Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
810 lines
27 KiB
810 lines
27 KiB
// Copyright 2017 Google Inc. All Rights Reserved. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#include "absl/random/internal/nanobenchmark.h" |
|
|
|
#include <sys/types.h> |
|
|
|
#include <algorithm> // sort |
|
#include <atomic> |
|
#include <cstddef> |
|
#include <cstdint> |
|
#include <cstdlib> |
|
#include <cstring> // memcpy |
|
#include <limits> |
|
#include <string> |
|
#include <utility> |
|
#include <vector> |
|
|
|
#include "absl/base/internal/raw_logging.h" |
|
#include "absl/random/internal/platform.h" |
|
#include "absl/random/internal/randen_engine.h" |
|
|
|
// OS |
|
#if defined(_WIN32) || defined(_WIN64) |
|
#define ABSL_OS_WIN |
|
#include <windows.h> // NOLINT |
|
|
|
#elif defined(__ANDROID__) |
|
#define ABSL_OS_ANDROID |
|
|
|
#elif defined(__linux__) |
|
#define ABSL_OS_LINUX |
|
#include <sched.h> // NOLINT |
|
#include <sys/syscall.h> // NOLINT |
|
#endif |
|
|
|
#if defined(ABSL_ARCH_X86_64) && !defined(ABSL_OS_WIN) |
|
#include <cpuid.h> // NOLINT |
|
#endif |
|
|
|
// __ppc_get_timebase_freq |
|
#if defined(ABSL_ARCH_PPC) |
|
#include <sys/platform/ppc.h> // NOLINT |
|
#endif |
|
|
|
// clock_gettime |
|
#if defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64) |
|
#include <time.h> // NOLINT |
|
#endif |
|
|
|
// ABSL_HAVE_ATTRIBUTE |
|
#if !defined(ABSL_HAVE_ATTRIBUTE) |
|
#ifdef __has_attribute |
|
#define ABSL_HAVE_ATTRIBUTE(x) __has_attribute(x) |
|
#else |
|
#define ABSL_HAVE_ATTRIBUTE(x) 0 |
|
#endif |
|
#endif |
|
|
|
// ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE prevents inlining of the method. |
|
#if ABSL_HAVE_ATTRIBUTE(noinline) || (defined(__GNUC__) && !defined(__clang__)) |
|
#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE __attribute__((noinline)) |
|
#elif defined(_MSC_VER) |
|
#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE __declspec(noinline) |
|
#else |
|
#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE |
|
#endif |
|
|
|
namespace absl { |
|
namespace random_internal_nanobenchmark { |
|
namespace { |
|
|
|
// For code folding. |
|
namespace platform { |
|
#if defined(ABSL_ARCH_X86_64) |
|
|
|
// TODO(janwas): Merge with the one in randen_hwaes.cc? |
|
void Cpuid(const uint32_t level, const uint32_t count, |
|
uint32_t* ABSL_RANDOM_INTERNAL_RESTRICT abcd) { |
|
#if defined(ABSL_OS_WIN) |
|
int regs[4]; |
|
__cpuidex(regs, level, count); |
|
for (int i = 0; i < 4; ++i) { |
|
abcd[i] = regs[i]; |
|
} |
|
#else |
|
uint32_t a, b, c, d; |
|
__cpuid_count(level, count, a, b, c, d); |
|
abcd[0] = a; |
|
abcd[1] = b; |
|
abcd[2] = c; |
|
abcd[3] = d; |
|
#endif |
|
} |
|
|
|
std::string BrandString() { |
|
char brand_string[49]; |
|
uint32_t abcd[4]; |
|
|
|
// Check if brand std::string is supported (it is on all reasonable Intel/AMD) |
|
Cpuid(0x80000000U, 0, abcd); |
|
if (abcd[0] < 0x80000004U) { |
|
return std::string(); |
|
} |
|
|
|
for (int i = 0; i < 3; ++i) { |
|
Cpuid(0x80000002U + i, 0, abcd); |
|
memcpy(brand_string + i * 16, &abcd, sizeof(abcd)); |
|
} |
|
brand_string[48] = 0; |
|
return brand_string; |
|
} |
|
|
|
// Returns the frequency quoted inside the brand string. This does not |
|
// account for throttling nor Turbo Boost. |
|
double NominalClockRate() { |
|
const std::string& brand_string = BrandString(); |
|
// Brand strings include the maximum configured frequency. These prefixes are |
|
// defined by Intel CPUID documentation. |
|
const char* prefixes[3] = {"MHz", "GHz", "THz"}; |
|
const double multipliers[3] = {1E6, 1E9, 1E12}; |
|
for (size_t i = 0; i < 3; ++i) { |
|
const size_t pos_prefix = brand_string.find(prefixes[i]); |
|
if (pos_prefix != std::string::npos) { |
|
const size_t pos_space = brand_string.rfind(' ', pos_prefix - 1); |
|
if (pos_space != std::string::npos) { |
|
const std::string digits = |
|
brand_string.substr(pos_space + 1, pos_prefix - pos_space - 1); |
|
return std::stod(digits) * multipliers[i]; |
|
} |
|
} |
|
} |
|
|
|
return 0.0; |
|
} |
|
|
|
#endif // ABSL_ARCH_X86_64 |
|
} // namespace platform |
|
|
|
// Prevents the compiler from eliding the computations that led to "output". |
|
template <class T> |
|
inline void PreventElision(T&& output) { |
|
#ifndef ABSL_OS_WIN |
|
// Works by indicating to the compiler that "output" is being read and |
|
// modified. The +r constraint avoids unnecessary writes to memory, but only |
|
// works for built-in types (typically FuncOutput). |
|
asm volatile("" : "+r"(output) : : "memory"); |
|
#else |
|
// MSVC does not support inline assembly anymore (and never supported GCC's |
|
// RTL constraints). Self-assignment with #pragma optimize("off") might be |
|
// expected to prevent elision, but it does not with MSVC 2015. Type-punning |
|
// with volatile pointers generates inefficient code on MSVC 2017. |
|
static std::atomic<T> dummy(T{}); |
|
dummy.store(output, std::memory_order_relaxed); |
|
#endif |
|
} |
|
|
|
namespace timer { |
|
|
|
// Start/Stop return absolute timestamps and must be placed immediately before |
|
// and after the region to measure. We provide separate Start/Stop functions |
|
// because they use different fences. |
|
// |
|
// Background: RDTSC is not 'serializing'; earlier instructions may complete |
|
// after it, and/or later instructions may complete before it. 'Fences' ensure |
|
// regions' elapsed times are independent of such reordering. The only |
|
// documented unprivileged serializing instruction is CPUID, which acts as a |
|
// full fence (no reordering across it in either direction). Unfortunately |
|
// the latency of CPUID varies wildly (perhaps made worse by not initializing |
|
// its EAX input). Because it cannot reliably be deducted from the region's |
|
// elapsed time, it must not be included in the region to measure (i.e. |
|
// between the two RDTSC). |
|
// |
|
// The newer RDTSCP is sometimes described as serializing, but it actually |
|
// only serves as a half-fence with release semantics. Although all |
|
// instructions in the region will complete before the final timestamp is |
|
// captured, subsequent instructions may leak into the region and increase the |
|
// elapsed time. Inserting another fence after the final RDTSCP would prevent |
|
// such reordering without affecting the measured region. |
|
// |
|
// Fortunately, such a fence exists. The LFENCE instruction is only documented |
|
// to delay later loads until earlier loads are visible. However, Intel's |
|
// reference manual says it acts as a full fence (waiting until all earlier |
|
// instructions have completed, and delaying later instructions until it |
|
// completes). AMD assigns the same behavior to MFENCE. |
|
// |
|
// We need a fence before the initial RDTSC to prevent earlier instructions |
|
// from leaking into the region, and arguably another after RDTSC to avoid |
|
// region instructions from completing before the timestamp is recorded. |
|
// When surrounded by fences, the additional RDTSCP half-fence provides no |
|
// benefit, so the initial timestamp can be recorded via RDTSC, which has |
|
// lower overhead than RDTSCP because it does not read TSC_AUX. In summary, |
|
// we define Start = LFENCE/RDTSC/LFENCE; Stop = RDTSCP/LFENCE. |
|
// |
|
// Using Start+Start leads to higher variance and overhead than Stop+Stop. |
|
// However, Stop+Stop includes an LFENCE in the region measurements, which |
|
// adds a delay dependent on earlier loads. The combination of Start+Stop |
|
// is faster than Start+Start and more consistent than Stop+Stop because |
|
// the first LFENCE already delayed subsequent loads before the measured |
|
// region. This combination seems not to have been considered in prior work: |
|
// http://akaros.cs.berkeley.edu/lxr/akaros/kern/arch/x86/rdtsc_test.c |
|
// |
|
// Note: performance counters can measure 'exact' instructions-retired or |
|
// (unhalted) cycle counts. The RDPMC instruction is not serializing and also |
|
// requires fences. Unfortunately, it is not accessible on all OSes and we |
|
// prefer to avoid kernel-mode drivers. Performance counters are also affected |
|
// by several under/over-count errata, so we use the TSC instead. |
|
|
|
// Returns a 64-bit timestamp in unit of 'ticks'; to convert to seconds, |
|
// divide by InvariantTicksPerSecond. |
|
inline uint64_t Start64() { |
|
uint64_t t; |
|
#if defined(ABSL_ARCH_PPC) |
|
asm volatile("mfspr %0, %1" : "=r"(t) : "i"(268)); |
|
#elif defined(ABSL_ARCH_X86_64) |
|
#if defined(ABSL_OS_WIN) |
|
_ReadWriteBarrier(); |
|
_mm_lfence(); |
|
_ReadWriteBarrier(); |
|
t = __rdtsc(); |
|
_ReadWriteBarrier(); |
|
_mm_lfence(); |
|
_ReadWriteBarrier(); |
|
#else |
|
asm volatile( |
|
"lfence\n\t" |
|
"rdtsc\n\t" |
|
"shl $32, %%rdx\n\t" |
|
"or %%rdx, %0\n\t" |
|
"lfence" |
|
: "=a"(t) |
|
: |
|
// "memory" avoids reordering. rdx = TSC >> 32. |
|
// "cc" = flags modified by SHL. |
|
: "rdx", "memory", "cc"); |
|
#endif |
|
#else |
|
// Fall back to OS - unsure how to reliably query cntvct_el0 frequency. |
|
timespec ts; |
|
clock_gettime(CLOCK_REALTIME, &ts); |
|
t = ts.tv_sec * 1000000000LL + ts.tv_nsec; |
|
#endif |
|
return t; |
|
} |
|
|
|
inline uint64_t Stop64() { |
|
uint64_t t; |
|
#if defined(ABSL_ARCH_X86_64) |
|
#if defined(ABSL_OS_WIN) |
|
_ReadWriteBarrier(); |
|
unsigned aux; |
|
t = __rdtscp(&aux); |
|
_ReadWriteBarrier(); |
|
_mm_lfence(); |
|
_ReadWriteBarrier(); |
|
#else |
|
// Use inline asm because __rdtscp generates code to store TSC_AUX (ecx). |
|
asm volatile( |
|
"rdtscp\n\t" |
|
"shl $32, %%rdx\n\t" |
|
"or %%rdx, %0\n\t" |
|
"lfence" |
|
: "=a"(t) |
|
: |
|
// "memory" avoids reordering. rcx = TSC_AUX. rdx = TSC >> 32. |
|
// "cc" = flags modified by SHL. |
|
: "rcx", "rdx", "memory", "cc"); |
|
#endif |
|
#else |
|
t = Start64(); |
|
#endif |
|
return t; |
|
} |
|
|
|
// Returns a 32-bit timestamp with about 4 cycles less overhead than |
|
// Start64. Only suitable for measuring very short regions because the |
|
// timestamp overflows about once a second. |
|
inline uint32_t Start32() { |
|
uint32_t t; |
|
#if defined(ABSL_ARCH_X86_64) |
|
#if defined(ABSL_OS_WIN) |
|
_ReadWriteBarrier(); |
|
_mm_lfence(); |
|
_ReadWriteBarrier(); |
|
t = static_cast<uint32_t>(__rdtsc()); |
|
_ReadWriteBarrier(); |
|
_mm_lfence(); |
|
_ReadWriteBarrier(); |
|
#else |
|
asm volatile( |
|
"lfence\n\t" |
|
"rdtsc\n\t" |
|
"lfence" |
|
: "=a"(t) |
|
: |
|
// "memory" avoids reordering. rdx = TSC >> 32. |
|
: "rdx", "memory"); |
|
#endif |
|
#else |
|
t = static_cast<uint32_t>(Start64()); |
|
#endif |
|
return t; |
|
} |
|
|
|
inline uint32_t Stop32() { |
|
uint32_t t; |
|
#if defined(ABSL_ARCH_X86_64) |
|
#if defined(ABSL_OS_WIN) |
|
_ReadWriteBarrier(); |
|
unsigned aux; |
|
t = static_cast<uint32_t>(__rdtscp(&aux)); |
|
_ReadWriteBarrier(); |
|
_mm_lfence(); |
|
_ReadWriteBarrier(); |
|
#else |
|
// Use inline asm because __rdtscp generates code to store TSC_AUX (ecx). |
|
asm volatile( |
|
"rdtscp\n\t" |
|
"lfence" |
|
: "=a"(t) |
|
: |
|
// "memory" avoids reordering. rcx = TSC_AUX. rdx = TSC >> 32. |
|
: "rcx", "rdx", "memory"); |
|
#endif |
|
#else |
|
t = static_cast<uint32_t>(Stop64()); |
|
#endif |
|
return t; |
|
} |
|
|
|
} // namespace timer |
|
|
|
namespace robust_statistics { |
|
|
|
// Sorts integral values in ascending order (e.g. for Mode). About 3x faster |
|
// than std::sort for input distributions with very few unique values. |
|
template <class T> |
|
void CountingSort(T* values, size_t num_values) { |
|
// Unique values and their frequency (similar to flat_map). |
|
using Unique = std::pair<T, int>; |
|
std::vector<Unique> unique; |
|
for (size_t i = 0; i < num_values; ++i) { |
|
const T value = values[i]; |
|
const auto pos = |
|
std::find_if(unique.begin(), unique.end(), |
|
[value](const Unique u) { return u.first == value; }); |
|
if (pos == unique.end()) { |
|
unique.push_back(std::make_pair(value, 1)); |
|
} else { |
|
++pos->second; |
|
} |
|
} |
|
|
|
// Sort in ascending order of value (pair.first). |
|
std::sort(unique.begin(), unique.end()); |
|
|
|
// Write that many copies of each unique value to the array. |
|
T* ABSL_RANDOM_INTERNAL_RESTRICT p = values; |
|
for (const auto& value_count : unique) { |
|
std::fill(p, p + value_count.second, value_count.first); |
|
p += value_count.second; |
|
} |
|
ABSL_RAW_CHECK(p == values + num_values, "Did not produce enough output"); |
|
} |
|
|
|
// @return i in [idx_begin, idx_begin + half_count) that minimizes |
|
// sorted[i + half_count] - sorted[i]. |
|
template <typename T> |
|
size_t MinRange(const T* const ABSL_RANDOM_INTERNAL_RESTRICT sorted, |
|
const size_t idx_begin, const size_t half_count) { |
|
T min_range = (std::numeric_limits<T>::max)(); |
|
size_t min_idx = 0; |
|
|
|
for (size_t idx = idx_begin; idx < idx_begin + half_count; ++idx) { |
|
ABSL_RAW_CHECK(sorted[idx] <= sorted[idx + half_count], "Not sorted"); |
|
const T range = sorted[idx + half_count] - sorted[idx]; |
|
if (range < min_range) { |
|
min_range = range; |
|
min_idx = idx; |
|
} |
|
} |
|
|
|
return min_idx; |
|
} |
|
|
|
// Returns an estimate of the mode by calling MinRange on successively |
|
// halved intervals. "sorted" must be in ascending order. This is the |
|
// Half Sample Mode estimator proposed by Bickel in "On a fast, robust |
|
// estimator of the mode", with complexity O(N log N). The mode is less |
|
// affected by outliers in highly-skewed distributions than the median. |
|
// The averaging operation below assumes "T" is an unsigned integer type. |
|
template <typename T> |
|
T ModeOfSorted(const T* const ABSL_RANDOM_INTERNAL_RESTRICT sorted, |
|
const size_t num_values) { |
|
size_t idx_begin = 0; |
|
size_t half_count = num_values / 2; |
|
while (half_count > 1) { |
|
idx_begin = MinRange(sorted, idx_begin, half_count); |
|
half_count >>= 1; |
|
} |
|
|
|
const T x = sorted[idx_begin + 0]; |
|
if (half_count == 0) { |
|
return x; |
|
} |
|
ABSL_RAW_CHECK(half_count == 1, "Should stop at half_count=1"); |
|
const T average = (x + sorted[idx_begin + 1] + 1) / 2; |
|
return average; |
|
} |
|
|
|
// Returns the mode. Side effect: sorts "values". |
|
template <typename T> |
|
T Mode(T* values, const size_t num_values) { |
|
CountingSort(values, num_values); |
|
return ModeOfSorted(values, num_values); |
|
} |
|
|
|
template <typename T, size_t N> |
|
T Mode(T (&values)[N]) { |
|
return Mode(&values[0], N); |
|
} |
|
|
|
// Returns the median value. Side effect: sorts "values". |
|
template <typename T> |
|
T Median(T* values, const size_t num_values) { |
|
ABSL_RAW_CHECK(num_values != 0, "Empty input"); |
|
std::sort(values, values + num_values); |
|
const size_t half = num_values / 2; |
|
// Odd count: return middle |
|
if (num_values % 2) { |
|
return values[half]; |
|
} |
|
// Even count: return average of middle two. |
|
return (values[half] + values[half - 1] + 1) / 2; |
|
} |
|
|
|
// Returns a robust measure of variability. |
|
template <typename T> |
|
T MedianAbsoluteDeviation(const T* values, const size_t num_values, |
|
const T median) { |
|
ABSL_RAW_CHECK(num_values != 0, "Empty input"); |
|
std::vector<T> abs_deviations; |
|
abs_deviations.reserve(num_values); |
|
for (size_t i = 0; i < num_values; ++i) { |
|
const int64_t abs = std::abs(int64_t(values[i]) - int64_t(median)); |
|
abs_deviations.push_back(static_cast<T>(abs)); |
|
} |
|
return Median(abs_deviations.data(), num_values); |
|
} |
|
|
|
} // namespace robust_statistics |
|
|
|
// Ticks := platform-specific timer values (CPU cycles on x86). Must be |
|
// unsigned to guarantee wraparound on overflow. 32 bit timers are faster to |
|
// read than 64 bit. |
|
using Ticks = uint32_t; |
|
|
|
// Returns timer overhead / minimum measurable difference. |
|
Ticks TimerResolution() { |
|
// Nested loop avoids exceeding stack/L1 capacity. |
|
Ticks repetitions[Params::kTimerSamples]; |
|
for (size_t rep = 0; rep < Params::kTimerSamples; ++rep) { |
|
Ticks samples[Params::kTimerSamples]; |
|
for (size_t i = 0; i < Params::kTimerSamples; ++i) { |
|
const Ticks t0 = timer::Start32(); |
|
const Ticks t1 = timer::Stop32(); |
|
samples[i] = t1 - t0; |
|
} |
|
repetitions[rep] = robust_statistics::Mode(samples); |
|
} |
|
return robust_statistics::Mode(repetitions); |
|
} |
|
|
|
static const Ticks timer_resolution = TimerResolution(); |
|
|
|
// Estimates the expected value of "lambda" values with a variable number of |
|
// samples until the variability "rel_mad" is less than "max_rel_mad". |
|
template <class Lambda> |
|
Ticks SampleUntilStable(const double max_rel_mad, double* rel_mad, |
|
const Params& p, const Lambda& lambda) { |
|
auto measure_duration = [&lambda]() -> Ticks { |
|
const Ticks t0 = timer::Start32(); |
|
lambda(); |
|
const Ticks t1 = timer::Stop32(); |
|
return t1 - t0; |
|
}; |
|
|
|
// Choose initial samples_per_eval based on a single estimated duration. |
|
Ticks est = measure_duration(); |
|
static const double ticks_per_second = InvariantTicksPerSecond(); |
|
const size_t ticks_per_eval = ticks_per_second * p.seconds_per_eval; |
|
size_t samples_per_eval = ticks_per_eval / est; |
|
samples_per_eval = (std::max)(samples_per_eval, p.min_samples_per_eval); |
|
|
|
std::vector<Ticks> samples; |
|
samples.reserve(1 + samples_per_eval); |
|
samples.push_back(est); |
|
|
|
// Percentage is too strict for tiny differences, so also allow a small |
|
// absolute "median absolute deviation". |
|
const Ticks max_abs_mad = (timer_resolution + 99) / 100; |
|
*rel_mad = 0.0; // ensure initialized |
|
|
|
for (size_t eval = 0; eval < p.max_evals; ++eval, samples_per_eval *= 2) { |
|
samples.reserve(samples.size() + samples_per_eval); |
|
for (size_t i = 0; i < samples_per_eval; ++i) { |
|
const Ticks r = measure_duration(); |
|
samples.push_back(r); |
|
} |
|
|
|
if (samples.size() >= p.min_mode_samples) { |
|
est = robust_statistics::Mode(samples.data(), samples.size()); |
|
} else { |
|
// For "few" (depends also on the variance) samples, Median is safer. |
|
est = robust_statistics::Median(samples.data(), samples.size()); |
|
} |
|
ABSL_RAW_CHECK(est != 0, "Estimator returned zero duration"); |
|
|
|
// Median absolute deviation (mad) is a robust measure of 'variability'. |
|
const Ticks abs_mad = robust_statistics::MedianAbsoluteDeviation( |
|
samples.data(), samples.size(), est); |
|
*rel_mad = static_cast<double>(static_cast<int>(abs_mad)) / est; |
|
|
|
if (*rel_mad <= max_rel_mad || abs_mad <= max_abs_mad) { |
|
if (p.verbose) { |
|
ABSL_RAW_LOG(INFO, |
|
"%6zu samples => %5u (abs_mad=%4u, rel_mad=%4.2f%%)\n", |
|
samples.size(), est, abs_mad, *rel_mad * 100.0); |
|
} |
|
return est; |
|
} |
|
} |
|
|
|
if (p.verbose) { |
|
ABSL_RAW_LOG(WARNING, |
|
"rel_mad=%4.2f%% still exceeds %4.2f%% after %6zu samples.\n", |
|
*rel_mad * 100.0, max_rel_mad * 100.0, samples.size()); |
|
} |
|
return est; |
|
} |
|
|
|
using InputVec = std::vector<FuncInput>; |
|
|
|
// Returns vector of unique input values. |
|
InputVec UniqueInputs(const FuncInput* inputs, const size_t num_inputs) { |
|
InputVec unique(inputs, inputs + num_inputs); |
|
std::sort(unique.begin(), unique.end()); |
|
unique.erase(std::unique(unique.begin(), unique.end()), unique.end()); |
|
return unique; |
|
} |
|
|
|
// Returns how often we need to call func for sufficient precision, or zero |
|
// on failure (e.g. the elapsed time is too long for a 32-bit tick count). |
|
size_t NumSkip(const Func func, const void* arg, const InputVec& unique, |
|
const Params& p) { |
|
// Min elapsed ticks for any input. |
|
Ticks min_duration = ~0u; |
|
|
|
for (const FuncInput input : unique) { |
|
// Make sure a 32-bit timer is sufficient. |
|
const uint64_t t0 = timer::Start64(); |
|
PreventElision(func(arg, input)); |
|
const uint64_t t1 = timer::Stop64(); |
|
const uint64_t elapsed = t1 - t0; |
|
if (elapsed >= (1ULL << 30)) { |
|
ABSL_RAW_LOG(WARNING, |
|
"Measurement failed: need 64-bit timer for input=%zu\n", |
|
static_cast<size_t>(input)); |
|
return 0; |
|
} |
|
|
|
double rel_mad; |
|
const Ticks total = SampleUntilStable( |
|
p.target_rel_mad, &rel_mad, p, |
|
[func, arg, input]() { PreventElision(func(arg, input)); }); |
|
min_duration = (std::min)(min_duration, total - timer_resolution); |
|
} |
|
|
|
// Number of repetitions required to reach the target resolution. |
|
const size_t max_skip = p.precision_divisor; |
|
// Number of repetitions given the estimated duration. |
|
const size_t num_skip = |
|
min_duration == 0 ? 0 : (max_skip + min_duration - 1) / min_duration; |
|
if (p.verbose) { |
|
ABSL_RAW_LOG(INFO, "res=%u max_skip=%zu min_dur=%u num_skip=%zu\n", |
|
timer_resolution, max_skip, min_duration, num_skip); |
|
} |
|
return num_skip; |
|
} |
|
|
|
// Replicates inputs until we can omit "num_skip" occurrences of an input. |
|
InputVec ReplicateInputs(const FuncInput* inputs, const size_t num_inputs, |
|
const size_t num_unique, const size_t num_skip, |
|
const Params& p) { |
|
InputVec full; |
|
if (num_unique == 1) { |
|
full.assign(p.subset_ratio * num_skip, inputs[0]); |
|
return full; |
|
} |
|
|
|
full.reserve(p.subset_ratio * num_skip * num_inputs); |
|
for (size_t i = 0; i < p.subset_ratio * num_skip; ++i) { |
|
full.insert(full.end(), inputs, inputs + num_inputs); |
|
} |
|
absl::random_internal::randen_engine<uint32_t> rng; |
|
std::shuffle(full.begin(), full.end(), rng); |
|
return full; |
|
} |
|
|
|
// Copies the "full" to "subset" in the same order, but with "num_skip" |
|
// randomly selected occurrences of "input_to_skip" removed. |
|
void FillSubset(const InputVec& full, const FuncInput input_to_skip, |
|
const size_t num_skip, InputVec* subset) { |
|
const size_t count = std::count(full.begin(), full.end(), input_to_skip); |
|
// Generate num_skip random indices: which occurrence to skip. |
|
std::vector<uint32_t> omit; |
|
// Replacement for std::iota, not yet available in MSVC builds. |
|
omit.reserve(count); |
|
for (size_t i = 0; i < count; ++i) { |
|
omit.push_back(i); |
|
} |
|
// omit[] is the same on every call, but that's OK because they identify the |
|
// Nth instance of input_to_skip, so the position within full[] differs. |
|
absl::random_internal::randen_engine<uint32_t> rng; |
|
std::shuffle(omit.begin(), omit.end(), rng); |
|
omit.resize(num_skip); |
|
std::sort(omit.begin(), omit.end()); |
|
|
|
uint32_t occurrence = ~0u; // 0 after preincrement |
|
size_t idx_omit = 0; // cursor within omit[] |
|
size_t idx_subset = 0; // cursor within *subset |
|
for (const FuncInput next : full) { |
|
if (next == input_to_skip) { |
|
++occurrence; |
|
// Haven't removed enough already |
|
if (idx_omit < num_skip) { |
|
// This one is up for removal |
|
if (occurrence == omit[idx_omit]) { |
|
++idx_omit; |
|
continue; |
|
} |
|
} |
|
} |
|
if (idx_subset < subset->size()) { |
|
(*subset)[idx_subset++] = next; |
|
} |
|
} |
|
ABSL_RAW_CHECK(idx_subset == subset->size(), "idx_subset not at end"); |
|
ABSL_RAW_CHECK(idx_omit == omit.size(), "idx_omit not at end"); |
|
ABSL_RAW_CHECK(occurrence == count - 1, "occurrence not at end"); |
|
} |
|
|
|
// Returns total ticks elapsed for all inputs. |
|
Ticks TotalDuration(const Func func, const void* arg, const InputVec* inputs, |
|
const Params& p, double* max_rel_mad) { |
|
double rel_mad; |
|
const Ticks duration = |
|
SampleUntilStable(p.target_rel_mad, &rel_mad, p, [func, arg, inputs]() { |
|
for (const FuncInput input : *inputs) { |
|
PreventElision(func(arg, input)); |
|
} |
|
}); |
|
*max_rel_mad = (std::max)(*max_rel_mad, rel_mad); |
|
return duration; |
|
} |
|
|
|
// (Nearly) empty Func for measuring timer overhead/resolution. |
|
ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE FuncOutput |
|
EmptyFunc(const void* arg, const FuncInput input) { |
|
return input; |
|
} |
|
|
|
// Returns overhead of accessing inputs[] and calling a function; this will |
|
// be deducted from future TotalDuration return values. |
|
Ticks Overhead(const void* arg, const InputVec* inputs, const Params& p) { |
|
double rel_mad; |
|
// Zero tolerance because repeatability is crucial and EmptyFunc is fast. |
|
return SampleUntilStable(0.0, &rel_mad, p, [arg, inputs]() { |
|
for (const FuncInput input : *inputs) { |
|
PreventElision(EmptyFunc(arg, input)); |
|
} |
|
}); |
|
} |
|
|
|
} // namespace |
|
|
|
void PinThreadToCPU(int cpu) { |
|
// We might migrate to another CPU before pinning below, but at least cpu |
|
// will be one of the CPUs on which this thread ran. |
|
#if defined(ABSL_OS_WIN) |
|
if (cpu < 0) { |
|
cpu = static_cast<int>(GetCurrentProcessorNumber()); |
|
ABSL_RAW_CHECK(cpu >= 0, "PinThreadToCPU detect failed"); |
|
if (cpu >= 64) { |
|
// NOTE: On wine, at least, GetCurrentProcessorNumber() sometimes returns |
|
// a value > 64, which is out of range. When this happens, log a message |
|
// and don't set a cpu affinity. |
|
ABSL_RAW_LOG(ERROR, "Invalid CPU number: %d", cpu); |
|
return; |
|
} |
|
} else if (cpu >= 64) { |
|
// User specified an explicit CPU affinity > the valid range. |
|
ABSL_RAW_LOG(FATAL, "Invalid CPU number: %d", cpu); |
|
} |
|
const DWORD_PTR prev = SetThreadAffinityMask(GetCurrentThread(), 1ULL << cpu); |
|
ABSL_RAW_CHECK(prev != 0, "SetAffinity failed"); |
|
#elif defined(ABSL_OS_LINUX) && !defined(ABSL_OS_ANDROID) |
|
if (cpu < 0) { |
|
cpu = sched_getcpu(); |
|
ABSL_RAW_CHECK(cpu >= 0, "PinThreadToCPU detect failed"); |
|
} |
|
const pid_t pid = 0; // current thread |
|
cpu_set_t set; |
|
CPU_ZERO(&set); |
|
CPU_SET(cpu, &set); |
|
const int err = sched_setaffinity(pid, sizeof(set), &set); |
|
ABSL_RAW_CHECK(err == 0, "SetAffinity failed"); |
|
#endif |
|
} |
|
|
|
// Returns tick rate. Invariant means the tick counter frequency is independent |
|
// of CPU throttling or sleep. May be expensive, caller should cache the result. |
|
double InvariantTicksPerSecond() { |
|
#if defined(ABSL_ARCH_PPC) |
|
return __ppc_get_timebase_freq(); |
|
#elif defined(ABSL_ARCH_X86_64) |
|
// We assume the TSC is invariant; it is on all recent Intel/AMD CPUs. |
|
return platform::NominalClockRate(); |
|
#else |
|
// Fall back to clock_gettime nanoseconds. |
|
return 1E9; |
|
#endif |
|
} |
|
|
|
size_t MeasureImpl(const Func func, const void* arg, const size_t num_skip, |
|
const InputVec& unique, const InputVec& full, |
|
const Params& p, Result* results) { |
|
const float mul = 1.0f / static_cast<int>(num_skip); |
|
|
|
InputVec subset(full.size() - num_skip); |
|
const Ticks overhead = Overhead(arg, &full, p); |
|
const Ticks overhead_skip = Overhead(arg, &subset, p); |
|
if (overhead < overhead_skip) { |
|
ABSL_RAW_LOG(WARNING, "Measurement failed: overhead %u < %u\n", overhead, |
|
overhead_skip); |
|
return 0; |
|
} |
|
|
|
if (p.verbose) { |
|
ABSL_RAW_LOG(INFO, "#inputs=%5zu,%5zu overhead=%5u,%5u\n", full.size(), |
|
subset.size(), overhead, overhead_skip); |
|
} |
|
|
|
double max_rel_mad = 0.0; |
|
const Ticks total = TotalDuration(func, arg, &full, p, &max_rel_mad); |
|
|
|
for (size_t i = 0; i < unique.size(); ++i) { |
|
FillSubset(full, unique[i], num_skip, &subset); |
|
const Ticks total_skip = TotalDuration(func, arg, &subset, p, &max_rel_mad); |
|
|
|
if (total < total_skip) { |
|
ABSL_RAW_LOG(WARNING, "Measurement failed: total %u < %u\n", total, |
|
total_skip); |
|
return 0; |
|
} |
|
|
|
const Ticks duration = (total - overhead) - (total_skip - overhead_skip); |
|
results[i].input = unique[i]; |
|
results[i].ticks = duration * mul; |
|
results[i].variability = max_rel_mad; |
|
} |
|
|
|
return unique.size(); |
|
} |
|
|
|
size_t Measure(const Func func, const void* arg, const FuncInput* inputs, |
|
const size_t num_inputs, Result* results, const Params& p) { |
|
ABSL_RAW_CHECK(num_inputs != 0, "No inputs"); |
|
|
|
const InputVec unique = UniqueInputs(inputs, num_inputs); |
|
const size_t num_skip = NumSkip(func, arg, unique, p); // never 0 |
|
if (num_skip == 0) return 0; // NumSkip already printed error message |
|
|
|
const InputVec full = |
|
ReplicateInputs(inputs, num_inputs, unique.size(), num_skip, p); |
|
|
|
// MeasureImpl may fail up to p.max_measure_retries times. |
|
for (size_t i = 0; i < p.max_measure_retries; i++) { |
|
auto result = MeasureImpl(func, arg, num_skip, unique, full, p, results); |
|
if (result != 0) { |
|
return result; |
|
} |
|
} |
|
// All retries failed. (Unusual) |
|
return 0; |
|
} |
|
|
|
} // namespace random_internal_nanobenchmark |
|
} // namespace absl
|
|
|