Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
638 lines
23 KiB
638 lines
23 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
// HERMETIC NOTE: The randen_hwaes target must not introduce duplicate |
|
// symbols from arbitrary system and other headers, since it may be built |
|
// with different flags from other targets, using different levels of |
|
// optimization, potentially introducing ODR violations. |
|
|
|
#include "absl/random/internal/randen_hwaes.h" |
|
|
|
#include <cstdint> |
|
#include <cstring> |
|
|
|
#include "absl/base/attributes.h" |
|
#include "absl/random/internal/platform.h" |
|
|
|
// ABSL_RANDEN_HWAES_IMPL indicates whether this file will contain |
|
// a hardware accelerated implementation of randen, or whether it |
|
// will contain stubs that exit the process. |
|
#if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32) |
|
// The platform.h directives are sufficient to indicate whether |
|
// we should build accelerated implementations for x86. |
|
#if (ABSL_HAVE_ACCELERATED_AES || ABSL_RANDOM_INTERNAL_AES_DISPATCH) |
|
#define ABSL_RANDEN_HWAES_IMPL 1 |
|
#endif |
|
#elif defined(ABSL_ARCH_PPC) |
|
// The platform.h directives are sufficient to indicate whether |
|
// we should build accelerated implementations for PPC. |
|
// |
|
// NOTE: This has mostly been tested on 64-bit Power variants, |
|
// and not embedded cpus such as powerpc32-8540 |
|
#if ABSL_HAVE_ACCELERATED_AES |
|
#define ABSL_RANDEN_HWAES_IMPL 1 |
|
#endif |
|
#elif defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64) |
|
// ARM is somewhat more complicated. We might support crypto natively... |
|
#if ABSL_HAVE_ACCELERATED_AES || \ |
|
(defined(__ARM_NEON) && defined(__ARM_FEATURE_CRYPTO)) |
|
#define ABSL_RANDEN_HWAES_IMPL 1 |
|
|
|
#elif ABSL_RANDOM_INTERNAL_AES_DISPATCH && !defined(__APPLE__) && \ |
|
(defined(__GNUC__) && __GNUC__ > 4 || __GNUC__ == 4 && __GNUC_MINOR__ > 9) |
|
// ...or, on GCC, we can use an ASM directive to |
|
// instruct the assember to allow crypto instructions. |
|
#define ABSL_RANDEN_HWAES_IMPL 1 |
|
#define ABSL_RANDEN_HWAES_IMPL_CRYPTO_DIRECTIVE 1 |
|
#endif |
|
#else |
|
// HWAES is unsupported by these architectures / platforms: |
|
// __myriad2__ |
|
// __mips__ |
|
// |
|
// Other architectures / platforms are unknown. |
|
// |
|
// See the Abseil documentation on supported macros at: |
|
// https://abseil.io/docs/cpp/platforms/macros |
|
#endif |
|
|
|
#if !defined(ABSL_RANDEN_HWAES_IMPL) |
|
// No accelerated implementation is supported. |
|
// The RandenHwAes functions are stubs that print an error and exit. |
|
|
|
#include <cstdio> |
|
#include <cstdlib> |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
namespace random_internal { |
|
|
|
// No accelerated implementation. |
|
bool HasRandenHwAesImplementation() { return false; } |
|
|
|
// NOLINTNEXTLINE |
|
const void* RandenHwAes::GetKeys() { |
|
// Attempted to dispatch to an unsupported dispatch target. |
|
const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH; |
|
fprintf(stderr, "AES Hardware detection failed (%d).\n", d); |
|
exit(1); |
|
return nullptr; |
|
} |
|
|
|
// NOLINTNEXTLINE |
|
void RandenHwAes::Absorb(const void*, void*) { |
|
// Attempted to dispatch to an unsupported dispatch target. |
|
const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH; |
|
fprintf(stderr, "AES Hardware detection failed (%d).\n", d); |
|
exit(1); |
|
} |
|
|
|
// NOLINTNEXTLINE |
|
void RandenHwAes::Generate(const void*, void*) { |
|
// Attempted to dispatch to an unsupported dispatch target. |
|
const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH; |
|
fprintf(stderr, "AES Hardware detection failed (%d).\n", d); |
|
exit(1); |
|
} |
|
|
|
} // namespace random_internal |
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
|
|
#else // defined(ABSL_RANDEN_HWAES_IMPL) |
|
// |
|
// Accelerated implementations are supported. |
|
// We need the per-architecture includes and defines. |
|
// |
|
|
|
#include "absl/random/internal/randen_traits.h" |
|
|
|
// TARGET_CRYPTO defines a crypto attribute for each architecture. |
|
// |
|
// NOTE: Evaluate whether we should eliminate ABSL_TARGET_CRYPTO. |
|
#if (defined(__clang__) || defined(__GNUC__)) |
|
#if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32) |
|
#define ABSL_TARGET_CRYPTO __attribute__((target("aes"))) |
|
#elif defined(ABSL_ARCH_PPC) |
|
#define ABSL_TARGET_CRYPTO __attribute__((target("crypto"))) |
|
#else |
|
#define ABSL_TARGET_CRYPTO |
|
#endif |
|
#else |
|
#define ABSL_TARGET_CRYPTO |
|
#endif |
|
|
|
#if defined(ABSL_ARCH_PPC) |
|
// NOTE: Keep in mind that PPC can operate in little-endian or big-endian mode, |
|
// however the PPC altivec vector registers (and thus the AES instructions) |
|
// always operate in big-endian mode. |
|
|
|
#include <altivec.h> |
|
// <altivec.h> #defines vector __vector; in C++, this is bad form. |
|
#undef vector |
|
|
|
// Rely on the PowerPC AltiVec vector operations for accelerated AES |
|
// instructions. GCC support of the PPC vector types is described in: |
|
// https://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/PowerPC-AltiVec_002fVSX-Built-in-Functions.html |
|
// |
|
// Already provides operator^=. |
|
using Vector128 = __vector unsigned long long; // NOLINT(runtime/int) |
|
|
|
namespace { |
|
|
|
inline ABSL_TARGET_CRYPTO Vector128 ReverseBytes(const Vector128& v) { |
|
// Reverses the bytes of the vector. |
|
const __vector unsigned char perm = {15, 14, 13, 12, 11, 10, 9, 8, |
|
7, 6, 5, 4, 3, 2, 1, 0}; |
|
return vec_perm(v, v, perm); |
|
} |
|
|
|
// WARNING: these load/store in native byte order. It is OK to load and then |
|
// store an unchanged vector, but interpreting the bits as a number or input |
|
// to AES will have undefined results. |
|
inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) { |
|
return vec_vsx_ld(0, reinterpret_cast<const Vector128*>(from)); |
|
} |
|
|
|
inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) { |
|
vec_vsx_st(v, 0, reinterpret_cast<Vector128*>(to)); |
|
} |
|
|
|
// One round of AES. "round_key" is a public constant for breaking the |
|
// symmetry of AES (ensures previously equal columns differ afterwards). |
|
inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state, |
|
const Vector128& round_key) { |
|
return Vector128(__builtin_crypto_vcipher(state, round_key)); |
|
} |
|
|
|
// Enables native loads in the round loop by pre-swapping. |
|
inline ABSL_TARGET_CRYPTO void SwapEndian(uint64_t* state) { |
|
using absl::random_internal::RandenTraits; |
|
constexpr size_t kLanes = 2; |
|
constexpr size_t kFeistelBlocks = RandenTraits::kFeistelBlocks; |
|
|
|
for (uint32_t branch = 0; branch < kFeistelBlocks; ++branch) { |
|
const Vector128 v = ReverseBytes(Vector128Load(state + kLanes * branch)); |
|
Vector128Store(v, state + kLanes * branch); |
|
} |
|
} |
|
|
|
} // namespace |
|
|
|
#elif defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64) |
|
|
|
// This asm directive will cause the file to be compiled with crypto extensions |
|
// whether or not the cpu-architecture supports it. |
|
#if ABSL_RANDEN_HWAES_IMPL_CRYPTO_DIRECTIVE |
|
asm(".arch_extension crypto\n"); |
|
|
|
// Override missing defines. |
|
#if !defined(__ARM_NEON) |
|
#define __ARM_NEON 1 |
|
#endif |
|
|
|
#if !defined(__ARM_FEATURE_CRYPTO) |
|
#define __ARM_FEATURE_CRYPTO 1 |
|
#endif |
|
|
|
#endif |
|
|
|
// Rely on the ARM NEON+Crypto advanced simd types, defined in <arm_neon.h>. |
|
// uint8x16_t is the user alias for underlying __simd128_uint8_t type. |
|
// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf |
|
// |
|
// <arm_neon> defines the following |
|
// |
|
// typedef __attribute__((neon_vector_type(16))) uint8_t uint8x16_t; |
|
// typedef __attribute__((neon_vector_type(16))) int8_t int8x16_t; |
|
// typedef __attribute__((neon_polyvector_type(16))) int8_t poly8x16_t; |
|
// |
|
// vld1q_v |
|
// vst1q_v |
|
// vaeseq_v |
|
// vaesmcq_v |
|
#include <arm_neon.h> |
|
|
|
// Already provides operator^=. |
|
using Vector128 = uint8x16_t; |
|
|
|
namespace { |
|
|
|
inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) { |
|
return vld1q_u8(reinterpret_cast<const uint8_t*>(from)); |
|
} |
|
|
|
inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) { |
|
vst1q_u8(reinterpret_cast<uint8_t*>(to), v); |
|
} |
|
|
|
// One round of AES. "round_key" is a public constant for breaking the |
|
// symmetry of AES (ensures previously equal columns differ afterwards). |
|
inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state, |
|
const Vector128& round_key) { |
|
// It is important to always use the full round function - omitting the |
|
// final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf] |
|
// and does not help because we never decrypt. |
|
// |
|
// Note that ARM divides AES instructions differently than x86 / PPC, |
|
// And we need to skip the first AddRoundKey step and add an extra |
|
// AddRoundKey step to the end. Lucky for us this is just XOR. |
|
return vaesmcq_u8(vaeseq_u8(state, uint8x16_t{})) ^ round_key; |
|
} |
|
|
|
inline ABSL_TARGET_CRYPTO void SwapEndian(uint64_t*) {} |
|
|
|
} // namespace |
|
|
|
#elif defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32) |
|
// On x86 we rely on the aesni instructions |
|
#include <wmmintrin.h> |
|
|
|
namespace { |
|
|
|
// Vector128 class is only wrapper for __m128i, benchmark indicates that it's |
|
// faster than using __m128i directly. |
|
class Vector128 { |
|
public: |
|
// Convert from/to intrinsics. |
|
inline explicit Vector128(const __m128i& Vector128) : data_(Vector128) {} |
|
|
|
inline __m128i data() const { return data_; } |
|
|
|
inline Vector128& operator^=(const Vector128& other) { |
|
data_ = _mm_xor_si128(data_, other.data()); |
|
return *this; |
|
} |
|
|
|
private: |
|
__m128i data_; |
|
}; |
|
|
|
inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) { |
|
return Vector128(_mm_load_si128(reinterpret_cast<const __m128i*>(from))); |
|
} |
|
|
|
inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) { |
|
_mm_store_si128(reinterpret_cast<__m128i*>(to), v.data()); |
|
} |
|
|
|
// One round of AES. "round_key" is a public constant for breaking the |
|
// symmetry of AES (ensures previously equal columns differ afterwards). |
|
inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state, |
|
const Vector128& round_key) { |
|
// It is important to always use the full round function - omitting the |
|
// final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf] |
|
// and does not help because we never decrypt. |
|
return Vector128(_mm_aesenc_si128(state.data(), round_key.data())); |
|
} |
|
|
|
inline ABSL_TARGET_CRYPTO void SwapEndian(uint64_t*) {} |
|
|
|
} // namespace |
|
|
|
#endif |
|
|
|
namespace { |
|
|
|
// u64x2 is a 128-bit, (2 x uint64_t lanes) struct used to store |
|
// the randen_keys. |
|
struct alignas(16) u64x2 { |
|
constexpr u64x2(uint64_t hi, uint64_t lo) |
|
#if defined(ABSL_ARCH_PPC) |
|
// This has been tested with PPC running in little-endian mode; |
|
// We byte-swap the u64x2 structure from little-endian to big-endian |
|
// because altivec always runs in big-endian mode. |
|
: v{__builtin_bswap64(hi), __builtin_bswap64(lo)} { |
|
#else |
|
: v{lo, hi} { |
|
#endif |
|
} |
|
|
|
constexpr bool operator==(const u64x2& other) const { |
|
return v[0] == other.v[0] && v[1] == other.v[1]; |
|
} |
|
|
|
constexpr bool operator!=(const u64x2& other) const { |
|
return !(*this == other); |
|
} |
|
|
|
uint64_t v[2]; |
|
}; // namespace |
|
|
|
#ifdef __clang__ |
|
#pragma clang diagnostic push |
|
#pragma clang diagnostic ignored "-Wunknown-pragmas" |
|
#endif |
|
|
|
// At this point, all of the platform-specific features have been defined / |
|
// implemented. |
|
// |
|
// REQUIRES: using u64x2 = ... |
|
// REQUIRES: using Vector128 = ... |
|
// REQUIRES: Vector128 Vector128Load(void*) {...} |
|
// REQUIRES: void Vector128Store(Vector128, void*) {...} |
|
// REQUIRES: Vector128 AesRound(Vector128, Vector128) {...} |
|
// REQUIRES: void SwapEndian(uint64_t*) {...} |
|
// |
|
// PROVIDES: absl::random_internal::RandenHwAes::Absorb |
|
// PROVIDES: absl::random_internal::RandenHwAes::Generate |
|
|
|
// RANDen = RANDom generator or beetroots in Swiss German. |
|
// 'Strong' (well-distributed, unpredictable, backtracking-resistant) random |
|
// generator, faster in some benchmarks than std::mt19937_64 and pcg64_c32. |
|
// |
|
// High-level summary: |
|
// 1) Reverie (see "A Robust and Sponge-Like PRNG with Improved Efficiency") is |
|
// a sponge-like random generator that requires a cryptographic permutation. |
|
// It improves upon "Provably Robust Sponge-Based PRNGs and KDFs" by |
|
// achieving backtracking resistance with only one Permute() per buffer. |
|
// |
|
// 2) "Simpira v2: A Family of Efficient Permutations Using the AES Round |
|
// Function" constructs up to 1024-bit permutations using an improved |
|
// Generalized Feistel network with 2-round AES-128 functions. This Feistel |
|
// block shuffle achieves diffusion faster and is less vulnerable to |
|
// sliced-biclique attacks than the Type-2 cyclic shuffle. |
|
// |
|
// 3) "Improving the Generalized Feistel" and "New criterion for diffusion |
|
// property" extends the same kind of improved Feistel block shuffle to 16 |
|
// branches, which enables a 2048-bit permutation. |
|
// |
|
// We combine these three ideas and also change Simpira's subround keys from |
|
// structured/low-entropy counters to digits of Pi. |
|
|
|
// Randen constants. |
|
using absl::random_internal::RandenTraits; |
|
constexpr size_t kStateBytes = RandenTraits::kStateBytes; |
|
constexpr size_t kCapacityBytes = RandenTraits::kCapacityBytes; |
|
constexpr size_t kFeistelBlocks = RandenTraits::kFeistelBlocks; |
|
constexpr size_t kFeistelRounds = RandenTraits::kFeistelRounds; |
|
constexpr size_t kFeistelFunctions = RandenTraits::kFeistelFunctions; |
|
|
|
// Independent keys (272 = 2.1 KiB) for the first AES subround of each function. |
|
constexpr size_t kKeys = kFeistelRounds * kFeistelFunctions; |
|
|
|
// INCLUDE keys. |
|
#include "absl/random/internal/randen-keys.inc" |
|
|
|
static_assert(kKeys == kRoundKeys, "kKeys and kRoundKeys must be equal"); |
|
static_assert(round_keys[kKeys - 1] != u64x2(0, 0), |
|
"Too few round_keys initializers"); |
|
|
|
// Number of uint64_t lanes per 128-bit vector; |
|
constexpr size_t kLanes = 2; |
|
|
|
// Block shuffles applies a shuffle to the entire state between AES rounds. |
|
// Improved odd-even shuffle from "New criterion for diffusion property". |
|
inline ABSL_TARGET_CRYPTO void BlockShuffle(uint64_t* state) { |
|
static_assert(kFeistelBlocks == 16, "Expecting 16 FeistelBlocks."); |
|
|
|
constexpr size_t shuffle[kFeistelBlocks] = {7, 2, 13, 4, 11, 8, 3, 6, |
|
15, 0, 9, 10, 1, 14, 5, 12}; |
|
|
|
// The fully unrolled loop without the memcpy improves the speed by about |
|
// 30% over the equivalent loop. |
|
const Vector128 v0 = Vector128Load(state + kLanes * shuffle[0]); |
|
const Vector128 v1 = Vector128Load(state + kLanes * shuffle[1]); |
|
const Vector128 v2 = Vector128Load(state + kLanes * shuffle[2]); |
|
const Vector128 v3 = Vector128Load(state + kLanes * shuffle[3]); |
|
const Vector128 v4 = Vector128Load(state + kLanes * shuffle[4]); |
|
const Vector128 v5 = Vector128Load(state + kLanes * shuffle[5]); |
|
const Vector128 v6 = Vector128Load(state + kLanes * shuffle[6]); |
|
const Vector128 v7 = Vector128Load(state + kLanes * shuffle[7]); |
|
const Vector128 w0 = Vector128Load(state + kLanes * shuffle[8]); |
|
const Vector128 w1 = Vector128Load(state + kLanes * shuffle[9]); |
|
const Vector128 w2 = Vector128Load(state + kLanes * shuffle[10]); |
|
const Vector128 w3 = Vector128Load(state + kLanes * shuffle[11]); |
|
const Vector128 w4 = Vector128Load(state + kLanes * shuffle[12]); |
|
const Vector128 w5 = Vector128Load(state + kLanes * shuffle[13]); |
|
const Vector128 w6 = Vector128Load(state + kLanes * shuffle[14]); |
|
const Vector128 w7 = Vector128Load(state + kLanes * shuffle[15]); |
|
|
|
Vector128Store(v0, state + kLanes * 0); |
|
Vector128Store(v1, state + kLanes * 1); |
|
Vector128Store(v2, state + kLanes * 2); |
|
Vector128Store(v3, state + kLanes * 3); |
|
Vector128Store(v4, state + kLanes * 4); |
|
Vector128Store(v5, state + kLanes * 5); |
|
Vector128Store(v6, state + kLanes * 6); |
|
Vector128Store(v7, state + kLanes * 7); |
|
Vector128Store(w0, state + kLanes * 8); |
|
Vector128Store(w1, state + kLanes * 9); |
|
Vector128Store(w2, state + kLanes * 10); |
|
Vector128Store(w3, state + kLanes * 11); |
|
Vector128Store(w4, state + kLanes * 12); |
|
Vector128Store(w5, state + kLanes * 13); |
|
Vector128Store(w6, state + kLanes * 14); |
|
Vector128Store(w7, state + kLanes * 15); |
|
} |
|
|
|
// Feistel round function using two AES subrounds. Very similar to F() |
|
// from Simpira v2, but with independent subround keys. Uses 17 AES rounds |
|
// per 16 bytes (vs. 10 for AES-CTR). Computing eight round functions in |
|
// parallel hides the 7-cycle AESNI latency on HSW. Note that the Feistel |
|
// XORs are 'free' (included in the second AES instruction). |
|
inline ABSL_TARGET_CRYPTO const u64x2* FeistelRound( |
|
uint64_t* state, const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys) { |
|
static_assert(kFeistelBlocks == 16, "Expecting 16 FeistelBlocks."); |
|
|
|
// MSVC does a horrible job at unrolling loops. |
|
// So we unroll the loop by hand to improve the performance. |
|
const Vector128 s0 = Vector128Load(state + kLanes * 0); |
|
const Vector128 s1 = Vector128Load(state + kLanes * 1); |
|
const Vector128 s2 = Vector128Load(state + kLanes * 2); |
|
const Vector128 s3 = Vector128Load(state + kLanes * 3); |
|
const Vector128 s4 = Vector128Load(state + kLanes * 4); |
|
const Vector128 s5 = Vector128Load(state + kLanes * 5); |
|
const Vector128 s6 = Vector128Load(state + kLanes * 6); |
|
const Vector128 s7 = Vector128Load(state + kLanes * 7); |
|
const Vector128 s8 = Vector128Load(state + kLanes * 8); |
|
const Vector128 s9 = Vector128Load(state + kLanes * 9); |
|
const Vector128 s10 = Vector128Load(state + kLanes * 10); |
|
const Vector128 s11 = Vector128Load(state + kLanes * 11); |
|
const Vector128 s12 = Vector128Load(state + kLanes * 12); |
|
const Vector128 s13 = Vector128Load(state + kLanes * 13); |
|
const Vector128 s14 = Vector128Load(state + kLanes * 14); |
|
const Vector128 s15 = Vector128Load(state + kLanes * 15); |
|
|
|
// Encode even blocks with keys. |
|
const Vector128 e0 = AesRound(s0, Vector128Load(keys + 0)); |
|
const Vector128 e2 = AesRound(s2, Vector128Load(keys + 1)); |
|
const Vector128 e4 = AesRound(s4, Vector128Load(keys + 2)); |
|
const Vector128 e6 = AesRound(s6, Vector128Load(keys + 3)); |
|
const Vector128 e8 = AesRound(s8, Vector128Load(keys + 4)); |
|
const Vector128 e10 = AesRound(s10, Vector128Load(keys + 5)); |
|
const Vector128 e12 = AesRound(s12, Vector128Load(keys + 6)); |
|
const Vector128 e14 = AesRound(s14, Vector128Load(keys + 7)); |
|
|
|
// Encode odd blocks with even output from above. |
|
const Vector128 o1 = AesRound(e0, s1); |
|
const Vector128 o3 = AesRound(e2, s3); |
|
const Vector128 o5 = AesRound(e4, s5); |
|
const Vector128 o7 = AesRound(e6, s7); |
|
const Vector128 o9 = AesRound(e8, s9); |
|
const Vector128 o11 = AesRound(e10, s11); |
|
const Vector128 o13 = AesRound(e12, s13); |
|
const Vector128 o15 = AesRound(e14, s15); |
|
|
|
// Store odd blocks. (These will be shuffled later). |
|
Vector128Store(o1, state + kLanes * 1); |
|
Vector128Store(o3, state + kLanes * 3); |
|
Vector128Store(o5, state + kLanes * 5); |
|
Vector128Store(o7, state + kLanes * 7); |
|
Vector128Store(o9, state + kLanes * 9); |
|
Vector128Store(o11, state + kLanes * 11); |
|
Vector128Store(o13, state + kLanes * 13); |
|
Vector128Store(o15, state + kLanes * 15); |
|
|
|
return keys + 8; |
|
} |
|
|
|
// Cryptographic permutation based via type-2 Generalized Feistel Network. |
|
// Indistinguishable from ideal by chosen-ciphertext adversaries using less than |
|
// 2^64 queries if the round function is a PRF. This is similar to the b=8 case |
|
// of Simpira v2, but more efficient than its generic construction for b=16. |
|
inline ABSL_TARGET_CRYPTO void Permute( |
|
const void* ABSL_RANDOM_INTERNAL_RESTRICT keys, uint64_t* state) { |
|
const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys128 = |
|
static_cast<const u64x2*>(keys); |
|
|
|
// (Successfully unrolled; the first iteration jumps into the second half) |
|
#ifdef __clang__ |
|
#pragma clang loop unroll_count(2) |
|
#endif |
|
for (size_t round = 0; round < kFeistelRounds; ++round) { |
|
keys128 = FeistelRound(state, keys128); |
|
BlockShuffle(state); |
|
} |
|
} |
|
|
|
} // namespace |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
namespace random_internal { |
|
|
|
bool HasRandenHwAesImplementation() { return true; } |
|
|
|
const void* ABSL_TARGET_CRYPTO RandenHwAes::GetKeys() { |
|
// Round keys for one AES per Feistel round and branch. |
|
// The canonical implementation uses first digits of Pi. |
|
return round_keys; |
|
} |
|
|
|
// NOLINTNEXTLINE |
|
void ABSL_TARGET_CRYPTO RandenHwAes::Absorb(const void* seed_void, |
|
void* state_void) { |
|
auto* state = static_cast<uint64_t*>(state_void); |
|
const auto* seed = static_cast<const uint64_t*>(seed_void); |
|
|
|
constexpr size_t kCapacityBlocks = kCapacityBytes / sizeof(Vector128); |
|
constexpr size_t kStateBlocks = kStateBytes / sizeof(Vector128); |
|
|
|
static_assert(kCapacityBlocks * sizeof(Vector128) == kCapacityBytes, |
|
"Not i*V"); |
|
static_assert(kCapacityBlocks == 1, "Unexpected Randen kCapacityBlocks"); |
|
static_assert(kStateBlocks == 16, "Unexpected Randen kStateBlocks"); |
|
|
|
Vector128 b1 = Vector128Load(state + kLanes * 1); |
|
b1 ^= Vector128Load(seed + kLanes * 0); |
|
Vector128Store(b1, state + kLanes * 1); |
|
|
|
Vector128 b2 = Vector128Load(state + kLanes * 2); |
|
b2 ^= Vector128Load(seed + kLanes * 1); |
|
Vector128Store(b2, state + kLanes * 2); |
|
|
|
Vector128 b3 = Vector128Load(state + kLanes * 3); |
|
b3 ^= Vector128Load(seed + kLanes * 2); |
|
Vector128Store(b3, state + kLanes * 3); |
|
|
|
Vector128 b4 = Vector128Load(state + kLanes * 4); |
|
b4 ^= Vector128Load(seed + kLanes * 3); |
|
Vector128Store(b4, state + kLanes * 4); |
|
|
|
Vector128 b5 = Vector128Load(state + kLanes * 5); |
|
b5 ^= Vector128Load(seed + kLanes * 4); |
|
Vector128Store(b5, state + kLanes * 5); |
|
|
|
Vector128 b6 = Vector128Load(state + kLanes * 6); |
|
b6 ^= Vector128Load(seed + kLanes * 5); |
|
Vector128Store(b6, state + kLanes * 6); |
|
|
|
Vector128 b7 = Vector128Load(state + kLanes * 7); |
|
b7 ^= Vector128Load(seed + kLanes * 6); |
|
Vector128Store(b7, state + kLanes * 7); |
|
|
|
Vector128 b8 = Vector128Load(state + kLanes * 8); |
|
b8 ^= Vector128Load(seed + kLanes * 7); |
|
Vector128Store(b8, state + kLanes * 8); |
|
|
|
Vector128 b9 = Vector128Load(state + kLanes * 9); |
|
b9 ^= Vector128Load(seed + kLanes * 8); |
|
Vector128Store(b9, state + kLanes * 9); |
|
|
|
Vector128 b10 = Vector128Load(state + kLanes * 10); |
|
b10 ^= Vector128Load(seed + kLanes * 9); |
|
Vector128Store(b10, state + kLanes * 10); |
|
|
|
Vector128 b11 = Vector128Load(state + kLanes * 11); |
|
b11 ^= Vector128Load(seed + kLanes * 10); |
|
Vector128Store(b11, state + kLanes * 11); |
|
|
|
Vector128 b12 = Vector128Load(state + kLanes * 12); |
|
b12 ^= Vector128Load(seed + kLanes * 11); |
|
Vector128Store(b12, state + kLanes * 12); |
|
|
|
Vector128 b13 = Vector128Load(state + kLanes * 13); |
|
b13 ^= Vector128Load(seed + kLanes * 12); |
|
Vector128Store(b13, state + kLanes * 13); |
|
|
|
Vector128 b14 = Vector128Load(state + kLanes * 14); |
|
b14 ^= Vector128Load(seed + kLanes * 13); |
|
Vector128Store(b14, state + kLanes * 14); |
|
|
|
Vector128 b15 = Vector128Load(state + kLanes * 15); |
|
b15 ^= Vector128Load(seed + kLanes * 14); |
|
Vector128Store(b15, state + kLanes * 15); |
|
} |
|
|
|
// NOLINTNEXTLINE |
|
void ABSL_TARGET_CRYPTO RandenHwAes::Generate(const void* keys, |
|
void* state_void) { |
|
static_assert(kCapacityBytes == sizeof(Vector128), "Capacity mismatch"); |
|
|
|
auto* state = static_cast<uint64_t*>(state_void); |
|
|
|
const Vector128 prev_inner = Vector128Load(state); |
|
|
|
SwapEndian(state); |
|
|
|
Permute(keys, state); |
|
|
|
SwapEndian(state); |
|
|
|
// Ensure backtracking resistance. |
|
Vector128 inner = Vector128Load(state); |
|
inner ^= prev_inner; |
|
Vector128Store(inner, state); |
|
} |
|
|
|
#ifdef __clang__ |
|
#pragma clang diagnostic pop |
|
#endif |
|
|
|
} // namespace random_internal |
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
|
|
#endif // (ABSL_RANDEN_HWAES_IMPL)
|
|
|