Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2015 lines
60 KiB
2015 lines
60 KiB
// Copyright 2018 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#include "absl/container/internal/raw_hash_set.h" |
|
|
|
#include <atomic> |
|
#include <cmath> |
|
#include <cstdint> |
|
#include <deque> |
|
#include <functional> |
|
#include <memory> |
|
#include <numeric> |
|
#include <random> |
|
#include <string> |
|
#include <unordered_map> |
|
#include <unordered_set> |
|
|
|
#include "gmock/gmock.h" |
|
#include "gtest/gtest.h" |
|
#include "absl/base/attributes.h" |
|
#include "absl/base/config.h" |
|
#include "absl/base/internal/cycleclock.h" |
|
#include "absl/base/internal/raw_logging.h" |
|
#include "absl/container/internal/container_memory.h" |
|
#include "absl/container/internal/hash_function_defaults.h" |
|
#include "absl/container/internal/hash_policy_testing.h" |
|
#include "absl/container/internal/hashtable_debug.h" |
|
#include "absl/strings/string_view.h" |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
namespace container_internal { |
|
|
|
struct RawHashSetTestOnlyAccess { |
|
template <typename C> |
|
static auto GetSlots(const C& c) -> decltype(c.slots_) { |
|
return c.slots_; |
|
} |
|
}; |
|
|
|
namespace { |
|
|
|
using ::testing::ElementsAre; |
|
using ::testing::Eq; |
|
using ::testing::Ge; |
|
using ::testing::Lt; |
|
using ::testing::Pair; |
|
using ::testing::UnorderedElementsAre; |
|
|
|
TEST(Util, NormalizeCapacity) { |
|
EXPECT_EQ(1, NormalizeCapacity(0)); |
|
EXPECT_EQ(1, NormalizeCapacity(1)); |
|
EXPECT_EQ(3, NormalizeCapacity(2)); |
|
EXPECT_EQ(3, NormalizeCapacity(3)); |
|
EXPECT_EQ(7, NormalizeCapacity(4)); |
|
EXPECT_EQ(7, NormalizeCapacity(7)); |
|
EXPECT_EQ(15, NormalizeCapacity(8)); |
|
EXPECT_EQ(15, NormalizeCapacity(15)); |
|
EXPECT_EQ(15 * 2 + 1, NormalizeCapacity(15 + 1)); |
|
EXPECT_EQ(15 * 2 + 1, NormalizeCapacity(15 + 2)); |
|
} |
|
|
|
TEST(Util, GrowthAndCapacity) { |
|
// Verify that GrowthToCapacity gives the minimum capacity that has enough |
|
// growth. |
|
for (size_t growth = 0; growth < 10000; ++growth) { |
|
SCOPED_TRACE(growth); |
|
size_t capacity = NormalizeCapacity(GrowthToLowerboundCapacity(growth)); |
|
// The capacity is large enough for `growth`. |
|
EXPECT_THAT(CapacityToGrowth(capacity), Ge(growth)); |
|
// For (capacity+1) < kWidth, growth should equal capacity. |
|
if (capacity + 1 < Group::kWidth) { |
|
EXPECT_THAT(CapacityToGrowth(capacity), Eq(capacity)); |
|
} else { |
|
EXPECT_THAT(CapacityToGrowth(capacity), Lt(capacity)); |
|
} |
|
if (growth != 0 && capacity > 1) { |
|
// There is no smaller capacity that works. |
|
EXPECT_THAT(CapacityToGrowth(capacity / 2), Lt(growth)); |
|
} |
|
} |
|
|
|
for (size_t capacity = Group::kWidth - 1; capacity < 10000; |
|
capacity = 2 * capacity + 1) { |
|
SCOPED_TRACE(capacity); |
|
size_t growth = CapacityToGrowth(capacity); |
|
EXPECT_THAT(growth, Lt(capacity)); |
|
EXPECT_LE(GrowthToLowerboundCapacity(growth), capacity); |
|
EXPECT_EQ(NormalizeCapacity(GrowthToLowerboundCapacity(growth)), capacity); |
|
} |
|
} |
|
|
|
TEST(Util, probe_seq) { |
|
probe_seq<16> seq(0, 127); |
|
auto gen = [&]() { |
|
size_t res = seq.offset(); |
|
seq.next(); |
|
return res; |
|
}; |
|
std::vector<size_t> offsets(8); |
|
std::generate_n(offsets.begin(), 8, gen); |
|
EXPECT_THAT(offsets, ElementsAre(0, 16, 48, 96, 32, 112, 80, 64)); |
|
seq = probe_seq<16>(128, 127); |
|
std::generate_n(offsets.begin(), 8, gen); |
|
EXPECT_THAT(offsets, ElementsAre(0, 16, 48, 96, 32, 112, 80, 64)); |
|
} |
|
|
|
TEST(BitMask, Smoke) { |
|
EXPECT_FALSE((BitMask<uint8_t, 8>(0))); |
|
EXPECT_TRUE((BitMask<uint8_t, 8>(5))); |
|
|
|
EXPECT_THAT((BitMask<uint8_t, 8>(0)), ElementsAre()); |
|
EXPECT_THAT((BitMask<uint8_t, 8>(0x1)), ElementsAre(0)); |
|
EXPECT_THAT((BitMask<uint8_t, 8>(0x2)), ElementsAre(1)); |
|
EXPECT_THAT((BitMask<uint8_t, 8>(0x3)), ElementsAre(0, 1)); |
|
EXPECT_THAT((BitMask<uint8_t, 8>(0x4)), ElementsAre(2)); |
|
EXPECT_THAT((BitMask<uint8_t, 8>(0x5)), ElementsAre(0, 2)); |
|
EXPECT_THAT((BitMask<uint8_t, 8>(0x55)), ElementsAre(0, 2, 4, 6)); |
|
EXPECT_THAT((BitMask<uint8_t, 8>(0xAA)), ElementsAre(1, 3, 5, 7)); |
|
} |
|
|
|
TEST(BitMask, WithShift) { |
|
// See the non-SSE version of Group for details on what this math is for. |
|
uint64_t ctrl = 0x1716151413121110; |
|
uint64_t hash = 0x12; |
|
constexpr uint64_t msbs = 0x8080808080808080ULL; |
|
constexpr uint64_t lsbs = 0x0101010101010101ULL; |
|
auto x = ctrl ^ (lsbs * hash); |
|
uint64_t mask = (x - lsbs) & ~x & msbs; |
|
EXPECT_EQ(0x0000000080800000, mask); |
|
|
|
BitMask<uint64_t, 8, 3> b(mask); |
|
EXPECT_EQ(*b, 2); |
|
} |
|
|
|
TEST(BitMask, LeadingTrailing) { |
|
EXPECT_EQ((BitMask<uint32_t, 16>(0x00001a40).LeadingZeros()), 3); |
|
EXPECT_EQ((BitMask<uint32_t, 16>(0x00001a40).TrailingZeros()), 6); |
|
|
|
EXPECT_EQ((BitMask<uint32_t, 16>(0x00000001).LeadingZeros()), 15); |
|
EXPECT_EQ((BitMask<uint32_t, 16>(0x00000001).TrailingZeros()), 0); |
|
|
|
EXPECT_EQ((BitMask<uint32_t, 16>(0x00008000).LeadingZeros()), 0); |
|
EXPECT_EQ((BitMask<uint32_t, 16>(0x00008000).TrailingZeros()), 15); |
|
|
|
EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000008080808000).LeadingZeros()), 3); |
|
EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000008080808000).TrailingZeros()), 1); |
|
|
|
EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000000000000080).LeadingZeros()), 7); |
|
EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000000000000080).TrailingZeros()), 0); |
|
|
|
EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x8000000000000000).LeadingZeros()), 0); |
|
EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x8000000000000000).TrailingZeros()), 7); |
|
} |
|
|
|
TEST(Group, EmptyGroup) { |
|
for (h2_t h = 0; h != 128; ++h) EXPECT_FALSE(Group{EmptyGroup()}.Match(h)); |
|
} |
|
|
|
TEST(Group, Match) { |
|
if (Group::kWidth == 16) { |
|
ctrl_t group[] = {kEmpty, 1, kDeleted, 3, kEmpty, 5, kSentinel, 7, |
|
7, 5, 3, 1, 1, 1, 1, 1}; |
|
EXPECT_THAT(Group{group}.Match(0), ElementsAre()); |
|
EXPECT_THAT(Group{group}.Match(1), ElementsAre(1, 11, 12, 13, 14, 15)); |
|
EXPECT_THAT(Group{group}.Match(3), ElementsAre(3, 10)); |
|
EXPECT_THAT(Group{group}.Match(5), ElementsAre(5, 9)); |
|
EXPECT_THAT(Group{group}.Match(7), ElementsAre(7, 8)); |
|
} else if (Group::kWidth == 8) { |
|
ctrl_t group[] = {kEmpty, 1, 2, kDeleted, 2, 1, kSentinel, 1}; |
|
EXPECT_THAT(Group{group}.Match(0), ElementsAre()); |
|
EXPECT_THAT(Group{group}.Match(1), ElementsAre(1, 5, 7)); |
|
EXPECT_THAT(Group{group}.Match(2), ElementsAre(2, 4)); |
|
} else { |
|
FAIL() << "No test coverage for Group::kWidth==" << Group::kWidth; |
|
} |
|
} |
|
|
|
TEST(Group, MatchEmpty) { |
|
if (Group::kWidth == 16) { |
|
ctrl_t group[] = {kEmpty, 1, kDeleted, 3, kEmpty, 5, kSentinel, 7, |
|
7, 5, 3, 1, 1, 1, 1, 1}; |
|
EXPECT_THAT(Group{group}.MatchEmpty(), ElementsAre(0, 4)); |
|
} else if (Group::kWidth == 8) { |
|
ctrl_t group[] = {kEmpty, 1, 2, kDeleted, 2, 1, kSentinel, 1}; |
|
EXPECT_THAT(Group{group}.MatchEmpty(), ElementsAre(0)); |
|
} else { |
|
FAIL() << "No test coverage for Group::kWidth==" << Group::kWidth; |
|
} |
|
} |
|
|
|
TEST(Group, MatchEmptyOrDeleted) { |
|
if (Group::kWidth == 16) { |
|
ctrl_t group[] = {kEmpty, 1, kDeleted, 3, kEmpty, 5, kSentinel, 7, |
|
7, 5, 3, 1, 1, 1, 1, 1}; |
|
EXPECT_THAT(Group{group}.MatchEmptyOrDeleted(), ElementsAre(0, 2, 4)); |
|
} else if (Group::kWidth == 8) { |
|
ctrl_t group[] = {kEmpty, 1, 2, kDeleted, 2, 1, kSentinel, 1}; |
|
EXPECT_THAT(Group{group}.MatchEmptyOrDeleted(), ElementsAre(0, 3)); |
|
} else { |
|
FAIL() << "No test coverage for Group::kWidth==" << Group::kWidth; |
|
} |
|
} |
|
|
|
TEST(Batch, DropDeletes) { |
|
constexpr size_t kCapacity = 63; |
|
constexpr size_t kGroupWidth = container_internal::Group::kWidth; |
|
std::vector<ctrl_t> ctrl(kCapacity + 1 + kGroupWidth); |
|
ctrl[kCapacity] = kSentinel; |
|
std::vector<ctrl_t> pattern = {kEmpty, 2, kDeleted, 2, kEmpty, 1, kDeleted}; |
|
for (size_t i = 0; i != kCapacity; ++i) { |
|
ctrl[i] = pattern[i % pattern.size()]; |
|
if (i < kGroupWidth - 1) |
|
ctrl[i + kCapacity + 1] = pattern[i % pattern.size()]; |
|
} |
|
ConvertDeletedToEmptyAndFullToDeleted(ctrl.data(), kCapacity); |
|
ASSERT_EQ(ctrl[kCapacity], kSentinel); |
|
for (size_t i = 0; i < kCapacity + 1 + kGroupWidth; ++i) { |
|
ctrl_t expected = pattern[i % (kCapacity + 1) % pattern.size()]; |
|
if (i == kCapacity) expected = kSentinel; |
|
if (expected == kDeleted) expected = kEmpty; |
|
if (IsFull(expected)) expected = kDeleted; |
|
EXPECT_EQ(ctrl[i], expected) |
|
<< i << " " << int{pattern[i % pattern.size()]}; |
|
} |
|
} |
|
|
|
TEST(Group, CountLeadingEmptyOrDeleted) { |
|
const std::vector<ctrl_t> empty_examples = {kEmpty, kDeleted}; |
|
const std::vector<ctrl_t> full_examples = {0, 1, 2, 3, 5, 9, 127, kSentinel}; |
|
|
|
for (ctrl_t empty : empty_examples) { |
|
std::vector<ctrl_t> e(Group::kWidth, empty); |
|
EXPECT_EQ(Group::kWidth, Group{e.data()}.CountLeadingEmptyOrDeleted()); |
|
for (ctrl_t full : full_examples) { |
|
for (size_t i = 0; i != Group::kWidth; ++i) { |
|
std::vector<ctrl_t> f(Group::kWidth, empty); |
|
f[i] = full; |
|
EXPECT_EQ(i, Group{f.data()}.CountLeadingEmptyOrDeleted()); |
|
} |
|
std::vector<ctrl_t> f(Group::kWidth, empty); |
|
f[Group::kWidth * 2 / 3] = full; |
|
f[Group::kWidth / 2] = full; |
|
EXPECT_EQ( |
|
Group::kWidth / 2, Group{f.data()}.CountLeadingEmptyOrDeleted()); |
|
} |
|
} |
|
} |
|
|
|
template <class T> |
|
struct ValuePolicy { |
|
using slot_type = T; |
|
using key_type = T; |
|
using init_type = T; |
|
|
|
template <class Allocator, class... Args> |
|
static void construct(Allocator* alloc, slot_type* slot, Args&&... args) { |
|
absl::allocator_traits<Allocator>::construct(*alloc, slot, |
|
std::forward<Args>(args)...); |
|
} |
|
|
|
template <class Allocator> |
|
static void destroy(Allocator* alloc, slot_type* slot) { |
|
absl::allocator_traits<Allocator>::destroy(*alloc, slot); |
|
} |
|
|
|
template <class Allocator> |
|
static void transfer(Allocator* alloc, slot_type* new_slot, |
|
slot_type* old_slot) { |
|
construct(alloc, new_slot, std::move(*old_slot)); |
|
destroy(alloc, old_slot); |
|
} |
|
|
|
static T& element(slot_type* slot) { return *slot; } |
|
|
|
template <class F, class... Args> |
|
static decltype(absl::container_internal::DecomposeValue( |
|
std::declval<F>(), std::declval<Args>()...)) |
|
apply(F&& f, Args&&... args) { |
|
return absl::container_internal::DecomposeValue( |
|
std::forward<F>(f), std::forward<Args>(args)...); |
|
} |
|
}; |
|
|
|
using IntPolicy = ValuePolicy<int64_t>; |
|
|
|
class StringPolicy { |
|
template <class F, class K, class V, |
|
class = typename std::enable_if< |
|
std::is_convertible<const K&, absl::string_view>::value>::type> |
|
decltype(std::declval<F>()( |
|
std::declval<const absl::string_view&>(), std::piecewise_construct, |
|
std::declval<std::tuple<K>>(), |
|
std::declval<V>())) static apply_impl(F&& f, |
|
std::pair<std::tuple<K>, V> p) { |
|
const absl::string_view& key = std::get<0>(p.first); |
|
return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first), |
|
std::move(p.second)); |
|
} |
|
|
|
public: |
|
struct slot_type { |
|
struct ctor {}; |
|
|
|
template <class... Ts> |
|
slot_type(ctor, Ts&&... ts) : pair(std::forward<Ts>(ts)...) {} |
|
|
|
std::pair<std::string, std::string> pair; |
|
}; |
|
|
|
using key_type = std::string; |
|
using init_type = std::pair<std::string, std::string>; |
|
|
|
template <class allocator_type, class... Args> |
|
static void construct(allocator_type* alloc, slot_type* slot, Args... args) { |
|
std::allocator_traits<allocator_type>::construct( |
|
*alloc, slot, typename slot_type::ctor(), std::forward<Args>(args)...); |
|
} |
|
|
|
template <class allocator_type> |
|
static void destroy(allocator_type* alloc, slot_type* slot) { |
|
std::allocator_traits<allocator_type>::destroy(*alloc, slot); |
|
} |
|
|
|
template <class allocator_type> |
|
static void transfer(allocator_type* alloc, slot_type* new_slot, |
|
slot_type* old_slot) { |
|
construct(alloc, new_slot, std::move(old_slot->pair)); |
|
destroy(alloc, old_slot); |
|
} |
|
|
|
static std::pair<std::string, std::string>& element(slot_type* slot) { |
|
return slot->pair; |
|
} |
|
|
|
template <class F, class... Args> |
|
static auto apply(F&& f, Args&&... args) |
|
-> decltype(apply_impl(std::forward<F>(f), |
|
PairArgs(std::forward<Args>(args)...))) { |
|
return apply_impl(std::forward<F>(f), |
|
PairArgs(std::forward<Args>(args)...)); |
|
} |
|
}; |
|
|
|
struct StringHash : absl::Hash<absl::string_view> { |
|
using is_transparent = void; |
|
}; |
|
struct StringEq : std::equal_to<absl::string_view> { |
|
using is_transparent = void; |
|
}; |
|
|
|
struct StringTable |
|
: raw_hash_set<StringPolicy, StringHash, StringEq, std::allocator<int>> { |
|
using Base = typename StringTable::raw_hash_set; |
|
StringTable() {} |
|
using Base::Base; |
|
}; |
|
|
|
struct IntTable |
|
: raw_hash_set<IntPolicy, container_internal::hash_default_hash<int64_t>, |
|
std::equal_to<int64_t>, std::allocator<int64_t>> { |
|
using Base = typename IntTable::raw_hash_set; |
|
using Base::Base; |
|
}; |
|
|
|
template <typename T> |
|
struct CustomAlloc : std::allocator<T> { |
|
CustomAlloc() {} |
|
|
|
template <typename U> |
|
CustomAlloc(const CustomAlloc<U>& other) {} |
|
|
|
template<class U> struct rebind { |
|
using other = CustomAlloc<U>; |
|
}; |
|
}; |
|
|
|
struct CustomAllocIntTable |
|
: raw_hash_set<IntPolicy, container_internal::hash_default_hash<int64_t>, |
|
std::equal_to<int64_t>, CustomAlloc<int64_t>> { |
|
using Base = typename CustomAllocIntTable::raw_hash_set; |
|
using Base::Base; |
|
}; |
|
|
|
struct BadFastHash { |
|
template <class T> |
|
size_t operator()(const T&) const { |
|
return 0; |
|
} |
|
}; |
|
|
|
struct BadTable : raw_hash_set<IntPolicy, BadFastHash, std::equal_to<int>, |
|
std::allocator<int>> { |
|
using Base = typename BadTable::raw_hash_set; |
|
BadTable() {} |
|
using Base::Base; |
|
}; |
|
|
|
TEST(Table, EmptyFunctorOptimization) { |
|
static_assert(std::is_empty<std::equal_to<absl::string_view>>::value, ""); |
|
static_assert(std::is_empty<std::allocator<int>>::value, ""); |
|
|
|
struct MockTable { |
|
void* ctrl; |
|
void* slots; |
|
size_t size; |
|
size_t capacity; |
|
size_t growth_left; |
|
void* infoz; |
|
}; |
|
struct MockTableInfozDisabled { |
|
void* ctrl; |
|
void* slots; |
|
size_t size; |
|
size_t capacity; |
|
size_t growth_left; |
|
}; |
|
struct StatelessHash { |
|
size_t operator()(absl::string_view) const { return 0; } |
|
}; |
|
struct StatefulHash : StatelessHash { |
|
size_t dummy; |
|
}; |
|
|
|
if (std::is_empty<HashtablezInfoHandle>::value) { |
|
EXPECT_EQ(sizeof(MockTableInfozDisabled), |
|
sizeof(raw_hash_set<StringPolicy, StatelessHash, |
|
std::equal_to<absl::string_view>, |
|
std::allocator<int>>)); |
|
|
|
EXPECT_EQ(sizeof(MockTableInfozDisabled) + sizeof(StatefulHash), |
|
sizeof(raw_hash_set<StringPolicy, StatefulHash, |
|
std::equal_to<absl::string_view>, |
|
std::allocator<int>>)); |
|
} else { |
|
EXPECT_EQ(sizeof(MockTable), |
|
sizeof(raw_hash_set<StringPolicy, StatelessHash, |
|
std::equal_to<absl::string_view>, |
|
std::allocator<int>>)); |
|
|
|
EXPECT_EQ(sizeof(MockTable) + sizeof(StatefulHash), |
|
sizeof(raw_hash_set<StringPolicy, StatefulHash, |
|
std::equal_to<absl::string_view>, |
|
std::allocator<int>>)); |
|
} |
|
} |
|
|
|
TEST(Table, Empty) { |
|
IntTable t; |
|
EXPECT_EQ(0, t.size()); |
|
EXPECT_TRUE(t.empty()); |
|
} |
|
|
|
TEST(Table, LookupEmpty) { |
|
IntTable t; |
|
auto it = t.find(0); |
|
EXPECT_TRUE(it == t.end()); |
|
} |
|
|
|
TEST(Table, Insert1) { |
|
IntTable t; |
|
EXPECT_TRUE(t.find(0) == t.end()); |
|
auto res = t.emplace(0); |
|
EXPECT_TRUE(res.second); |
|
EXPECT_THAT(*res.first, 0); |
|
EXPECT_EQ(1, t.size()); |
|
EXPECT_THAT(*t.find(0), 0); |
|
} |
|
|
|
TEST(Table, Insert2) { |
|
IntTable t; |
|
EXPECT_TRUE(t.find(0) == t.end()); |
|
auto res = t.emplace(0); |
|
EXPECT_TRUE(res.second); |
|
EXPECT_THAT(*res.first, 0); |
|
EXPECT_EQ(1, t.size()); |
|
EXPECT_TRUE(t.find(1) == t.end()); |
|
res = t.emplace(1); |
|
EXPECT_TRUE(res.second); |
|
EXPECT_THAT(*res.first, 1); |
|
EXPECT_EQ(2, t.size()); |
|
EXPECT_THAT(*t.find(0), 0); |
|
EXPECT_THAT(*t.find(1), 1); |
|
} |
|
|
|
TEST(Table, InsertCollision) { |
|
BadTable t; |
|
EXPECT_TRUE(t.find(1) == t.end()); |
|
auto res = t.emplace(1); |
|
EXPECT_TRUE(res.second); |
|
EXPECT_THAT(*res.first, 1); |
|
EXPECT_EQ(1, t.size()); |
|
|
|
EXPECT_TRUE(t.find(2) == t.end()); |
|
res = t.emplace(2); |
|
EXPECT_THAT(*res.first, 2); |
|
EXPECT_TRUE(res.second); |
|
EXPECT_EQ(2, t.size()); |
|
|
|
EXPECT_THAT(*t.find(1), 1); |
|
EXPECT_THAT(*t.find(2), 2); |
|
} |
|
|
|
// Test that we do not add existent element in case we need to search through |
|
// many groups with deleted elements |
|
TEST(Table, InsertCollisionAndFindAfterDelete) { |
|
BadTable t; // all elements go to the same group. |
|
// Have at least 2 groups with Group::kWidth collisions |
|
// plus some extra collisions in the last group. |
|
constexpr size_t kNumInserts = Group::kWidth * 2 + 5; |
|
for (size_t i = 0; i < kNumInserts; ++i) { |
|
auto res = t.emplace(i); |
|
EXPECT_TRUE(res.second); |
|
EXPECT_THAT(*res.first, i); |
|
EXPECT_EQ(i + 1, t.size()); |
|
} |
|
|
|
// Remove elements one by one and check |
|
// that we still can find all other elements. |
|
for (size_t i = 0; i < kNumInserts; ++i) { |
|
EXPECT_EQ(1, t.erase(i)) << i; |
|
for (size_t j = i + 1; j < kNumInserts; ++j) { |
|
EXPECT_THAT(*t.find(j), j); |
|
auto res = t.emplace(j); |
|
EXPECT_FALSE(res.second) << i << " " << j; |
|
EXPECT_THAT(*res.first, j); |
|
EXPECT_EQ(kNumInserts - i - 1, t.size()); |
|
} |
|
} |
|
EXPECT_TRUE(t.empty()); |
|
} |
|
|
|
TEST(Table, InsertWithinCapacity) { |
|
IntTable t; |
|
t.reserve(10); |
|
const size_t original_capacity = t.capacity(); |
|
const auto addr = [&](int i) { |
|
return reinterpret_cast<uintptr_t>(&*t.find(i)); |
|
}; |
|
// Inserting an element does not change capacity. |
|
t.insert(0); |
|
EXPECT_THAT(t.capacity(), original_capacity); |
|
const uintptr_t original_addr_0 = addr(0); |
|
// Inserting another element does not rehash. |
|
t.insert(1); |
|
EXPECT_THAT(t.capacity(), original_capacity); |
|
EXPECT_THAT(addr(0), original_addr_0); |
|
// Inserting lots of duplicate elements does not rehash. |
|
for (int i = 0; i < 100; ++i) { |
|
t.insert(i % 10); |
|
} |
|
EXPECT_THAT(t.capacity(), original_capacity); |
|
EXPECT_THAT(addr(0), original_addr_0); |
|
// Inserting a range of duplicate elements does not rehash. |
|
std::vector<int> dup_range; |
|
for (int i = 0; i < 100; ++i) { |
|
dup_range.push_back(i % 10); |
|
} |
|
t.insert(dup_range.begin(), dup_range.end()); |
|
EXPECT_THAT(t.capacity(), original_capacity); |
|
EXPECT_THAT(addr(0), original_addr_0); |
|
} |
|
|
|
TEST(Table, LazyEmplace) { |
|
StringTable t; |
|
bool called = false; |
|
auto it = t.lazy_emplace("abc", [&](const StringTable::constructor& f) { |
|
called = true; |
|
f("abc", "ABC"); |
|
}); |
|
EXPECT_TRUE(called); |
|
EXPECT_THAT(*it, Pair("abc", "ABC")); |
|
called = false; |
|
it = t.lazy_emplace("abc", [&](const StringTable::constructor& f) { |
|
called = true; |
|
f("abc", "DEF"); |
|
}); |
|
EXPECT_FALSE(called); |
|
EXPECT_THAT(*it, Pair("abc", "ABC")); |
|
} |
|
|
|
TEST(Table, ContainsEmpty) { |
|
IntTable t; |
|
|
|
EXPECT_FALSE(t.contains(0)); |
|
} |
|
|
|
TEST(Table, Contains1) { |
|
IntTable t; |
|
|
|
EXPECT_TRUE(t.insert(0).second); |
|
EXPECT_TRUE(t.contains(0)); |
|
EXPECT_FALSE(t.contains(1)); |
|
|
|
EXPECT_EQ(1, t.erase(0)); |
|
EXPECT_FALSE(t.contains(0)); |
|
} |
|
|
|
TEST(Table, Contains2) { |
|
IntTable t; |
|
|
|
EXPECT_TRUE(t.insert(0).second); |
|
EXPECT_TRUE(t.contains(0)); |
|
EXPECT_FALSE(t.contains(1)); |
|
|
|
t.clear(); |
|
EXPECT_FALSE(t.contains(0)); |
|
} |
|
|
|
int decompose_constructed; |
|
struct DecomposeType { |
|
DecomposeType(int i) : i(i) { // NOLINT |
|
++decompose_constructed; |
|
} |
|
|
|
explicit DecomposeType(const char* d) : DecomposeType(*d) {} |
|
|
|
int i; |
|
}; |
|
|
|
struct DecomposeHash { |
|
using is_transparent = void; |
|
size_t operator()(DecomposeType a) const { return a.i; } |
|
size_t operator()(int a) const { return a; } |
|
size_t operator()(const char* a) const { return *a; } |
|
}; |
|
|
|
struct DecomposeEq { |
|
using is_transparent = void; |
|
bool operator()(DecomposeType a, DecomposeType b) const { return a.i == b.i; } |
|
bool operator()(DecomposeType a, int b) const { return a.i == b; } |
|
bool operator()(DecomposeType a, const char* b) const { return a.i == *b; } |
|
}; |
|
|
|
struct DecomposePolicy { |
|
using slot_type = DecomposeType; |
|
using key_type = DecomposeType; |
|
using init_type = DecomposeType; |
|
|
|
template <typename T> |
|
static void construct(void*, DecomposeType* slot, T&& v) { |
|
*slot = DecomposeType(std::forward<T>(v)); |
|
} |
|
static void destroy(void*, DecomposeType*) {} |
|
static DecomposeType& element(slot_type* slot) { return *slot; } |
|
|
|
template <class F, class T> |
|
static auto apply(F&& f, const T& x) -> decltype(std::forward<F>(f)(x, x)) { |
|
return std::forward<F>(f)(x, x); |
|
} |
|
}; |
|
|
|
template <typename Hash, typename Eq> |
|
void TestDecompose(bool construct_three) { |
|
DecomposeType elem{0}; |
|
const int one = 1; |
|
const char* three_p = "3"; |
|
const auto& three = three_p; |
|
|
|
raw_hash_set<DecomposePolicy, Hash, Eq, std::allocator<int>> set1; |
|
|
|
decompose_constructed = 0; |
|
int expected_constructed = 0; |
|
EXPECT_EQ(expected_constructed, decompose_constructed); |
|
set1.insert(elem); |
|
EXPECT_EQ(expected_constructed, decompose_constructed); |
|
set1.insert(1); |
|
EXPECT_EQ(++expected_constructed, decompose_constructed); |
|
set1.emplace("3"); |
|
EXPECT_EQ(++expected_constructed, decompose_constructed); |
|
EXPECT_EQ(expected_constructed, decompose_constructed); |
|
|
|
{ // insert(T&&) |
|
set1.insert(1); |
|
EXPECT_EQ(expected_constructed, decompose_constructed); |
|
} |
|
|
|
{ // insert(const T&) |
|
set1.insert(one); |
|
EXPECT_EQ(expected_constructed, decompose_constructed); |
|
} |
|
|
|
{ // insert(hint, T&&) |
|
set1.insert(set1.begin(), 1); |
|
EXPECT_EQ(expected_constructed, decompose_constructed); |
|
} |
|
|
|
{ // insert(hint, const T&) |
|
set1.insert(set1.begin(), one); |
|
EXPECT_EQ(expected_constructed, decompose_constructed); |
|
} |
|
|
|
{ // emplace(...) |
|
set1.emplace(1); |
|
EXPECT_EQ(expected_constructed, decompose_constructed); |
|
set1.emplace("3"); |
|
expected_constructed += construct_three; |
|
EXPECT_EQ(expected_constructed, decompose_constructed); |
|
set1.emplace(one); |
|
EXPECT_EQ(expected_constructed, decompose_constructed); |
|
set1.emplace(three); |
|
expected_constructed += construct_three; |
|
EXPECT_EQ(expected_constructed, decompose_constructed); |
|
} |
|
|
|
{ // emplace_hint(...) |
|
set1.emplace_hint(set1.begin(), 1); |
|
EXPECT_EQ(expected_constructed, decompose_constructed); |
|
set1.emplace_hint(set1.begin(), "3"); |
|
expected_constructed += construct_three; |
|
EXPECT_EQ(expected_constructed, decompose_constructed); |
|
set1.emplace_hint(set1.begin(), one); |
|
EXPECT_EQ(expected_constructed, decompose_constructed); |
|
set1.emplace_hint(set1.begin(), three); |
|
expected_constructed += construct_three; |
|
EXPECT_EQ(expected_constructed, decompose_constructed); |
|
} |
|
} |
|
|
|
TEST(Table, Decompose) { |
|
TestDecompose<DecomposeHash, DecomposeEq>(false); |
|
|
|
struct TransparentHashIntOverload { |
|
size_t operator()(DecomposeType a) const { return a.i; } |
|
size_t operator()(int a) const { return a; } |
|
}; |
|
struct TransparentEqIntOverload { |
|
bool operator()(DecomposeType a, DecomposeType b) const { |
|
return a.i == b.i; |
|
} |
|
bool operator()(DecomposeType a, int b) const { return a.i == b; } |
|
}; |
|
TestDecompose<TransparentHashIntOverload, DecomposeEq>(true); |
|
TestDecompose<TransparentHashIntOverload, TransparentEqIntOverload>(true); |
|
TestDecompose<DecomposeHash, TransparentEqIntOverload>(true); |
|
} |
|
|
|
// Returns the largest m such that a table with m elements has the same number |
|
// of buckets as a table with n elements. |
|
size_t MaxDensitySize(size_t n) { |
|
IntTable t; |
|
t.reserve(n); |
|
for (size_t i = 0; i != n; ++i) t.emplace(i); |
|
const size_t c = t.bucket_count(); |
|
while (c == t.bucket_count()) t.emplace(n++); |
|
return t.size() - 1; |
|
} |
|
|
|
struct Modulo1000Hash { |
|
size_t operator()(int x) const { return x % 1000; } |
|
}; |
|
|
|
struct Modulo1000HashTable |
|
: public raw_hash_set<IntPolicy, Modulo1000Hash, std::equal_to<int>, |
|
std::allocator<int>> {}; |
|
|
|
// Test that rehash with no resize happen in case of many deleted slots. |
|
TEST(Table, RehashWithNoResize) { |
|
Modulo1000HashTable t; |
|
// Adding the same length (and the same hash) strings |
|
// to have at least kMinFullGroups groups |
|
// with Group::kWidth collisions. Then fill up to MaxDensitySize; |
|
const size_t kMinFullGroups = 7; |
|
std::vector<int> keys; |
|
for (size_t i = 0; i < MaxDensitySize(Group::kWidth * kMinFullGroups); ++i) { |
|
int k = i * 1000; |
|
t.emplace(k); |
|
keys.push_back(k); |
|
} |
|
const size_t capacity = t.capacity(); |
|
|
|
// Remove elements from all groups except the first and the last one. |
|
// All elements removed from full groups will be marked as kDeleted. |
|
const size_t erase_begin = Group::kWidth / 2; |
|
const size_t erase_end = (t.size() / Group::kWidth - 1) * Group::kWidth; |
|
for (size_t i = erase_begin; i < erase_end; ++i) { |
|
EXPECT_EQ(1, t.erase(keys[i])) << i; |
|
} |
|
keys.erase(keys.begin() + erase_begin, keys.begin() + erase_end); |
|
|
|
auto last_key = keys.back(); |
|
size_t last_key_num_probes = GetHashtableDebugNumProbes(t, last_key); |
|
|
|
// Make sure that we have to make a lot of probes for last key. |
|
ASSERT_GT(last_key_num_probes, kMinFullGroups); |
|
|
|
int x = 1; |
|
// Insert and erase one element, before inplace rehash happen. |
|
while (last_key_num_probes == GetHashtableDebugNumProbes(t, last_key)) { |
|
t.emplace(x); |
|
ASSERT_EQ(capacity, t.capacity()); |
|
// All elements should be there. |
|
ASSERT_TRUE(t.find(x) != t.end()) << x; |
|
for (const auto& k : keys) { |
|
ASSERT_TRUE(t.find(k) != t.end()) << k; |
|
} |
|
t.erase(x); |
|
++x; |
|
} |
|
} |
|
|
|
TEST(Table, InsertEraseStressTest) { |
|
IntTable t; |
|
const size_t kMinElementCount = 250; |
|
std::deque<int> keys; |
|
size_t i = 0; |
|
for (; i < MaxDensitySize(kMinElementCount); ++i) { |
|
t.emplace(i); |
|
keys.push_back(i); |
|
} |
|
const size_t kNumIterations = 1000000; |
|
for (; i < kNumIterations; ++i) { |
|
ASSERT_EQ(1, t.erase(keys.front())); |
|
keys.pop_front(); |
|
t.emplace(i); |
|
keys.push_back(i); |
|
} |
|
} |
|
|
|
TEST(Table, InsertOverloads) { |
|
StringTable t; |
|
// These should all trigger the insert(init_type) overload. |
|
t.insert({{}, {}}); |
|
t.insert({"ABC", {}}); |
|
t.insert({"DEF", "!!!"}); |
|
|
|
EXPECT_THAT(t, UnorderedElementsAre(Pair("", ""), Pair("ABC", ""), |
|
Pair("DEF", "!!!"))); |
|
} |
|
|
|
TEST(Table, LargeTable) { |
|
IntTable t; |
|
for (int64_t i = 0; i != 100000; ++i) t.emplace(i << 40); |
|
for (int64_t i = 0; i != 100000; ++i) ASSERT_EQ(i << 40, *t.find(i << 40)); |
|
} |
|
|
|
// Timeout if copy is quadratic as it was in Rust. |
|
TEST(Table, EnsureNonQuadraticAsInRust) { |
|
static const size_t kLargeSize = 1 << 15; |
|
|
|
IntTable t; |
|
for (size_t i = 0; i != kLargeSize; ++i) { |
|
t.insert(i); |
|
} |
|
|
|
// If this is quadratic, the test will timeout. |
|
IntTable t2; |
|
for (const auto& entry : t) t2.insert(entry); |
|
} |
|
|
|
TEST(Table, ClearBug) { |
|
IntTable t; |
|
constexpr size_t capacity = container_internal::Group::kWidth - 1; |
|
constexpr size_t max_size = capacity / 2 + 1; |
|
for (size_t i = 0; i < max_size; ++i) { |
|
t.insert(i); |
|
} |
|
ASSERT_EQ(capacity, t.capacity()); |
|
intptr_t original = reinterpret_cast<intptr_t>(&*t.find(2)); |
|
t.clear(); |
|
ASSERT_EQ(capacity, t.capacity()); |
|
for (size_t i = 0; i < max_size; ++i) { |
|
t.insert(i); |
|
} |
|
ASSERT_EQ(capacity, t.capacity()); |
|
intptr_t second = reinterpret_cast<intptr_t>(&*t.find(2)); |
|
// We are checking that original and second are close enough to each other |
|
// that they are probably still in the same group. This is not strictly |
|
// guaranteed. |
|
EXPECT_LT(std::abs(original - second), |
|
capacity * sizeof(IntTable::value_type)); |
|
} |
|
|
|
TEST(Table, Erase) { |
|
IntTable t; |
|
EXPECT_TRUE(t.find(0) == t.end()); |
|
auto res = t.emplace(0); |
|
EXPECT_TRUE(res.second); |
|
EXPECT_EQ(1, t.size()); |
|
t.erase(res.first); |
|
EXPECT_EQ(0, t.size()); |
|
EXPECT_TRUE(t.find(0) == t.end()); |
|
} |
|
|
|
TEST(Table, EraseMaintainsValidIterator) { |
|
IntTable t; |
|
const int kNumElements = 100; |
|
for (int i = 0; i < kNumElements; i ++) { |
|
EXPECT_TRUE(t.emplace(i).second); |
|
} |
|
EXPECT_EQ(t.size(), kNumElements); |
|
|
|
int num_erase_calls = 0; |
|
auto it = t.begin(); |
|
while (it != t.end()) { |
|
t.erase(it++); |
|
num_erase_calls++; |
|
} |
|
|
|
EXPECT_TRUE(t.empty()); |
|
EXPECT_EQ(num_erase_calls, kNumElements); |
|
} |
|
|
|
// Collect N bad keys by following algorithm: |
|
// 1. Create an empty table and reserve it to 2 * N. |
|
// 2. Insert N random elements. |
|
// 3. Take first Group::kWidth - 1 to bad_keys array. |
|
// 4. Clear the table without resize. |
|
// 5. Go to point 2 while N keys not collected |
|
std::vector<int64_t> CollectBadMergeKeys(size_t N) { |
|
static constexpr int kGroupSize = Group::kWidth - 1; |
|
|
|
auto topk_range = [](size_t b, size_t e, |
|
IntTable* t) -> std::vector<int64_t> { |
|
for (size_t i = b; i != e; ++i) { |
|
t->emplace(i); |
|
} |
|
std::vector<int64_t> res; |
|
res.reserve(kGroupSize); |
|
auto it = t->begin(); |
|
for (size_t i = b; i != e && i != b + kGroupSize; ++i, ++it) { |
|
res.push_back(*it); |
|
} |
|
return res; |
|
}; |
|
|
|
std::vector<int64_t> bad_keys; |
|
bad_keys.reserve(N); |
|
IntTable t; |
|
t.reserve(N * 2); |
|
|
|
for (size_t b = 0; bad_keys.size() < N; b += N) { |
|
auto keys = topk_range(b, b + N, &t); |
|
bad_keys.insert(bad_keys.end(), keys.begin(), keys.end()); |
|
t.erase(t.begin(), t.end()); |
|
EXPECT_TRUE(t.empty()); |
|
} |
|
return bad_keys; |
|
} |
|
|
|
struct ProbeStats { |
|
// Number of elements with specific probe length over all tested tables. |
|
std::vector<size_t> all_probes_histogram; |
|
// Ratios total_probe_length/size for every tested table. |
|
std::vector<double> single_table_ratios; |
|
|
|
friend ProbeStats operator+(const ProbeStats& a, const ProbeStats& b) { |
|
ProbeStats res = a; |
|
res.all_probes_histogram.resize(std::max(res.all_probes_histogram.size(), |
|
b.all_probes_histogram.size())); |
|
std::transform(b.all_probes_histogram.begin(), b.all_probes_histogram.end(), |
|
res.all_probes_histogram.begin(), |
|
res.all_probes_histogram.begin(), std::plus<size_t>()); |
|
res.single_table_ratios.insert(res.single_table_ratios.end(), |
|
b.single_table_ratios.begin(), |
|
b.single_table_ratios.end()); |
|
return res; |
|
} |
|
|
|
// Average ratio total_probe_length/size over tables. |
|
double AvgRatio() const { |
|
return std::accumulate(single_table_ratios.begin(), |
|
single_table_ratios.end(), 0.0) / |
|
single_table_ratios.size(); |
|
} |
|
|
|
// Maximum ratio total_probe_length/size over tables. |
|
double MaxRatio() const { |
|
return *std::max_element(single_table_ratios.begin(), |
|
single_table_ratios.end()); |
|
} |
|
|
|
// Percentile ratio total_probe_length/size over tables. |
|
double PercentileRatio(double Percentile = 0.95) const { |
|
auto r = single_table_ratios; |
|
auto mid = r.begin() + static_cast<size_t>(r.size() * Percentile); |
|
if (mid != r.end()) { |
|
std::nth_element(r.begin(), mid, r.end()); |
|
return *mid; |
|
} else { |
|
return MaxRatio(); |
|
} |
|
} |
|
|
|
// Maximum probe length over all elements and all tables. |
|
size_t MaxProbe() const { return all_probes_histogram.size(); } |
|
|
|
// Fraction of elements with specified probe length. |
|
std::vector<double> ProbeNormalizedHistogram() const { |
|
double total_elements = std::accumulate(all_probes_histogram.begin(), |
|
all_probes_histogram.end(), 0ull); |
|
std::vector<double> res; |
|
for (size_t p : all_probes_histogram) { |
|
res.push_back(p / total_elements); |
|
} |
|
return res; |
|
} |
|
|
|
size_t PercentileProbe(double Percentile = 0.99) const { |
|
size_t idx = 0; |
|
for (double p : ProbeNormalizedHistogram()) { |
|
if (Percentile > p) { |
|
Percentile -= p; |
|
++idx; |
|
} else { |
|
return idx; |
|
} |
|
} |
|
return idx; |
|
} |
|
|
|
friend std::ostream& operator<<(std::ostream& out, const ProbeStats& s) { |
|
out << "{AvgRatio:" << s.AvgRatio() << ", MaxRatio:" << s.MaxRatio() |
|
<< ", PercentileRatio:" << s.PercentileRatio() |
|
<< ", MaxProbe:" << s.MaxProbe() << ", Probes=["; |
|
for (double p : s.ProbeNormalizedHistogram()) { |
|
out << p << ","; |
|
} |
|
out << "]}"; |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
struct ExpectedStats { |
|
double avg_ratio; |
|
double max_ratio; |
|
std::vector<std::pair<double, double>> pecentile_ratios; |
|
std::vector<std::pair<double, double>> pecentile_probes; |
|
|
|
friend std::ostream& operator<<(std::ostream& out, const ExpectedStats& s) { |
|
out << "{AvgRatio:" << s.avg_ratio << ", MaxRatio:" << s.max_ratio |
|
<< ", PercentileRatios: ["; |
|
for (auto el : s.pecentile_ratios) { |
|
out << el.first << ":" << el.second << ", "; |
|
} |
|
out << "], PercentileProbes: ["; |
|
for (auto el : s.pecentile_probes) { |
|
out << el.first << ":" << el.second << ", "; |
|
} |
|
out << "]}"; |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
void VerifyStats(size_t size, const ExpectedStats& exp, |
|
const ProbeStats& stats) { |
|
EXPECT_LT(stats.AvgRatio(), exp.avg_ratio) << size << " " << stats; |
|
EXPECT_LT(stats.MaxRatio(), exp.max_ratio) << size << " " << stats; |
|
for (auto pr : exp.pecentile_ratios) { |
|
EXPECT_LE(stats.PercentileRatio(pr.first), pr.second) |
|
<< size << " " << pr.first << " " << stats; |
|
} |
|
|
|
for (auto pr : exp.pecentile_probes) { |
|
EXPECT_LE(stats.PercentileProbe(pr.first), pr.second) |
|
<< size << " " << pr.first << " " << stats; |
|
} |
|
} |
|
|
|
using ProbeStatsPerSize = std::map<size_t, ProbeStats>; |
|
|
|
// Collect total ProbeStats on num_iters iterations of the following algorithm: |
|
// 1. Create new table and reserve it to keys.size() * 2 |
|
// 2. Insert all keys xored with seed |
|
// 3. Collect ProbeStats from final table. |
|
ProbeStats CollectProbeStatsOnKeysXoredWithSeed( |
|
const std::vector<int64_t>& keys, size_t num_iters) { |
|
const size_t reserve_size = keys.size() * 2; |
|
|
|
ProbeStats stats; |
|
|
|
int64_t seed = 0x71b1a19b907d6e33; |
|
while (num_iters--) { |
|
seed = static_cast<int64_t>(static_cast<uint64_t>(seed) * 17 + 13); |
|
IntTable t1; |
|
t1.reserve(reserve_size); |
|
for (const auto& key : keys) { |
|
t1.emplace(key ^ seed); |
|
} |
|
|
|
auto probe_histogram = GetHashtableDebugNumProbesHistogram(t1); |
|
stats.all_probes_histogram.resize( |
|
std::max(stats.all_probes_histogram.size(), probe_histogram.size())); |
|
std::transform(probe_histogram.begin(), probe_histogram.end(), |
|
stats.all_probes_histogram.begin(), |
|
stats.all_probes_histogram.begin(), std::plus<size_t>()); |
|
|
|
size_t total_probe_seq_length = 0; |
|
for (size_t i = 0; i < probe_histogram.size(); ++i) { |
|
total_probe_seq_length += i * probe_histogram[i]; |
|
} |
|
stats.single_table_ratios.push_back(total_probe_seq_length * 1.0 / |
|
keys.size()); |
|
t1.erase(t1.begin(), t1.end()); |
|
} |
|
return stats; |
|
} |
|
|
|
ExpectedStats XorSeedExpectedStats() { |
|
constexpr bool kRandomizesInserts = |
|
#ifdef NDEBUG |
|
false; |
|
#else // NDEBUG |
|
true; |
|
#endif // NDEBUG |
|
|
|
// The effective load factor is larger in non-opt mode because we insert |
|
// elements out of order. |
|
switch (container_internal::Group::kWidth) { |
|
case 8: |
|
if (kRandomizesInserts) { |
|
return {0.05, |
|
1.0, |
|
{{0.95, 0.5}}, |
|
{{0.95, 0}, {0.99, 2}, {0.999, 4}, {0.9999, 10}}}; |
|
} else { |
|
return {0.05, |
|
2.0, |
|
{{0.95, 0.1}}, |
|
{{0.95, 0}, {0.99, 2}, {0.999, 4}, {0.9999, 10}}}; |
|
} |
|
case 16: |
|
if (kRandomizesInserts) { |
|
return {0.1, |
|
1.0, |
|
{{0.95, 0.1}}, |
|
{{0.95, 0}, {0.99, 1}, {0.999, 8}, {0.9999, 15}}}; |
|
} else { |
|
return {0.05, |
|
1.0, |
|
{{0.95, 0.05}}, |
|
{{0.95, 0}, {0.99, 1}, {0.999, 4}, {0.9999, 10}}}; |
|
} |
|
} |
|
ABSL_RAW_LOG(FATAL, "%s", "Unknown Group width"); |
|
return {}; |
|
} |
|
|
|
TEST(Table, DISABLED_EnsureNonQuadraticTopNXorSeedByProbeSeqLength) { |
|
ProbeStatsPerSize stats; |
|
std::vector<size_t> sizes = {Group::kWidth << 5, Group::kWidth << 10}; |
|
for (size_t size : sizes) { |
|
stats[size] = |
|
CollectProbeStatsOnKeysXoredWithSeed(CollectBadMergeKeys(size), 200); |
|
} |
|
auto expected = XorSeedExpectedStats(); |
|
for (size_t size : sizes) { |
|
auto& stat = stats[size]; |
|
VerifyStats(size, expected, stat); |
|
} |
|
} |
|
|
|
// Collect total ProbeStats on num_iters iterations of the following algorithm: |
|
// 1. Create new table |
|
// 2. Select 10% of keys and insert 10 elements key * 17 + j * 13 |
|
// 3. Collect ProbeStats from final table |
|
ProbeStats CollectProbeStatsOnLinearlyTransformedKeys( |
|
const std::vector<int64_t>& keys, size_t num_iters) { |
|
ProbeStats stats; |
|
|
|
std::random_device rd; |
|
std::mt19937 rng(rd()); |
|
auto linear_transform = [](size_t x, size_t y) { return x * 17 + y * 13; }; |
|
std::uniform_int_distribution<size_t> dist(0, keys.size()-1); |
|
while (num_iters--) { |
|
IntTable t1; |
|
size_t num_keys = keys.size() / 10; |
|
size_t start = dist(rng); |
|
for (size_t i = 0; i != num_keys; ++i) { |
|
for (size_t j = 0; j != 10; ++j) { |
|
t1.emplace(linear_transform(keys[(i + start) % keys.size()], j)); |
|
} |
|
} |
|
|
|
auto probe_histogram = GetHashtableDebugNumProbesHistogram(t1); |
|
stats.all_probes_histogram.resize( |
|
std::max(stats.all_probes_histogram.size(), probe_histogram.size())); |
|
std::transform(probe_histogram.begin(), probe_histogram.end(), |
|
stats.all_probes_histogram.begin(), |
|
stats.all_probes_histogram.begin(), std::plus<size_t>()); |
|
|
|
size_t total_probe_seq_length = 0; |
|
for (size_t i = 0; i < probe_histogram.size(); ++i) { |
|
total_probe_seq_length += i * probe_histogram[i]; |
|
} |
|
stats.single_table_ratios.push_back(total_probe_seq_length * 1.0 / |
|
t1.size()); |
|
t1.erase(t1.begin(), t1.end()); |
|
} |
|
return stats; |
|
} |
|
|
|
ExpectedStats LinearTransformExpectedStats() { |
|
constexpr bool kRandomizesInserts = |
|
#ifdef NDEBUG |
|
false; |
|
#else // NDEBUG |
|
true; |
|
#endif // NDEBUG |
|
|
|
// The effective load factor is larger in non-opt mode because we insert |
|
// elements out of order. |
|
switch (container_internal::Group::kWidth) { |
|
case 8: |
|
if (kRandomizesInserts) { |
|
return {0.1, |
|
0.5, |
|
{{0.95, 0.3}}, |
|
{{0.95, 0}, {0.99, 1}, {0.999, 8}, {0.9999, 15}}}; |
|
} else { |
|
return {0.15, |
|
0.5, |
|
{{0.95, 0.3}}, |
|
{{0.95, 0}, {0.99, 3}, {0.999, 15}, {0.9999, 25}}}; |
|
} |
|
case 16: |
|
if (kRandomizesInserts) { |
|
return {0.1, |
|
0.4, |
|
{{0.95, 0.3}}, |
|
{{0.95, 0}, {0.99, 1}, {0.999, 8}, {0.9999, 15}}}; |
|
} else { |
|
return {0.05, |
|
0.2, |
|
{{0.95, 0.1}}, |
|
{{0.95, 0}, {0.99, 1}, {0.999, 6}, {0.9999, 10}}}; |
|
} |
|
} |
|
ABSL_RAW_LOG(FATAL, "%s", "Unknown Group width"); |
|
return {}; |
|
} |
|
|
|
TEST(Table, DISABLED_EnsureNonQuadraticTopNLinearTransformByProbeSeqLength) { |
|
ProbeStatsPerSize stats; |
|
std::vector<size_t> sizes = {Group::kWidth << 5, Group::kWidth << 10}; |
|
for (size_t size : sizes) { |
|
stats[size] = CollectProbeStatsOnLinearlyTransformedKeys( |
|
CollectBadMergeKeys(size), 300); |
|
} |
|
auto expected = LinearTransformExpectedStats(); |
|
for (size_t size : sizes) { |
|
auto& stat = stats[size]; |
|
VerifyStats(size, expected, stat); |
|
} |
|
} |
|
|
|
TEST(Table, EraseCollision) { |
|
BadTable t; |
|
|
|
// 1 2 3 |
|
t.emplace(1); |
|
t.emplace(2); |
|
t.emplace(3); |
|
EXPECT_THAT(*t.find(1), 1); |
|
EXPECT_THAT(*t.find(2), 2); |
|
EXPECT_THAT(*t.find(3), 3); |
|
EXPECT_EQ(3, t.size()); |
|
|
|
// 1 DELETED 3 |
|
t.erase(t.find(2)); |
|
EXPECT_THAT(*t.find(1), 1); |
|
EXPECT_TRUE(t.find(2) == t.end()); |
|
EXPECT_THAT(*t.find(3), 3); |
|
EXPECT_EQ(2, t.size()); |
|
|
|
// DELETED DELETED 3 |
|
t.erase(t.find(1)); |
|
EXPECT_TRUE(t.find(1) == t.end()); |
|
EXPECT_TRUE(t.find(2) == t.end()); |
|
EXPECT_THAT(*t.find(3), 3); |
|
EXPECT_EQ(1, t.size()); |
|
|
|
// DELETED DELETED DELETED |
|
t.erase(t.find(3)); |
|
EXPECT_TRUE(t.find(1) == t.end()); |
|
EXPECT_TRUE(t.find(2) == t.end()); |
|
EXPECT_TRUE(t.find(3) == t.end()); |
|
EXPECT_EQ(0, t.size()); |
|
} |
|
|
|
TEST(Table, EraseInsertProbing) { |
|
BadTable t(100); |
|
|
|
// 1 2 3 4 |
|
t.emplace(1); |
|
t.emplace(2); |
|
t.emplace(3); |
|
t.emplace(4); |
|
|
|
// 1 DELETED 3 DELETED |
|
t.erase(t.find(2)); |
|
t.erase(t.find(4)); |
|
|
|
// 1 10 3 11 12 |
|
t.emplace(10); |
|
t.emplace(11); |
|
t.emplace(12); |
|
|
|
EXPECT_EQ(5, t.size()); |
|
EXPECT_THAT(t, UnorderedElementsAre(1, 10, 3, 11, 12)); |
|
} |
|
|
|
TEST(Table, Clear) { |
|
IntTable t; |
|
EXPECT_TRUE(t.find(0) == t.end()); |
|
t.clear(); |
|
EXPECT_TRUE(t.find(0) == t.end()); |
|
auto res = t.emplace(0); |
|
EXPECT_TRUE(res.second); |
|
EXPECT_EQ(1, t.size()); |
|
t.clear(); |
|
EXPECT_EQ(0, t.size()); |
|
EXPECT_TRUE(t.find(0) == t.end()); |
|
} |
|
|
|
TEST(Table, Swap) { |
|
IntTable t; |
|
EXPECT_TRUE(t.find(0) == t.end()); |
|
auto res = t.emplace(0); |
|
EXPECT_TRUE(res.second); |
|
EXPECT_EQ(1, t.size()); |
|
IntTable u; |
|
t.swap(u); |
|
EXPECT_EQ(0, t.size()); |
|
EXPECT_EQ(1, u.size()); |
|
EXPECT_TRUE(t.find(0) == t.end()); |
|
EXPECT_THAT(*u.find(0), 0); |
|
} |
|
|
|
TEST(Table, Rehash) { |
|
IntTable t; |
|
EXPECT_TRUE(t.find(0) == t.end()); |
|
t.emplace(0); |
|
t.emplace(1); |
|
EXPECT_EQ(2, t.size()); |
|
t.rehash(128); |
|
EXPECT_EQ(2, t.size()); |
|
EXPECT_THAT(*t.find(0), 0); |
|
EXPECT_THAT(*t.find(1), 1); |
|
} |
|
|
|
TEST(Table, RehashDoesNotRehashWhenNotNecessary) { |
|
IntTable t; |
|
t.emplace(0); |
|
t.emplace(1); |
|
auto* p = &*t.find(0); |
|
t.rehash(1); |
|
EXPECT_EQ(p, &*t.find(0)); |
|
} |
|
|
|
TEST(Table, RehashZeroDoesNotAllocateOnEmptyTable) { |
|
IntTable t; |
|
t.rehash(0); |
|
EXPECT_EQ(0, t.bucket_count()); |
|
} |
|
|
|
TEST(Table, RehashZeroDeallocatesEmptyTable) { |
|
IntTable t; |
|
t.emplace(0); |
|
t.clear(); |
|
EXPECT_NE(0, t.bucket_count()); |
|
t.rehash(0); |
|
EXPECT_EQ(0, t.bucket_count()); |
|
} |
|
|
|
TEST(Table, RehashZeroForcesRehash) { |
|
IntTable t; |
|
t.emplace(0); |
|
t.emplace(1); |
|
auto* p = &*t.find(0); |
|
t.rehash(0); |
|
EXPECT_NE(p, &*t.find(0)); |
|
} |
|
|
|
TEST(Table, ConstructFromInitList) { |
|
using P = std::pair<std::string, std::string>; |
|
struct Q { |
|
operator P() const { return {}; } |
|
}; |
|
StringTable t = {P(), Q(), {}, {{}, {}}}; |
|
} |
|
|
|
TEST(Table, CopyConstruct) { |
|
IntTable t; |
|
t.emplace(0); |
|
EXPECT_EQ(1, t.size()); |
|
{ |
|
IntTable u(t); |
|
EXPECT_EQ(1, u.size()); |
|
EXPECT_THAT(*u.find(0), 0); |
|
} |
|
{ |
|
IntTable u{t}; |
|
EXPECT_EQ(1, u.size()); |
|
EXPECT_THAT(*u.find(0), 0); |
|
} |
|
{ |
|
IntTable u = t; |
|
EXPECT_EQ(1, u.size()); |
|
EXPECT_THAT(*u.find(0), 0); |
|
} |
|
} |
|
|
|
TEST(Table, CopyConstructWithAlloc) { |
|
StringTable t; |
|
t.emplace("a", "b"); |
|
EXPECT_EQ(1, t.size()); |
|
StringTable u(t, Alloc<std::pair<std::string, std::string>>()); |
|
EXPECT_EQ(1, u.size()); |
|
EXPECT_THAT(*u.find("a"), Pair("a", "b")); |
|
} |
|
|
|
struct ExplicitAllocIntTable |
|
: raw_hash_set<IntPolicy, container_internal::hash_default_hash<int64_t>, |
|
std::equal_to<int64_t>, Alloc<int64_t>> { |
|
ExplicitAllocIntTable() {} |
|
}; |
|
|
|
TEST(Table, AllocWithExplicitCtor) { |
|
ExplicitAllocIntTable t; |
|
EXPECT_EQ(0, t.size()); |
|
} |
|
|
|
TEST(Table, MoveConstruct) { |
|
{ |
|
StringTable t; |
|
t.emplace("a", "b"); |
|
EXPECT_EQ(1, t.size()); |
|
|
|
StringTable u(std::move(t)); |
|
EXPECT_EQ(1, u.size()); |
|
EXPECT_THAT(*u.find("a"), Pair("a", "b")); |
|
} |
|
{ |
|
StringTable t; |
|
t.emplace("a", "b"); |
|
EXPECT_EQ(1, t.size()); |
|
|
|
StringTable u{std::move(t)}; |
|
EXPECT_EQ(1, u.size()); |
|
EXPECT_THAT(*u.find("a"), Pair("a", "b")); |
|
} |
|
{ |
|
StringTable t; |
|
t.emplace("a", "b"); |
|
EXPECT_EQ(1, t.size()); |
|
|
|
StringTable u = std::move(t); |
|
EXPECT_EQ(1, u.size()); |
|
EXPECT_THAT(*u.find("a"), Pair("a", "b")); |
|
} |
|
} |
|
|
|
TEST(Table, MoveConstructWithAlloc) { |
|
StringTable t; |
|
t.emplace("a", "b"); |
|
EXPECT_EQ(1, t.size()); |
|
StringTable u(std::move(t), Alloc<std::pair<std::string, std::string>>()); |
|
EXPECT_EQ(1, u.size()); |
|
EXPECT_THAT(*u.find("a"), Pair("a", "b")); |
|
} |
|
|
|
TEST(Table, CopyAssign) { |
|
StringTable t; |
|
t.emplace("a", "b"); |
|
EXPECT_EQ(1, t.size()); |
|
StringTable u; |
|
u = t; |
|
EXPECT_EQ(1, u.size()); |
|
EXPECT_THAT(*u.find("a"), Pair("a", "b")); |
|
} |
|
|
|
TEST(Table, CopySelfAssign) { |
|
StringTable t; |
|
t.emplace("a", "b"); |
|
EXPECT_EQ(1, t.size()); |
|
t = *&t; |
|
EXPECT_EQ(1, t.size()); |
|
EXPECT_THAT(*t.find("a"), Pair("a", "b")); |
|
} |
|
|
|
TEST(Table, MoveAssign) { |
|
StringTable t; |
|
t.emplace("a", "b"); |
|
EXPECT_EQ(1, t.size()); |
|
StringTable u; |
|
u = std::move(t); |
|
EXPECT_EQ(1, u.size()); |
|
EXPECT_THAT(*u.find("a"), Pair("a", "b")); |
|
} |
|
|
|
TEST(Table, Equality) { |
|
StringTable t; |
|
std::vector<std::pair<std::string, std::string>> v = {{"a", "b"}, |
|
{"aa", "bb"}}; |
|
t.insert(std::begin(v), std::end(v)); |
|
StringTable u = t; |
|
EXPECT_EQ(u, t); |
|
} |
|
|
|
TEST(Table, Equality2) { |
|
StringTable t; |
|
std::vector<std::pair<std::string, std::string>> v1 = {{"a", "b"}, |
|
{"aa", "bb"}}; |
|
t.insert(std::begin(v1), std::end(v1)); |
|
StringTable u; |
|
std::vector<std::pair<std::string, std::string>> v2 = {{"a", "a"}, |
|
{"aa", "aa"}}; |
|
u.insert(std::begin(v2), std::end(v2)); |
|
EXPECT_NE(u, t); |
|
} |
|
|
|
TEST(Table, Equality3) { |
|
StringTable t; |
|
std::vector<std::pair<std::string, std::string>> v1 = {{"b", "b"}, |
|
{"bb", "bb"}}; |
|
t.insert(std::begin(v1), std::end(v1)); |
|
StringTable u; |
|
std::vector<std::pair<std::string, std::string>> v2 = {{"a", "a"}, |
|
{"aa", "aa"}}; |
|
u.insert(std::begin(v2), std::end(v2)); |
|
EXPECT_NE(u, t); |
|
} |
|
|
|
TEST(Table, NumDeletedRegression) { |
|
IntTable t; |
|
t.emplace(0); |
|
t.erase(t.find(0)); |
|
// construct over a deleted slot. |
|
t.emplace(0); |
|
t.clear(); |
|
} |
|
|
|
TEST(Table, FindFullDeletedRegression) { |
|
IntTable t; |
|
for (int i = 0; i < 1000; ++i) { |
|
t.emplace(i); |
|
t.erase(t.find(i)); |
|
} |
|
EXPECT_EQ(0, t.size()); |
|
} |
|
|
|
TEST(Table, ReplacingDeletedSlotDoesNotRehash) { |
|
size_t n; |
|
{ |
|
// Compute n such that n is the maximum number of elements before rehash. |
|
IntTable t; |
|
t.emplace(0); |
|
size_t c = t.bucket_count(); |
|
for (n = 1; c == t.bucket_count(); ++n) t.emplace(n); |
|
--n; |
|
} |
|
IntTable t; |
|
t.rehash(n); |
|
const size_t c = t.bucket_count(); |
|
for (size_t i = 0; i != n; ++i) t.emplace(i); |
|
EXPECT_EQ(c, t.bucket_count()) << "rehashing threshold = " << n; |
|
t.erase(0); |
|
t.emplace(0); |
|
EXPECT_EQ(c, t.bucket_count()) << "rehashing threshold = " << n; |
|
} |
|
|
|
TEST(Table, NoThrowMoveConstruct) { |
|
ASSERT_TRUE( |
|
std::is_nothrow_copy_constructible<absl::Hash<absl::string_view>>::value); |
|
ASSERT_TRUE(std::is_nothrow_copy_constructible< |
|
std::equal_to<absl::string_view>>::value); |
|
ASSERT_TRUE(std::is_nothrow_copy_constructible<std::allocator<int>>::value); |
|
EXPECT_TRUE(std::is_nothrow_move_constructible<StringTable>::value); |
|
} |
|
|
|
TEST(Table, NoThrowMoveAssign) { |
|
ASSERT_TRUE( |
|
std::is_nothrow_move_assignable<absl::Hash<absl::string_view>>::value); |
|
ASSERT_TRUE( |
|
std::is_nothrow_move_assignable<std::equal_to<absl::string_view>>::value); |
|
ASSERT_TRUE(std::is_nothrow_move_assignable<std::allocator<int>>::value); |
|
ASSERT_TRUE( |
|
absl::allocator_traits<std::allocator<int>>::is_always_equal::value); |
|
EXPECT_TRUE(std::is_nothrow_move_assignable<StringTable>::value); |
|
} |
|
|
|
TEST(Table, NoThrowSwappable) { |
|
ASSERT_TRUE( |
|
container_internal::IsNoThrowSwappable<absl::Hash<absl::string_view>>()); |
|
ASSERT_TRUE(container_internal::IsNoThrowSwappable< |
|
std::equal_to<absl::string_view>>()); |
|
ASSERT_TRUE(container_internal::IsNoThrowSwappable<std::allocator<int>>()); |
|
EXPECT_TRUE(container_internal::IsNoThrowSwappable<StringTable>()); |
|
} |
|
|
|
TEST(Table, HeterogeneousLookup) { |
|
struct Hash { |
|
size_t operator()(int64_t i) const { return i; } |
|
size_t operator()(double i) const { |
|
ADD_FAILURE(); |
|
return i; |
|
} |
|
}; |
|
struct Eq { |
|
bool operator()(int64_t a, int64_t b) const { return a == b; } |
|
bool operator()(double a, int64_t b) const { |
|
ADD_FAILURE(); |
|
return a == b; |
|
} |
|
bool operator()(int64_t a, double b) const { |
|
ADD_FAILURE(); |
|
return a == b; |
|
} |
|
bool operator()(double a, double b) const { |
|
ADD_FAILURE(); |
|
return a == b; |
|
} |
|
}; |
|
|
|
struct THash { |
|
using is_transparent = void; |
|
size_t operator()(int64_t i) const { return i; } |
|
size_t operator()(double i) const { return i; } |
|
}; |
|
struct TEq { |
|
using is_transparent = void; |
|
bool operator()(int64_t a, int64_t b) const { return a == b; } |
|
bool operator()(double a, int64_t b) const { return a == b; } |
|
bool operator()(int64_t a, double b) const { return a == b; } |
|
bool operator()(double a, double b) const { return a == b; } |
|
}; |
|
|
|
raw_hash_set<IntPolicy, Hash, Eq, Alloc<int64_t>> s{0, 1, 2}; |
|
// It will convert to int64_t before the query. |
|
EXPECT_EQ(1, *s.find(double{1.1})); |
|
|
|
raw_hash_set<IntPolicy, THash, TEq, Alloc<int64_t>> ts{0, 1, 2}; |
|
// It will try to use the double, and fail to find the object. |
|
EXPECT_TRUE(ts.find(1.1) == ts.end()); |
|
} |
|
|
|
template <class Table> |
|
using CallFind = decltype(std::declval<Table&>().find(17)); |
|
|
|
template <class Table> |
|
using CallErase = decltype(std::declval<Table&>().erase(17)); |
|
|
|
template <class Table> |
|
using CallExtract = decltype(std::declval<Table&>().extract(17)); |
|
|
|
template <class Table> |
|
using CallPrefetch = decltype(std::declval<Table&>().prefetch(17)); |
|
|
|
template <class Table> |
|
using CallCount = decltype(std::declval<Table&>().count(17)); |
|
|
|
template <template <typename> class C, class Table, class = void> |
|
struct VerifyResultOf : std::false_type {}; |
|
|
|
template <template <typename> class C, class Table> |
|
struct VerifyResultOf<C, Table, absl::void_t<C<Table>>> : std::true_type {}; |
|
|
|
TEST(Table, HeterogeneousLookupOverloads) { |
|
using NonTransparentTable = |
|
raw_hash_set<StringPolicy, absl::Hash<absl::string_view>, |
|
std::equal_to<absl::string_view>, std::allocator<int>>; |
|
|
|
EXPECT_FALSE((VerifyResultOf<CallFind, NonTransparentTable>())); |
|
EXPECT_FALSE((VerifyResultOf<CallErase, NonTransparentTable>())); |
|
EXPECT_FALSE((VerifyResultOf<CallExtract, NonTransparentTable>())); |
|
EXPECT_FALSE((VerifyResultOf<CallPrefetch, NonTransparentTable>())); |
|
EXPECT_FALSE((VerifyResultOf<CallCount, NonTransparentTable>())); |
|
|
|
using TransparentTable = raw_hash_set< |
|
StringPolicy, |
|
absl::container_internal::hash_default_hash<absl::string_view>, |
|
absl::container_internal::hash_default_eq<absl::string_view>, |
|
std::allocator<int>>; |
|
|
|
EXPECT_TRUE((VerifyResultOf<CallFind, TransparentTable>())); |
|
EXPECT_TRUE((VerifyResultOf<CallErase, TransparentTable>())); |
|
EXPECT_TRUE((VerifyResultOf<CallExtract, TransparentTable>())); |
|
EXPECT_TRUE((VerifyResultOf<CallPrefetch, TransparentTable>())); |
|
EXPECT_TRUE((VerifyResultOf<CallCount, TransparentTable>())); |
|
} |
|
|
|
// TODO(alkis): Expand iterator tests. |
|
TEST(Iterator, IsDefaultConstructible) { |
|
StringTable::iterator i; |
|
EXPECT_TRUE(i == StringTable::iterator()); |
|
} |
|
|
|
TEST(ConstIterator, IsDefaultConstructible) { |
|
StringTable::const_iterator i; |
|
EXPECT_TRUE(i == StringTable::const_iterator()); |
|
} |
|
|
|
TEST(Iterator, ConvertsToConstIterator) { |
|
StringTable::iterator i; |
|
EXPECT_TRUE(i == StringTable::const_iterator()); |
|
} |
|
|
|
TEST(Iterator, Iterates) { |
|
IntTable t; |
|
for (size_t i = 3; i != 6; ++i) EXPECT_TRUE(t.emplace(i).second); |
|
EXPECT_THAT(t, UnorderedElementsAre(3, 4, 5)); |
|
} |
|
|
|
TEST(Table, Merge) { |
|
StringTable t1, t2; |
|
t1.emplace("0", "-0"); |
|
t1.emplace("1", "-1"); |
|
t2.emplace("0", "~0"); |
|
t2.emplace("2", "~2"); |
|
|
|
EXPECT_THAT(t1, UnorderedElementsAre(Pair("0", "-0"), Pair("1", "-1"))); |
|
EXPECT_THAT(t2, UnorderedElementsAre(Pair("0", "~0"), Pair("2", "~2"))); |
|
|
|
t1.merge(t2); |
|
EXPECT_THAT(t1, UnorderedElementsAre(Pair("0", "-0"), Pair("1", "-1"), |
|
Pair("2", "~2"))); |
|
EXPECT_THAT(t2, UnorderedElementsAre(Pair("0", "~0"))); |
|
} |
|
|
|
TEST(Table, IteratorEmplaceConstructibleRequirement) { |
|
struct Value { |
|
explicit Value(absl::string_view view) : value(view) {} |
|
std::string value; |
|
|
|
bool operator==(const Value& other) const { return value == other.value; } |
|
}; |
|
struct H { |
|
size_t operator()(const Value& v) const { |
|
return absl::Hash<std::string>{}(v.value); |
|
} |
|
}; |
|
|
|
struct Table : raw_hash_set<ValuePolicy<Value>, H, std::equal_to<Value>, |
|
std::allocator<Value>> { |
|
using Base = typename Table::raw_hash_set; |
|
using Base::Base; |
|
}; |
|
|
|
std::string input[3]{"A", "B", "C"}; |
|
|
|
Table t(std::begin(input), std::end(input)); |
|
EXPECT_THAT(t, UnorderedElementsAre(Value{"A"}, Value{"B"}, Value{"C"})); |
|
|
|
input[0] = "D"; |
|
input[1] = "E"; |
|
input[2] = "F"; |
|
t.insert(std::begin(input), std::end(input)); |
|
EXPECT_THAT(t, UnorderedElementsAre(Value{"A"}, Value{"B"}, Value{"C"}, |
|
Value{"D"}, Value{"E"}, Value{"F"})); |
|
} |
|
|
|
TEST(Nodes, EmptyNodeType) { |
|
using node_type = StringTable::node_type; |
|
node_type n; |
|
EXPECT_FALSE(n); |
|
EXPECT_TRUE(n.empty()); |
|
|
|
EXPECT_TRUE((std::is_same<node_type::allocator_type, |
|
StringTable::allocator_type>::value)); |
|
} |
|
|
|
TEST(Nodes, ExtractInsert) { |
|
constexpr char k0[] = "Very long string zero."; |
|
constexpr char k1[] = "Very long string one."; |
|
constexpr char k2[] = "Very long string two."; |
|
StringTable t = {{k0, ""}, {k1, ""}, {k2, ""}}; |
|
EXPECT_THAT(t, |
|
UnorderedElementsAre(Pair(k0, ""), Pair(k1, ""), Pair(k2, ""))); |
|
|
|
auto node = t.extract(k0); |
|
EXPECT_THAT(t, UnorderedElementsAre(Pair(k1, ""), Pair(k2, ""))); |
|
EXPECT_TRUE(node); |
|
EXPECT_FALSE(node.empty()); |
|
|
|
StringTable t2; |
|
StringTable::insert_return_type res = t2.insert(std::move(node)); |
|
EXPECT_TRUE(res.inserted); |
|
EXPECT_THAT(*res.position, Pair(k0, "")); |
|
EXPECT_FALSE(res.node); |
|
EXPECT_THAT(t2, UnorderedElementsAre(Pair(k0, ""))); |
|
|
|
// Not there. |
|
EXPECT_THAT(t, UnorderedElementsAre(Pair(k1, ""), Pair(k2, ""))); |
|
node = t.extract("Not there!"); |
|
EXPECT_THAT(t, UnorderedElementsAre(Pair(k1, ""), Pair(k2, ""))); |
|
EXPECT_FALSE(node); |
|
|
|
// Inserting nothing. |
|
res = t2.insert(std::move(node)); |
|
EXPECT_FALSE(res.inserted); |
|
EXPECT_EQ(res.position, t2.end()); |
|
EXPECT_FALSE(res.node); |
|
EXPECT_THAT(t2, UnorderedElementsAre(Pair(k0, ""))); |
|
|
|
t.emplace(k0, "1"); |
|
node = t.extract(k0); |
|
|
|
// Insert duplicate. |
|
res = t2.insert(std::move(node)); |
|
EXPECT_FALSE(res.inserted); |
|
EXPECT_THAT(*res.position, Pair(k0, "")); |
|
EXPECT_TRUE(res.node); |
|
EXPECT_FALSE(node); |
|
} |
|
|
|
TEST(Nodes, HintInsert) { |
|
IntTable t = {1, 2, 3}; |
|
auto node = t.extract(1); |
|
EXPECT_THAT(t, UnorderedElementsAre(2, 3)); |
|
auto it = t.insert(t.begin(), std::move(node)); |
|
EXPECT_THAT(t, UnorderedElementsAre(1, 2, 3)); |
|
EXPECT_EQ(*it, 1); |
|
EXPECT_FALSE(node); |
|
|
|
node = t.extract(2); |
|
EXPECT_THAT(t, UnorderedElementsAre(1, 3)); |
|
// reinsert 2 to make the next insert fail. |
|
t.insert(2); |
|
EXPECT_THAT(t, UnorderedElementsAre(1, 2, 3)); |
|
it = t.insert(t.begin(), std::move(node)); |
|
EXPECT_EQ(*it, 2); |
|
// The node was not emptied by the insert call. |
|
EXPECT_TRUE(node); |
|
} |
|
|
|
IntTable MakeSimpleTable(size_t size) { |
|
IntTable t; |
|
while (t.size() < size) t.insert(t.size()); |
|
return t; |
|
} |
|
|
|
std::vector<int> OrderOfIteration(const IntTable& t) { |
|
return {t.begin(), t.end()}; |
|
} |
|
|
|
// These IterationOrderChanges tests depend on non-deterministic behavior. |
|
// We are injecting non-determinism from the pointer of the table, but do so in |
|
// a way that only the page matters. We have to retry enough times to make sure |
|
// we are touching different memory pages to cause the ordering to change. |
|
// We also need to keep the old tables around to avoid getting the same memory |
|
// blocks over and over. |
|
TEST(Table, IterationOrderChangesByInstance) { |
|
for (size_t size : {2, 6, 12, 20}) { |
|
const auto reference_table = MakeSimpleTable(size); |
|
const auto reference = OrderOfIteration(reference_table); |
|
|
|
std::vector<IntTable> tables; |
|
bool found_difference = false; |
|
for (int i = 0; !found_difference && i < 5000; ++i) { |
|
tables.push_back(MakeSimpleTable(size)); |
|
found_difference = OrderOfIteration(tables.back()) != reference; |
|
} |
|
if (!found_difference) { |
|
FAIL() |
|
<< "Iteration order remained the same across many attempts with size " |
|
<< size; |
|
} |
|
} |
|
} |
|
|
|
TEST(Table, IterationOrderChangesOnRehash) { |
|
std::vector<IntTable> garbage; |
|
for (int i = 0; i < 5000; ++i) { |
|
auto t = MakeSimpleTable(20); |
|
const auto reference = OrderOfIteration(t); |
|
// Force rehash to the same size. |
|
t.rehash(0); |
|
auto trial = OrderOfIteration(t); |
|
if (trial != reference) { |
|
// We are done. |
|
return; |
|
} |
|
garbage.push_back(std::move(t)); |
|
} |
|
FAIL() << "Iteration order remained the same across many attempts."; |
|
} |
|
|
|
// Verify that pointers are invalidated as soon as a second element is inserted. |
|
// This prevents dependency on pointer stability on small tables. |
|
TEST(Table, UnstablePointers) { |
|
IntTable table; |
|
|
|
const auto addr = [&](int i) { |
|
return reinterpret_cast<uintptr_t>(&*table.find(i)); |
|
}; |
|
|
|
table.insert(0); |
|
const uintptr_t old_ptr = addr(0); |
|
|
|
// This causes a rehash. |
|
table.insert(1); |
|
|
|
EXPECT_NE(old_ptr, addr(0)); |
|
} |
|
|
|
// Confirm that we assert if we try to erase() end(). |
|
TEST(TableDeathTest, EraseOfEndAsserts) { |
|
// Use an assert with side-effects to figure out if they are actually enabled. |
|
bool assert_enabled = false; |
|
assert([&]() { |
|
assert_enabled = true; |
|
return true; |
|
}()); |
|
if (!assert_enabled) return; |
|
|
|
IntTable t; |
|
// Extra simple "regexp" as regexp support is highly varied across platforms. |
|
constexpr char kDeathMsg[] = "Invalid operation on iterator"; |
|
EXPECT_DEATH_IF_SUPPORTED(t.erase(t.end()), kDeathMsg); |
|
} |
|
|
|
#if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) |
|
TEST(RawHashSamplerTest, Sample) { |
|
// Enable the feature even if the prod default is off. |
|
SetHashtablezEnabled(true); |
|
SetHashtablezSampleParameter(100); |
|
|
|
auto& sampler = HashtablezSampler::Global(); |
|
size_t start_size = 0; |
|
std::unordered_set<const HashtablezInfo*> preexisting_info; |
|
start_size += sampler.Iterate([&](const HashtablezInfo& info) { |
|
preexisting_info.insert(&info); |
|
++start_size; |
|
}); |
|
|
|
std::vector<IntTable> tables; |
|
for (int i = 0; i < 1000000; ++i) { |
|
tables.emplace_back(); |
|
tables.back().insert(1); |
|
tables.back().insert(i % 5); |
|
} |
|
size_t end_size = 0; |
|
std::unordered_map<size_t, int> observed_checksums; |
|
end_size += sampler.Iterate([&](const HashtablezInfo& info) { |
|
if (preexisting_info.count(&info) == 0) { |
|
observed_checksums[info.hashes_bitwise_xor.load( |
|
std::memory_order_relaxed)]++; |
|
} |
|
++end_size; |
|
}); |
|
|
|
EXPECT_NEAR((end_size - start_size) / static_cast<double>(tables.size()), |
|
0.01, 0.005); |
|
EXPECT_EQ(observed_checksums.size(), 5); |
|
for (const auto& [_, count] : observed_checksums) { |
|
EXPECT_NEAR((100 * count) / static_cast<double>(tables.size()), 0.2, 0.05); |
|
} |
|
} |
|
#endif // ABSL_INTERNAL_HASHTABLEZ_SAMPLE |
|
|
|
TEST(RawHashSamplerTest, DoNotSampleCustomAllocators) { |
|
// Enable the feature even if the prod default is off. |
|
SetHashtablezEnabled(true); |
|
SetHashtablezSampleParameter(100); |
|
|
|
auto& sampler = HashtablezSampler::Global(); |
|
size_t start_size = 0; |
|
start_size += sampler.Iterate([&](const HashtablezInfo&) { ++start_size; }); |
|
|
|
std::vector<CustomAllocIntTable> tables; |
|
for (int i = 0; i < 1000000; ++i) { |
|
tables.emplace_back(); |
|
tables.back().insert(1); |
|
} |
|
size_t end_size = 0; |
|
end_size += sampler.Iterate([&](const HashtablezInfo&) { ++end_size; }); |
|
|
|
EXPECT_NEAR((end_size - start_size) / static_cast<double>(tables.size()), |
|
0.00, 0.001); |
|
} |
|
|
|
#ifdef ABSL_HAVE_ADDRESS_SANITIZER |
|
TEST(Sanitizer, PoisoningUnused) { |
|
IntTable t; |
|
t.reserve(5); |
|
// Insert something to force an allocation. |
|
int64_t& v1 = *t.insert(0).first; |
|
|
|
// Make sure there is something to test. |
|
ASSERT_GT(t.capacity(), 1); |
|
|
|
int64_t* slots = RawHashSetTestOnlyAccess::GetSlots(t); |
|
for (size_t i = 0; i < t.capacity(); ++i) { |
|
EXPECT_EQ(slots + i != &v1, __asan_address_is_poisoned(slots + i)); |
|
} |
|
} |
|
|
|
TEST(Sanitizer, PoisoningOnErase) { |
|
IntTable t; |
|
int64_t& v = *t.insert(0).first; |
|
|
|
EXPECT_FALSE(__asan_address_is_poisoned(&v)); |
|
t.erase(0); |
|
EXPECT_TRUE(__asan_address_is_poisoned(&v)); |
|
} |
|
#endif // ABSL_HAVE_ADDRESS_SANITIZER |
|
|
|
} // namespace |
|
} // namespace container_internal |
|
ABSL_NAMESPACE_END |
|
} // namespace absl
|
|
|