Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
422 lines
14 KiB
422 lines
14 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#include "absl/random/exponential_distribution.h" |
|
|
|
#include <algorithm> |
|
#include <cmath> |
|
#include <cstddef> |
|
#include <cstdint> |
|
#include <iterator> |
|
#include <limits> |
|
#include <random> |
|
#include <sstream> |
|
#include <string> |
|
#include <type_traits> |
|
#include <vector> |
|
|
|
#include "gmock/gmock.h" |
|
#include "gtest/gtest.h" |
|
#include "absl/base/internal/raw_logging.h" |
|
#include "absl/base/macros.h" |
|
#include "absl/random/internal/chi_square.h" |
|
#include "absl/random/internal/distribution_test_util.h" |
|
#include "absl/random/internal/sequence_urbg.h" |
|
#include "absl/random/random.h" |
|
#include "absl/strings/str_cat.h" |
|
#include "absl/strings/str_format.h" |
|
#include "absl/strings/str_replace.h" |
|
#include "absl/strings/strip.h" |
|
|
|
namespace { |
|
|
|
using absl::random_internal::kChiSquared; |
|
|
|
template <typename RealType> |
|
class ExponentialDistributionTypedTest : public ::testing::Test {}; |
|
|
|
using RealTypes = ::testing::Types<float, double, long double>; |
|
TYPED_TEST_CASE(ExponentialDistributionTypedTest, RealTypes); |
|
|
|
TYPED_TEST(ExponentialDistributionTypedTest, SerializeTest) { |
|
using param_type = |
|
typename absl::exponential_distribution<TypeParam>::param_type; |
|
|
|
const TypeParam kParams[] = { |
|
// Cases around 1. |
|
1, // |
|
std::nextafter(TypeParam(1), TypeParam(0)), // 1 - epsilon |
|
std::nextafter(TypeParam(1), TypeParam(2)), // 1 + epsilon |
|
// Typical cases. |
|
TypeParam(1e-8), TypeParam(1e-4), TypeParam(1), TypeParam(2), |
|
TypeParam(1e4), TypeParam(1e8), TypeParam(1e20), TypeParam(2.5), |
|
// Boundary cases. |
|
std::numeric_limits<TypeParam>::max(), |
|
std::numeric_limits<TypeParam>::epsilon(), |
|
std::nextafter(std::numeric_limits<TypeParam>::min(), |
|
TypeParam(1)), // min + epsilon |
|
std::numeric_limits<TypeParam>::min(), // smallest normal |
|
// There are some errors dealing with denorms on apple platforms. |
|
std::numeric_limits<TypeParam>::denorm_min(), // smallest denorm |
|
std::numeric_limits<TypeParam>::min() / 2, // denorm |
|
std::nextafter(std::numeric_limits<TypeParam>::min(), |
|
TypeParam(0)), // denorm_max |
|
}; |
|
|
|
constexpr int kCount = 1000; |
|
absl::InsecureBitGen gen; |
|
|
|
for (const TypeParam lambda : kParams) { |
|
// Some values may be invalid; skip those. |
|
if (!std::isfinite(lambda)) continue; |
|
ABSL_ASSERT(lambda > 0); |
|
|
|
const param_type param(lambda); |
|
|
|
absl::exponential_distribution<TypeParam> before(lambda); |
|
EXPECT_EQ(before.lambda(), param.lambda()); |
|
|
|
{ |
|
absl::exponential_distribution<TypeParam> via_param(param); |
|
EXPECT_EQ(via_param, before); |
|
EXPECT_EQ(via_param.param(), before.param()); |
|
} |
|
|
|
// Smoke test. |
|
auto sample_min = before.max(); |
|
auto sample_max = before.min(); |
|
for (int i = 0; i < kCount; i++) { |
|
auto sample = before(gen); |
|
EXPECT_GE(sample, before.min()) << before; |
|
EXPECT_LE(sample, before.max()) << before; |
|
if (sample > sample_max) sample_max = sample; |
|
if (sample < sample_min) sample_min = sample; |
|
} |
|
if (!std::is_same<TypeParam, long double>::value) { |
|
ABSL_INTERNAL_LOG(INFO, |
|
absl::StrFormat("Range {%f}: %f, %f, lambda=%f", lambda, |
|
sample_min, sample_max, lambda)); |
|
} |
|
|
|
std::stringstream ss; |
|
ss << before; |
|
|
|
if (!std::isfinite(lambda)) { |
|
// Streams do not deserialize inf/nan correctly. |
|
continue; |
|
} |
|
// Validate stream serialization. |
|
absl::exponential_distribution<TypeParam> after(34.56f); |
|
|
|
EXPECT_NE(before.lambda(), after.lambda()); |
|
EXPECT_NE(before.param(), after.param()); |
|
EXPECT_NE(before, after); |
|
|
|
ss >> after; |
|
|
|
#if defined(__powerpc64__) || defined(__PPC64__) || defined(__powerpc__) || \ |
|
defined(__ppc__) || defined(__PPC__) |
|
if (std::is_same<TypeParam, long double>::value) { |
|
// Roundtripping floating point values requires sufficient precision to |
|
// reconstruct the exact value. It turns out that long double has some |
|
// errors doing this on ppc, particularly for values |
|
// near {1.0 +/- epsilon}. |
|
if (lambda <= std::numeric_limits<double>::max() && |
|
lambda >= std::numeric_limits<double>::lowest()) { |
|
EXPECT_EQ(static_cast<double>(before.lambda()), |
|
static_cast<double>(after.lambda())) |
|
<< ss.str(); |
|
} |
|
continue; |
|
} |
|
#endif |
|
|
|
EXPECT_EQ(before.lambda(), after.lambda()) // |
|
<< ss.str() << " " // |
|
<< (ss.good() ? "good " : "") // |
|
<< (ss.bad() ? "bad " : "") // |
|
<< (ss.eof() ? "eof " : "") // |
|
<< (ss.fail() ? "fail " : ""); |
|
} |
|
} |
|
|
|
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3667.htm |
|
|
|
class ExponentialModel { |
|
public: |
|
explicit ExponentialModel(double lambda) |
|
: lambda_(lambda), beta_(1.0 / lambda) {} |
|
|
|
double lambda() const { return lambda_; } |
|
|
|
double mean() const { return beta_; } |
|
double variance() const { return beta_ * beta_; } |
|
double stddev() const { return std::sqrt(variance()); } |
|
double skew() const { return 2; } |
|
double kurtosis() const { return 6.0; } |
|
|
|
double CDF(double x) { return 1.0 - std::exp(-lambda_ * x); } |
|
|
|
// The inverse CDF, or PercentPoint function of the distribution |
|
double InverseCDF(double p) { |
|
ABSL_ASSERT(p >= 0.0); |
|
ABSL_ASSERT(p < 1.0); |
|
return -beta_ * std::log(1.0 - p); |
|
} |
|
|
|
private: |
|
const double lambda_; |
|
const double beta_; |
|
}; |
|
|
|
struct Param { |
|
double lambda; |
|
double p_fail; |
|
int trials; |
|
}; |
|
|
|
class ExponentialDistributionTests : public testing::TestWithParam<Param>, |
|
public ExponentialModel { |
|
public: |
|
ExponentialDistributionTests() : ExponentialModel(GetParam().lambda) {} |
|
|
|
// SingleZTest provides a basic z-squared test of the mean vs. expected |
|
// mean for data generated by the poisson distribution. |
|
template <typename D> |
|
bool SingleZTest(const double p, const size_t samples); |
|
|
|
// SingleChiSquaredTest provides a basic chi-squared test of the normal |
|
// distribution. |
|
template <typename D> |
|
double SingleChiSquaredTest(); |
|
|
|
absl::InsecureBitGen rng_; |
|
}; |
|
|
|
template <typename D> |
|
bool ExponentialDistributionTests::SingleZTest(const double p, |
|
const size_t samples) { |
|
D dis(lambda()); |
|
|
|
std::vector<double> data; |
|
data.reserve(samples); |
|
for (size_t i = 0; i < samples; i++) { |
|
const double x = dis(rng_); |
|
data.push_back(x); |
|
} |
|
|
|
const auto m = absl::random_internal::ComputeDistributionMoments(data); |
|
const double max_err = absl::random_internal::MaxErrorTolerance(p); |
|
const double z = absl::random_internal::ZScore(mean(), m); |
|
const bool pass = absl::random_internal::Near("z", z, 0.0, max_err); |
|
|
|
if (!pass) { |
|
ABSL_INTERNAL_LOG( |
|
INFO, absl::StrFormat("p=%f max_err=%f\n" |
|
" lambda=%f\n" |
|
" mean=%f vs. %f\n" |
|
" stddev=%f vs. %f\n" |
|
" skewness=%f vs. %f\n" |
|
" kurtosis=%f vs. %f\n" |
|
" z=%f vs. 0", |
|
p, max_err, lambda(), m.mean, mean(), |
|
std::sqrt(m.variance), stddev(), m.skewness, |
|
skew(), m.kurtosis, kurtosis(), z)); |
|
} |
|
return pass; |
|
} |
|
|
|
template <typename D> |
|
double ExponentialDistributionTests::SingleChiSquaredTest() { |
|
const size_t kSamples = 10000; |
|
const int kBuckets = 50; |
|
|
|
// The InverseCDF is the percent point function of the distribution, and can |
|
// be used to assign buckets roughly uniformly. |
|
std::vector<double> cutoffs; |
|
const double kInc = 1.0 / static_cast<double>(kBuckets); |
|
for (double p = kInc; p < 1.0; p += kInc) { |
|
cutoffs.push_back(InverseCDF(p)); |
|
} |
|
if (cutoffs.back() != std::numeric_limits<double>::infinity()) { |
|
cutoffs.push_back(std::numeric_limits<double>::infinity()); |
|
} |
|
|
|
D dis(lambda()); |
|
|
|
std::vector<int32_t> counts(cutoffs.size(), 0); |
|
for (int j = 0; j < kSamples; j++) { |
|
const double x = dis(rng_); |
|
auto it = std::upper_bound(cutoffs.begin(), cutoffs.end(), x); |
|
counts[std::distance(cutoffs.begin(), it)]++; |
|
} |
|
|
|
// Null-hypothesis is that the distribution is exponentially distributed |
|
// with the provided lambda (not estimated from the data). |
|
const int dof = static_cast<int>(counts.size()) - 1; |
|
|
|
// Our threshold for logging is 1-in-50. |
|
const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98); |
|
|
|
const double expected = |
|
static_cast<double>(kSamples) / static_cast<double>(counts.size()); |
|
|
|
double chi_square = absl::random_internal::ChiSquareWithExpected( |
|
std::begin(counts), std::end(counts), expected); |
|
double p = absl::random_internal::ChiSquarePValue(chi_square, dof); |
|
|
|
if (chi_square > threshold) { |
|
for (int i = 0; i < cutoffs.size(); i++) { |
|
ABSL_INTERNAL_LOG( |
|
INFO, absl::StrFormat("%d : (%f) = %d", i, cutoffs[i], counts[i])); |
|
} |
|
|
|
ABSL_INTERNAL_LOG(INFO, |
|
absl::StrCat("lambda ", lambda(), "\n", // |
|
" expected ", expected, "\n", // |
|
kChiSquared, " ", chi_square, " (", p, ")\n", |
|
kChiSquared, " @ 0.98 = ", threshold)); |
|
} |
|
return p; |
|
} |
|
|
|
TEST_P(ExponentialDistributionTests, ZTest) { |
|
const size_t kSamples = 10000; |
|
const auto& param = GetParam(); |
|
const int expected_failures = |
|
std::max(1, static_cast<int>(std::ceil(param.trials * param.p_fail))); |
|
const double p = absl::random_internal::RequiredSuccessProbability( |
|
param.p_fail, param.trials); |
|
|
|
int failures = 0; |
|
for (int i = 0; i < param.trials; i++) { |
|
failures += SingleZTest<absl::exponential_distribution<double>>(p, kSamples) |
|
? 0 |
|
: 1; |
|
} |
|
EXPECT_LE(failures, expected_failures); |
|
} |
|
|
|
TEST_P(ExponentialDistributionTests, ChiSquaredTest) { |
|
const int kTrials = 20; |
|
int failures = 0; |
|
|
|
for (int i = 0; i < kTrials; i++) { |
|
double p_value = |
|
SingleChiSquaredTest<absl::exponential_distribution<double>>(); |
|
if (p_value < 0.005) { // 1/200 |
|
failures++; |
|
} |
|
} |
|
|
|
// There is a 0.10% chance of producing at least one failure, so raise the |
|
// failure threshold high enough to allow for a flake rate < 10,000. |
|
EXPECT_LE(failures, 4); |
|
} |
|
|
|
std::vector<Param> GenParams() { |
|
return { |
|
Param{1.0, 0.02, 100}, |
|
Param{2.5, 0.02, 100}, |
|
Param{10, 0.02, 100}, |
|
// large |
|
Param{1e4, 0.02, 100}, |
|
Param{1e9, 0.02, 100}, |
|
// small |
|
Param{0.1, 0.02, 100}, |
|
Param{1e-3, 0.02, 100}, |
|
Param{1e-5, 0.02, 100}, |
|
}; |
|
} |
|
|
|
std::string ParamName(const ::testing::TestParamInfo<Param>& info) { |
|
const auto& p = info.param; |
|
std::string name = absl::StrCat("lambda_", absl::SixDigits(p.lambda)); |
|
return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}}); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(All, ExponentialDistributionTests, |
|
::testing::ValuesIn(GenParams()), ParamName); |
|
|
|
// NOTE: absl::exponential_distribution is not guaranteed to be stable. |
|
TEST(ExponentialDistributionTest, StabilityTest) { |
|
// absl::exponential_distribution stability relies on std::log1p and |
|
// absl::uniform_real_distribution. |
|
absl::random_internal::sequence_urbg urbg( |
|
{0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull, |
|
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull, |
|
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull, |
|
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull}); |
|
|
|
std::vector<int> output(14); |
|
|
|
{ |
|
absl::exponential_distribution<double> dist; |
|
std::generate(std::begin(output), std::end(output), |
|
[&] { return static_cast<int>(10000.0 * dist(urbg)); }); |
|
|
|
EXPECT_EQ(14, urbg.invocations()); |
|
EXPECT_THAT(output, |
|
testing::ElementsAre(0, 71913, 14375, 5039, 1835, 861, 25936, |
|
804, 126, 12337, 17984, 27002, 0, 71913)); |
|
} |
|
|
|
urbg.reset(); |
|
{ |
|
absl::exponential_distribution<float> dist; |
|
std::generate(std::begin(output), std::end(output), |
|
[&] { return static_cast<int>(10000.0f * dist(urbg)); }); |
|
|
|
EXPECT_EQ(14, urbg.invocations()); |
|
EXPECT_THAT(output, |
|
testing::ElementsAre(0, 71913, 14375, 5039, 1835, 861, 25936, |
|
804, 126, 12337, 17984, 27002, 0, 71913)); |
|
} |
|
} |
|
|
|
TEST(ExponentialDistributionTest, AlgorithmBounds) { |
|
// Relies on absl::uniform_real_distribution, so some of these comments |
|
// reference that. |
|
absl::exponential_distribution<double> dist; |
|
|
|
{ |
|
// This returns the smallest value >0 from absl::uniform_real_distribution. |
|
absl::random_internal::sequence_urbg urbg({0x0000000000000001ull}); |
|
double a = dist(urbg); |
|
EXPECT_EQ(a, 5.42101086242752217004e-20); |
|
} |
|
|
|
{ |
|
// This returns a value very near 0.5 from absl::uniform_real_distribution. |
|
absl::random_internal::sequence_urbg urbg({0x7fffffffffffffefull}); |
|
double a = dist(urbg); |
|
EXPECT_EQ(a, 0.693147180559945175204); |
|
} |
|
|
|
{ |
|
// This returns the largest value <1 from absl::uniform_real_distribution. |
|
// WolframAlpha: ~39.1439465808987766283058547296341915292187253 |
|
absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFeFull}); |
|
double a = dist(urbg); |
|
EXPECT_EQ(a, 36.7368005696771007251); |
|
} |
|
{ |
|
// This *ALSO* returns the largest value <1. |
|
absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFFFull}); |
|
double a = dist(urbg); |
|
EXPECT_EQ(a, 36.7368005696771007251); |
|
} |
|
} |
|
|
|
} // namespace
|
|
|