexpr int kCount = 1000; |
|
absl::InsecureBitGen gen; |
|
for (const auto& param : { |
|
param_type(), |
|
param_type(2, 2), // Same |
|
param_type(9, 32), |
|
param_type(kMin, 115), |
|
param_type(kNegOneOrZero, Limits::max()), |
|
param_type(Limits::min(), Limits::max()), |
|
param_type(Limits::lowest(), Limits::max()), |
|
param_type(Limits::min() + 1, Limits::max() - 1), |
|
}) { |
|
const auto a = param.a(); |
|
const auto b = param.b(); |
|
absl::uniform_int_distribution<TypeParam> before(a, b); |
|
EXPECT_EQ(before.a(), param.a()); |
|
EXPECT_EQ(before.b(), param.b()); |
|
|
|
{ |
|
// Initialize via param_type |
|
absl::uniform_int_distribution<TypeParam> via_param(param); |
|
EXPECT_EQ(via_param, before); |
|
} |
|
|
|
// Initialize via iostreams |
|
std::stringstream ss; |
|
ss << before; |
|
|
|
absl::uniform_int_distribution<TypeParam> after(Limits::min() + 3, |
|
Limits::max() - 5); |
|
|
|
EXPECT_NE(before.a(), after.a()); |
|
EXPECT_NE(before.b(), after.b()); |
|
EXPECT_NE(before.param(), after.param()); |
|
EXPECT_NE(before, after); |
|
|
|
ss >> after; |
|
|
|
EXPECT_EQ(before.a(), after.a()); |
|
EXPECT_EQ(before.b(), after.b()); |
|
EXPECT_EQ(before.param(), after.param()); |
|
EXPECT_EQ(before, after); |
|
|
|
// Smoke test. |
|
auto sample_min = after.max(); |
|
auto sample_max = after.min(); |
|
for (int i = 0; i < kCount; i++) { |
|
auto sample = after(gen); |
|
EXPECT_GE(sample, after.min()); |
|
EXPECT_LE(sample, after.max()); |
|
if (sample > sample_max) { |
|
sample_max = sample; |
|
} |
|
if (sample < sample_min) { |
|
sample_min = sample; |
|
} |
|
} |
|
std::string msg = absl::StrCat("Range: ", +sample_min, ", ", +sample_max); |
|
ABSL_RAW_LOG(INFO, "%s", msg.c_str()); |
|
} |
|
} |
|
|
|
TYPED_TEST(UniformIntDistributionTest, ViolatesPreconditionsDeathTest) { |
|
#if GTEST_HAS_DEATH_TEST |
|
// Hi < Lo |
|
EXPECT_DEBUG_DEATH({ absl::uniform_int_distribution<TypeParam> dist(10, 1); }, |
|
""); |
|
#endif // GTEST_HAS_DEATH_TEST |
|
#if defined(NDEBUG) |
|
// opt-mode, for invalid parameters, will generate a garbage value, |
|
// but should not enter an infinite loop. |
|
absl::InsecureBitGen gen; |
|
absl::uniform_int_distribution<TypeParam> dist(10, 1); |
|
auto x = dist(gen); |
|
|
|
// Any value will generate a non-empty string. |
|
EXPECT_FALSE(absl::StrCat(+x).empty()) << x; |
|
#endif // NDEBUG |
|
} |
|
|
|
TYPED_TEST(UniformIntDistributionTest, TestMoments) { |
|
constexpr int kSize = 100000; |
|
using Limits = std::numeric_limits<TypeParam>; |
|
using param_type = |
|
typename absl::uniform_int_distribution<TypeParam>::param_type; |
|
|
|
// We use a fixed bit generator for distribution accuracy tests. This allows |
|
// these tests to be deterministic, while still testing the qualify of the |
|
// implementation. |
|
absl::random_internal::pcg64_2018_engine rng{0x2B7E151628AED2A6}; |
|
|
|
std::vector<double> values(kSize); |
|
for (const auto& param : |
|
{param_type(0, Limits::max()), param_type(13, 127)}) { |
|
absl::uniform_int_distribution<TypeParam> dist(param); |
|
for (int i = 0; i < kSize; i++) { |
|
const auto sample = dist(rng); |
|
ASSERT_LE(dist.param().a(), sample); |
|
ASSERT_GE(dist.param().b(), sample); |
|
values[i] = sample; |
|
} |
|
|
|
auto moments = absl::random_internal::ComputeDistributionMoments(values); |
|
const double a = dist.param().a(); |
|
const double b = dist.param().b(); |
|
const double n = (b - a + 1); |
|
const double mean = (a + b) / 2; |
|
const double var = ((b - a + 1) * (b - a + 1) - 1) / 12; |
|
const double kurtosis = 3 - 6 * (n * n + 1) / (5 * (n * n - 1)); |
|
|
|
// TODO(ahh): this is not the right bound |
|
// empirically validated with --runs_per_test=10000. |
|
EXPECT_NEAR(mean, moments.mean, 0.01 * var); |
|
EXPECT_NEAR(var, moments.variance, 0.015 * var); |
|
EXPECT_NEAR(0.0, moments.skewness, 0.025); |
|
EXPECT_NEAR(kurtosis, moments.kurtosis, 0.02 * kurtosis); |
|
} |
|
} |
|
|
|
TYPED_TEST(UniformIntDistributionTest, ChiSquaredTest50) { |
|
using absl::random_internal::kChiSquared; |
|
|
|
constexpr size_t kTrials = 1000; |
|
constexpr int kBuckets = 50; // inclusive, so actally +1 |
|
constexpr double kExpected = |
|
static_cast<double>(kTrials) / static_cast<double>(kBuckets); |
|
|
|
// Empirically validated with --runs_per_test=10000. |
|
const int kThreshold = |
|
absl::random_internal::ChiSquareValue(kBuckets, 0.999999); |
|
|
|
const TypeParam min = std::is_unsigned<TypeParam>::value ? 37 : -37; |
|
const TypeParam max = min + kBuckets; |
|
|
|
// We use a fixed bit generator for distribution accuracy tests. This allows |
|
// these tests to be deterministic, while still testing the qualify of the |
|
// implementation. |
|
absl::random_internal::pcg64_2018_engine rng{0x2B7E151628AED2A6}; |
|
|
|
absl::uniform_int_distribution<TypeParam> dist(min, max); |
|
|
|
std::vector<int32_t> counts(kBuckets + 1, 0); |
|
for (size_t i = 0; i < kTrials; i++) { |
|
auto x = dist(rng); |
|
counts[x - min]++; |
|
} |
|
double chi_square = absl::random_internal::ChiSquareWithExpected( |
|
std::begin(counts), std::end(counts), kExpected); |
|
if (chi_square > kThreshold) { |
|
double p_value = |
|
absl::random_internal::ChiSquarePValue(chi_square, kBuckets); |
|
|
|
// Chi-squared test failed. Output does not appear to be uniform. |
|
std::string msg; |
|
for (const auto& a : counts) { |
|
absl::StrAppend(&msg, a, "\n"); |
|
} |
|
absl::StrAppend(&msg, kChiSquared, " p-value ", p_value, "\n"); |
|
absl::StrAppend(&msg, "High ", kChiSquared, " value: ", chi_square, " > ", |
|
kThreshold); |
|
ABSL_RAW_LOG(INFO, "%s", msg.c_str()); |
|
FAIL() << msg; |
|
} |
|
} |
|
|
|
TEST(UniformIntDistributionTest, StabilityTest) { |
|
// absl::uniform_int_distribution stability relies only on integer operations. |
|
absl::random_internal::sequence_urbg urbg( |
|
{0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull, |
|
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull, |
|
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull, |
|
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull}); |
|
|
|
std::vector<int> output(12); |
|
|
|
{ |
|
absl::uniform_int_distribution<int32_t> dist(0, 4); |
|
for (auto& v : output) { |
|
v = dist(urbg); |
|
} |
|
} |
|
EXPECT_EQ(12, urbg.invocations()); |
|
EXPECT_THAT(output, testing::ElementsAre(4, 4, 3, 2, 1, 0, 1, 4, 3, 1, 3, 1)); |
|
|
|
{ |
|
urbg.reset(); |
|
absl::uniform_int_distribution<int32_t> dist(0, 100); |
|
for (auto& v : output) { |
|
v = dist(urbg); |
|
} |
|
} |
|
EXPECT_EQ(12, urbg.invocations()); |
|
EXPECT_THAT(output, testing::ElementsAre(97, 86, 75, 41, 36, 16, 38, 92, 67, |
|
30, 80, 38)); |
|
|
|
{ |
|
urbg.reset(); |
|
absl::uniform_int_distribution<int32_t> dist(0, 10000); |
|
for (auto& v : output) { |
|
v = dist(urbg); |
|
} |
|
} |
|
EXPECT_EQ(12, urbg.invocations()); |
|
EXPECT_THAT(output, testing::ElementsAre(9648, 8562, 7439, 4089, 3571, 1602, |
|
3813, 9195, 6641, 2986, 7956, 3765)); |
|
} |
|
|
|
} // namespace
|
|
|