Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
532 lines
19 KiB
532 lines
19 KiB
// Copyright 2018 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
// |
|
// ----------------------------------------------------------------------------- |
|
// File: fixed_array.h |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// A `FixedArray<T>` represents a non-resizable array of `T` where the length of |
|
// the array can be determined at run-time. It is a good replacement for |
|
// non-standard and deprecated uses of `alloca()` and variable length arrays |
|
// within the GCC extension. (See |
|
// https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html). |
|
// |
|
// `FixedArray` allocates small arrays inline, keeping performance fast by |
|
// avoiding heap operations. It also helps reduce the chances of |
|
// accidentally overflowing your stack if large input is passed to |
|
// your function. |
|
|
|
#ifndef ABSL_CONTAINER_FIXED_ARRAY_H_ |
|
#define ABSL_CONTAINER_FIXED_ARRAY_H_ |
|
|
|
#include <algorithm> |
|
#include <cassert> |
|
#include <cstddef> |
|
#include <initializer_list> |
|
#include <iterator> |
|
#include <limits> |
|
#include <memory> |
|
#include <new> |
|
#include <type_traits> |
|
|
|
#include "absl/algorithm/algorithm.h" |
|
#include "absl/base/config.h" |
|
#include "absl/base/dynamic_annotations.h" |
|
#include "absl/base/internal/throw_delegate.h" |
|
#include "absl/base/macros.h" |
|
#include "absl/base/optimization.h" |
|
#include "absl/base/port.h" |
|
#include "absl/container/internal/compressed_tuple.h" |
|
#include "absl/memory/memory.h" |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
|
|
constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1); |
|
|
|
// ----------------------------------------------------------------------------- |
|
// FixedArray |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// A `FixedArray` provides a run-time fixed-size array, allocating a small array |
|
// inline for efficiency. |
|
// |
|
// Most users should not specify an `inline_elements` argument and let |
|
// `FixedArray` automatically determine the number of elements |
|
// to store inline based on `sizeof(T)`. If `inline_elements` is specified, the |
|
// `FixedArray` implementation will use inline storage for arrays with a |
|
// length <= `inline_elements`. |
|
// |
|
// Note that a `FixedArray` constructed with a `size_type` argument will |
|
// default-initialize its values by leaving trivially constructible types |
|
// uninitialized (e.g. int, int[4], double), and others default-constructed. |
|
// This matches the behavior of c-style arrays and `std::array`, but not |
|
// `std::vector`. |
|
// |
|
// Note that `FixedArray` does not provide a public allocator; if it requires a |
|
// heap allocation, it will do so with global `::operator new[]()` and |
|
// `::operator delete[]()`, even if T provides class-scope overrides for these |
|
// operators. |
|
template <typename T, size_t N = kFixedArrayUseDefault, |
|
typename A = std::allocator<T>> |
|
class FixedArray { |
|
static_assert(!std::is_array<T>::value || std::extent<T>::value > 0, |
|
"Arrays with unknown bounds cannot be used with FixedArray."); |
|
|
|
static constexpr size_t kInlineBytesDefault = 256; |
|
|
|
using AllocatorTraits = std::allocator_traits<A>; |
|
// std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17, |
|
// but this seems to be mostly pedantic. |
|
template <typename Iterator> |
|
using EnableIfForwardIterator = absl::enable_if_t<std::is_convertible< |
|
typename std::iterator_traits<Iterator>::iterator_category, |
|
std::forward_iterator_tag>::value>; |
|
static constexpr bool NoexceptCopyable() { |
|
return std::is_nothrow_copy_constructible<StorageElement>::value && |
|
absl::allocator_is_nothrow<allocator_type>::value; |
|
} |
|
static constexpr bool NoexceptMovable() { |
|
return std::is_nothrow_move_constructible<StorageElement>::value && |
|
absl::allocator_is_nothrow<allocator_type>::value; |
|
} |
|
static constexpr bool DefaultConstructorIsNonTrivial() { |
|
return !absl::is_trivially_default_constructible<StorageElement>::value; |
|
} |
|
|
|
public: |
|
using allocator_type = typename AllocatorTraits::allocator_type; |
|
using value_type = typename AllocatorTraits::value_type; |
|
using pointer = typename AllocatorTraits::pointer; |
|
using const_pointer = typename AllocatorTraits::const_pointer; |
|
using reference = value_type&; |
|
using const_reference = const value_type&; |
|
using size_type = typename AllocatorTraits::size_type; |
|
using difference_type = typename AllocatorTraits::difference_type; |
|
using iterator = pointer; |
|
using const_iterator = const_pointer; |
|
using reverse_iterator = std::reverse_iterator<iterator>; |
|
using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
|
|
|
static constexpr size_type inline_elements = |
|
(N == kFixedArrayUseDefault ? kInlineBytesDefault / sizeof(value_type) |
|
: static_cast<size_type>(N)); |
|
|
|
FixedArray( |
|
const FixedArray& other, |
|
const allocator_type& a = allocator_type()) noexcept(NoexceptCopyable()) |
|
: FixedArray(other.begin(), other.end(), a) {} |
|
|
|
FixedArray( |
|
FixedArray&& other, |
|
const allocator_type& a = allocator_type()) noexcept(NoexceptMovable()) |
|
: FixedArray(std::make_move_iterator(other.begin()), |
|
std::make_move_iterator(other.end()), a) {} |
|
|
|
// Creates an array object that can store `n` elements. |
|
// Note that trivially constructible elements will be uninitialized. |
|
explicit FixedArray(size_type n, const allocator_type& a = allocator_type()) |
|
: storage_(n, a) { |
|
if (DefaultConstructorIsNonTrivial()) { |
|
memory_internal::ConstructRange(storage_.alloc(), storage_.begin(), |
|
storage_.end()); |
|
} |
|
} |
|
|
|
// Creates an array initialized with `n` copies of `val`. |
|
FixedArray(size_type n, const value_type& val, |
|
const allocator_type& a = allocator_type()) |
|
: storage_(n, a) { |
|
memory_internal::ConstructRange(storage_.alloc(), storage_.begin(), |
|
storage_.end(), val); |
|
} |
|
|
|
// Creates an array initialized with the size and contents of `init_list`. |
|
FixedArray(std::initializer_list<value_type> init_list, |
|
const allocator_type& a = allocator_type()) |
|
: FixedArray(init_list.begin(), init_list.end(), a) {} |
|
|
|
// Creates an array initialized with the elements from the input |
|
// range. The array's size will always be `std::distance(first, last)`. |
|
// REQUIRES: Iterator must be a forward_iterator or better. |
|
template <typename Iterator, EnableIfForwardIterator<Iterator>* = nullptr> |
|
FixedArray(Iterator first, Iterator last, |
|
const allocator_type& a = allocator_type()) |
|
: storage_(std::distance(first, last), a) { |
|
memory_internal::CopyRange(storage_.alloc(), storage_.begin(), first, last); |
|
} |
|
|
|
~FixedArray() noexcept { |
|
for (auto* cur = storage_.begin(); cur != storage_.end(); ++cur) { |
|
AllocatorTraits::destroy(storage_.alloc(), cur); |
|
} |
|
} |
|
|
|
// Assignments are deleted because they break the invariant that the size of a |
|
// `FixedArray` never changes. |
|
void operator=(FixedArray&&) = delete; |
|
void operator=(const FixedArray&) = delete; |
|
|
|
// FixedArray::size() |
|
// |
|
// Returns the length of the fixed array. |
|
size_type size() const { return storage_.size(); } |
|
|
|
// FixedArray::max_size() |
|
// |
|
// Returns the largest possible value of `std::distance(begin(), end())` for a |
|
// `FixedArray<T>`. This is equivalent to the most possible addressable bytes |
|
// over the number of bytes taken by T. |
|
constexpr size_type max_size() const { |
|
return (std::numeric_limits<difference_type>::max)() / sizeof(value_type); |
|
} |
|
|
|
// FixedArray::empty() |
|
// |
|
// Returns whether or not the fixed array is empty. |
|
bool empty() const { return size() == 0; } |
|
|
|
// FixedArray::memsize() |
|
// |
|
// Returns the memory size of the fixed array in bytes. |
|
size_t memsize() const { return size() * sizeof(value_type); } |
|
|
|
// FixedArray::data() |
|
// |
|
// Returns a const T* pointer to elements of the `FixedArray`. This pointer |
|
// can be used to access (but not modify) the contained elements. |
|
const_pointer data() const { return AsValueType(storage_.begin()); } |
|
|
|
// Overload of FixedArray::data() to return a T* pointer to elements of the |
|
// fixed array. This pointer can be used to access and modify the contained |
|
// elements. |
|
pointer data() { return AsValueType(storage_.begin()); } |
|
|
|
// FixedArray::operator[] |
|
// |
|
// Returns a reference the ith element of the fixed array. |
|
// REQUIRES: 0 <= i < size() |
|
reference operator[](size_type i) { |
|
ABSL_HARDENING_ASSERT(i < size()); |
|
return data()[i]; |
|
} |
|
|
|
// Overload of FixedArray::operator()[] to return a const reference to the |
|
// ith element of the fixed array. |
|
// REQUIRES: 0 <= i < size() |
|
const_reference operator[](size_type i) const { |
|
ABSL_HARDENING_ASSERT(i < size()); |
|
return data()[i]; |
|
} |
|
|
|
// FixedArray::at |
|
// |
|
// Bounds-checked access. Returns a reference to the ith element of the |
|
// fiexed array, or throws std::out_of_range |
|
reference at(size_type i) { |
|
if (ABSL_PREDICT_FALSE(i >= size())) { |
|
base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check"); |
|
} |
|
return data()[i]; |
|
} |
|
|
|
// Overload of FixedArray::at() to return a const reference to the ith element |
|
// of the fixed array. |
|
const_reference at(size_type i) const { |
|
if (ABSL_PREDICT_FALSE(i >= size())) { |
|
base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check"); |
|
} |
|
return data()[i]; |
|
} |
|
|
|
// FixedArray::front() |
|
// |
|
// Returns a reference to the first element of the fixed array. |
|
reference front() { |
|
ABSL_HARDENING_ASSERT(!empty()); |
|
return data()[0]; |
|
} |
|
|
|
// Overload of FixedArray::front() to return a reference to the first element |
|
// of a fixed array of const values. |
|
const_reference front() const { |
|
ABSL_HARDENING_ASSERT(!empty()); |
|
return data()[0]; |
|
} |
|
|
|
// FixedArray::back() |
|
// |
|
// Returns a reference to the last element of the fixed array. |
|
reference back() { |
|
ABSL_HARDENING_ASSERT(!empty()); |
|
return data()[size() - 1]; |
|
} |
|
|
|
// Overload of FixedArray::back() to return a reference to the last element |
|
// of a fixed array of const values. |
|
const_reference back() const { |
|
ABSL_HARDENING_ASSERT(!empty()); |
|
return data()[size() - 1]; |
|
} |
|
|
|
// FixedArray::begin() |
|
// |
|
// Returns an iterator to the beginning of the fixed array. |
|
iterator begin() { return data(); } |
|
|
|
// Overload of FixedArray::begin() to return a const iterator to the |
|
// beginning of the fixed array. |
|
const_iterator begin() const { return data(); } |
|
|
|
// FixedArray::cbegin() |
|
// |
|
// Returns a const iterator to the beginning of the fixed array. |
|
const_iterator cbegin() const { return begin(); } |
|
|
|
// FixedArray::end() |
|
// |
|
// Returns an iterator to the end of the fixed array. |
|
iterator end() { return data() + size(); } |
|
|
|
// Overload of FixedArray::end() to return a const iterator to the end of the |
|
// fixed array. |
|
const_iterator end() const { return data() + size(); } |
|
|
|
// FixedArray::cend() |
|
// |
|
// Returns a const iterator to the end of the fixed array. |
|
const_iterator cend() const { return end(); } |
|
|
|
// FixedArray::rbegin() |
|
// |
|
// Returns a reverse iterator from the end of the fixed array. |
|
reverse_iterator rbegin() { return reverse_iterator(end()); } |
|
|
|
// Overload of FixedArray::rbegin() to return a const reverse iterator from |
|
// the end of the fixed array. |
|
const_reverse_iterator rbegin() const { |
|
return const_reverse_iterator(end()); |
|
} |
|
|
|
// FixedArray::crbegin() |
|
// |
|
// Returns a const reverse iterator from the end of the fixed array. |
|
const_reverse_iterator crbegin() const { return rbegin(); } |
|
|
|
// FixedArray::rend() |
|
// |
|
// Returns a reverse iterator from the beginning of the fixed array. |
|
reverse_iterator rend() { return reverse_iterator(begin()); } |
|
|
|
// Overload of FixedArray::rend() for returning a const reverse iterator |
|
// from the beginning of the fixed array. |
|
const_reverse_iterator rend() const { |
|
return const_reverse_iterator(begin()); |
|
} |
|
|
|
// FixedArray::crend() |
|
// |
|
// Returns a reverse iterator from the beginning of the fixed array. |
|
const_reverse_iterator crend() const { return rend(); } |
|
|
|
// FixedArray::fill() |
|
// |
|
// Assigns the given `value` to all elements in the fixed array. |
|
void fill(const value_type& val) { std::fill(begin(), end(), val); } |
|
|
|
// Relational operators. Equality operators are elementwise using |
|
// `operator==`, while order operators order FixedArrays lexicographically. |
|
friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) { |
|
return absl::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); |
|
} |
|
|
|
friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) { |
|
return !(lhs == rhs); |
|
} |
|
|
|
friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) { |
|
return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), |
|
rhs.end()); |
|
} |
|
|
|
friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) { |
|
return rhs < lhs; |
|
} |
|
|
|
friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) { |
|
return !(rhs < lhs); |
|
} |
|
|
|
friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) { |
|
return !(lhs < rhs); |
|
} |
|
|
|
template <typename H> |
|
friend H AbslHashValue(H h, const FixedArray& v) { |
|
return H::combine(H::combine_contiguous(std::move(h), v.data(), v.size()), |
|
v.size()); |
|
} |
|
|
|
private: |
|
// StorageElement |
|
// |
|
// For FixedArrays with a C-style-array value_type, StorageElement is a POD |
|
// wrapper struct called StorageElementWrapper that holds the value_type |
|
// instance inside. This is needed for construction and destruction of the |
|
// entire array regardless of how many dimensions it has. For all other cases, |
|
// StorageElement is just an alias of value_type. |
|
// |
|
// Maintainer's Note: The simpler solution would be to simply wrap value_type |
|
// in a struct whether it's an array or not. That causes some paranoid |
|
// diagnostics to misfire, believing that 'data()' returns a pointer to a |
|
// single element, rather than the packed array that it really is. |
|
// e.g.: |
|
// |
|
// FixedArray<char> buf(1); |
|
// sprintf(buf.data(), "foo"); |
|
// |
|
// error: call to int __builtin___sprintf_chk(etc...) |
|
// will always overflow destination buffer [-Werror] |
|
// |
|
template <typename OuterT, typename InnerT = absl::remove_extent_t<OuterT>, |
|
size_t InnerN = std::extent<OuterT>::value> |
|
struct StorageElementWrapper { |
|
InnerT array[InnerN]; |
|
}; |
|
|
|
using StorageElement = |
|
absl::conditional_t<std::is_array<value_type>::value, |
|
StorageElementWrapper<value_type>, value_type>; |
|
|
|
static pointer AsValueType(pointer ptr) { return ptr; } |
|
static pointer AsValueType(StorageElementWrapper<value_type>* ptr) { |
|
return std::addressof(ptr->array); |
|
} |
|
|
|
static_assert(sizeof(StorageElement) == sizeof(value_type), ""); |
|
static_assert(alignof(StorageElement) == alignof(value_type), ""); |
|
|
|
class NonEmptyInlinedStorage { |
|
public: |
|
StorageElement* data() { return reinterpret_cast<StorageElement*>(buff_); } |
|
void AnnotateConstruct(size_type n); |
|
void AnnotateDestruct(size_type n); |
|
|
|
#ifdef ABSL_HAVE_ADDRESS_SANITIZER |
|
void* RedzoneBegin() { return &redzone_begin_; } |
|
void* RedzoneEnd() { return &redzone_end_ + 1; } |
|
#endif // ABSL_HAVE_ADDRESS_SANITIZER |
|
|
|
private: |
|
ABSL_ADDRESS_SANITIZER_REDZONE(redzone_begin_); |
|
alignas(StorageElement) char buff_[sizeof(StorageElement[inline_elements])]; |
|
ABSL_ADDRESS_SANITIZER_REDZONE(redzone_end_); |
|
}; |
|
|
|
class EmptyInlinedStorage { |
|
public: |
|
StorageElement* data() { return nullptr; } |
|
void AnnotateConstruct(size_type) {} |
|
void AnnotateDestruct(size_type) {} |
|
}; |
|
|
|
using InlinedStorage = |
|
absl::conditional_t<inline_elements == 0, EmptyInlinedStorage, |
|
NonEmptyInlinedStorage>; |
|
|
|
// Storage |
|
// |
|
// An instance of Storage manages the inline and out-of-line memory for |
|
// instances of FixedArray. This guarantees that even when construction of |
|
// individual elements fails in the FixedArray constructor body, the |
|
// destructor for Storage will still be called and out-of-line memory will be |
|
// properly deallocated. |
|
// |
|
class Storage : public InlinedStorage { |
|
public: |
|
Storage(size_type n, const allocator_type& a) |
|
: size_alloc_(n, a), data_(InitializeData()) {} |
|
|
|
~Storage() noexcept { |
|
if (UsingInlinedStorage(size())) { |
|
InlinedStorage::AnnotateDestruct(size()); |
|
} else { |
|
AllocatorTraits::deallocate(alloc(), AsValueType(begin()), size()); |
|
} |
|
} |
|
|
|
size_type size() const { return size_alloc_.template get<0>(); } |
|
StorageElement* begin() const { return data_; } |
|
StorageElement* end() const { return begin() + size(); } |
|
allocator_type& alloc() { return size_alloc_.template get<1>(); } |
|
|
|
private: |
|
static bool UsingInlinedStorage(size_type n) { |
|
return n <= inline_elements; |
|
} |
|
|
|
StorageElement* InitializeData() { |
|
if (UsingInlinedStorage(size())) { |
|
InlinedStorage::AnnotateConstruct(size()); |
|
return InlinedStorage::data(); |
|
} else { |
|
return reinterpret_cast<StorageElement*>( |
|
AllocatorTraits::allocate(alloc(), size())); |
|
} |
|
} |
|
|
|
// `CompressedTuple` takes advantage of EBCO for stateless `allocator_type`s |
|
container_internal::CompressedTuple<size_type, allocator_type> size_alloc_; |
|
StorageElement* data_; |
|
}; |
|
|
|
Storage storage_; |
|
}; |
|
|
|
template <typename T, size_t N, typename A> |
|
constexpr size_t FixedArray<T, N, A>::kInlineBytesDefault; |
|
|
|
template <typename T, size_t N, typename A> |
|
constexpr typename FixedArray<T, N, A>::size_type |
|
FixedArray<T, N, A>::inline_elements; |
|
|
|
template <typename T, size_t N, typename A> |
|
void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateConstruct( |
|
typename FixedArray<T, N, A>::size_type n) { |
|
#ifdef ABSL_HAVE_ADDRESS_SANITIZER |
|
if (!n) return; |
|
ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), RedzoneEnd(), |
|
data() + n); |
|
ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), data(), |
|
RedzoneBegin()); |
|
#endif // ABSL_HAVE_ADDRESS_SANITIZER |
|
static_cast<void>(n); // Mark used when not in asan mode |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateDestruct( |
|
typename FixedArray<T, N, A>::size_type n) { |
|
#ifdef ABSL_HAVE_ADDRESS_SANITIZER |
|
if (!n) return; |
|
ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), data() + n, |
|
RedzoneEnd()); |
|
ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), RedzoneBegin(), |
|
data()); |
|
#endif // ABSL_HAVE_ADDRESS_SANITIZER |
|
static_cast<void>(n); // Mark used when not in asan mode |
|
} |
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
|
|
#endif // ABSL_CONTAINER_FIXED_ARRAY_H_
|
|
|