Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1559 lines
58 KiB
1559 lines
58 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
// |
|
// ----------------------------------------------------------------------------- |
|
// File: time.h |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// This header file defines abstractions for computing with absolute points |
|
// in time, durations of time, and formatting and parsing time within a given |
|
// time zone. The following abstractions are defined: |
|
// |
|
// * `absl::Time` defines an absolute, specific instance in time |
|
// * `absl::Duration` defines a signed, fixed-length span of time |
|
// * `absl::TimeZone` defines geopolitical time zone regions (as collected |
|
// within the IANA Time Zone database (https://www.iana.org/time-zones)). |
|
// |
|
// Note: Absolute times are distinct from civil times, which refer to the |
|
// human-scale time commonly represented by `YYYY-MM-DD hh:mm:ss`. The mapping |
|
// between absolute and civil times can be specified by use of time zones |
|
// (`absl::TimeZone` within this API). That is: |
|
// |
|
// Civil Time = F(Absolute Time, Time Zone) |
|
// Absolute Time = G(Civil Time, Time Zone) |
|
// |
|
// See civil_time.h for abstractions related to constructing and manipulating |
|
// civil time. |
|
// |
|
// Example: |
|
// |
|
// absl::TimeZone nyc; |
|
// // LoadTimeZone() may fail so it's always better to check for success. |
|
// if (!absl::LoadTimeZone("America/New_York", &nyc)) { |
|
// // handle error case |
|
// } |
|
// |
|
// // My flight leaves NYC on Jan 2, 2017 at 03:04:05 |
|
// absl::CivilSecond cs(2017, 1, 2, 3, 4, 5); |
|
// absl::Time takeoff = absl::FromCivil(cs, nyc); |
|
// |
|
// absl::Duration flight_duration = absl::Hours(21) + absl::Minutes(35); |
|
// absl::Time landing = takeoff + flight_duration; |
|
// |
|
// absl::TimeZone syd; |
|
// if (!absl::LoadTimeZone("Australia/Sydney", &syd)) { |
|
// // handle error case |
|
// } |
|
// std::string s = absl::FormatTime( |
|
// "My flight will land in Sydney on %Y-%m-%d at %H:%M:%S", |
|
// landing, syd); |
|
|
|
#ifndef ABSL_TIME_TIME_H_ |
|
#define ABSL_TIME_TIME_H_ |
|
|
|
#if !defined(_MSC_VER) |
|
#include <sys/time.h> |
|
#else |
|
#include <winsock2.h> |
|
#endif |
|
#include <chrono> // NOLINT(build/c++11) |
|
#include <cmath> |
|
#include <cstdint> |
|
#include <ctime> |
|
#include <ostream> |
|
#include <string> |
|
#include <type_traits> |
|
#include <utility> |
|
|
|
#include "absl/strings/string_view.h" |
|
#include "absl/time/civil_time.h" |
|
#include "absl/time/internal/cctz/include/cctz/time_zone.h" |
|
|
|
namespace absl { |
|
|
|
class Duration; // Defined below |
|
class Time; // Defined below |
|
class TimeZone; // Defined below |
|
|
|
namespace time_internal { |
|
int64_t IDivDuration(bool satq, Duration num, Duration den, Duration* rem); |
|
constexpr Time FromUnixDuration(Duration d); |
|
constexpr Duration ToUnixDuration(Time t); |
|
constexpr int64_t GetRepHi(Duration d); |
|
constexpr uint32_t GetRepLo(Duration d); |
|
constexpr Duration MakeDuration(int64_t hi, uint32_t lo); |
|
constexpr Duration MakeDuration(int64_t hi, int64_t lo); |
|
inline Duration MakePosDoubleDuration(double n); |
|
constexpr int64_t kTicksPerNanosecond = 4; |
|
constexpr int64_t kTicksPerSecond = 1000 * 1000 * 1000 * kTicksPerNanosecond; |
|
template <std::intmax_t N> |
|
constexpr Duration FromInt64(int64_t v, std::ratio<1, N>); |
|
constexpr Duration FromInt64(int64_t v, std::ratio<60>); |
|
constexpr Duration FromInt64(int64_t v, std::ratio<3600>); |
|
template <typename T> |
|
using EnableIfIntegral = typename std::enable_if< |
|
std::is_integral<T>::value || std::is_enum<T>::value, int>::type; |
|
template <typename T> |
|
using EnableIfFloat = |
|
typename std::enable_if<std::is_floating_point<T>::value, int>::type; |
|
} // namespace time_internal |
|
|
|
// Duration |
|
// |
|
// The `absl::Duration` class represents a signed, fixed-length span of time. |
|
// A `Duration` is generated using a unit-specific factory function, or is |
|
// the result of subtracting one `absl::Time` from another. Durations behave |
|
// like unit-safe integers and they support all the natural integer-like |
|
// arithmetic operations. Arithmetic overflows and saturates at +/- infinity. |
|
// `Duration` should be passed by value rather than const reference. |
|
// |
|
// Factory functions `Nanoseconds()`, `Microseconds()`, `Milliseconds()`, |
|
// `Seconds()`, `Minutes()`, `Hours()` and `InfiniteDuration()` allow for |
|
// creation of constexpr `Duration` values |
|
// |
|
// Examples: |
|
// |
|
// constexpr absl::Duration ten_ns = absl::Nanoseconds(10); |
|
// constexpr absl::Duration min = absl::Minutes(1); |
|
// constexpr absl::Duration hour = absl::Hours(1); |
|
// absl::Duration dur = 60 * min; // dur == hour |
|
// absl::Duration half_sec = absl::Milliseconds(500); |
|
// absl::Duration quarter_sec = 0.25 * absl::Seconds(1); |
|
// |
|
// `Duration` values can be easily converted to an integral number of units |
|
// using the division operator. |
|
// |
|
// Example: |
|
// |
|
// constexpr absl::Duration dur = absl::Milliseconds(1500); |
|
// int64_t ns = dur / absl::Nanoseconds(1); // ns == 1500000000 |
|
// int64_t ms = dur / absl::Milliseconds(1); // ms == 1500 |
|
// int64_t sec = dur / absl::Seconds(1); // sec == 1 (subseconds truncated) |
|
// int64_t min = dur / absl::Minutes(1); // min == 0 |
|
// |
|
// See the `IDivDuration()` and `FDivDuration()` functions below for details on |
|
// how to access the fractional parts of the quotient. |
|
// |
|
// Alternatively, conversions can be performed using helpers such as |
|
// `ToInt64Microseconds()` and `ToDoubleSeconds()`. |
|
class Duration { |
|
public: |
|
// Value semantics. |
|
constexpr Duration() : rep_hi_(0), rep_lo_(0) {} // zero-length duration |
|
|
|
// Copyable. |
|
#if !defined(__clang__) && defined(_MSC_VER) && _MSC_VER < 1910 |
|
// Explicitly defining the constexpr copy constructor avoids an MSVC bug. |
|
constexpr Duration(const Duration& d) |
|
: rep_hi_(d.rep_hi_), rep_lo_(d.rep_lo_) {} |
|
#else |
|
constexpr Duration(const Duration& d) = default; |
|
#endif |
|
Duration& operator=(const Duration& d) = default; |
|
|
|
// Compound assignment operators. |
|
Duration& operator+=(Duration d); |
|
Duration& operator-=(Duration d); |
|
Duration& operator*=(int64_t r); |
|
Duration& operator*=(double r); |
|
Duration& operator/=(int64_t r); |
|
Duration& operator/=(double r); |
|
Duration& operator%=(Duration rhs); |
|
|
|
// Overloads that forward to either the int64_t or double overloads above. |
|
template <typename T> |
|
Duration& operator*=(T r) { |
|
int64_t x = r; |
|
return *this *= x; |
|
} |
|
template <typename T> |
|
Duration& operator/=(T r) { |
|
int64_t x = r; |
|
return *this /= x; |
|
} |
|
Duration& operator*=(float r) { return *this *= static_cast<double>(r); } |
|
Duration& operator/=(float r) { return *this /= static_cast<double>(r); } |
|
|
|
template <typename H> |
|
friend H AbslHashValue(H h, Duration d) { |
|
return H::combine(std::move(h), d.rep_hi_, d.rep_lo_); |
|
} |
|
|
|
private: |
|
friend constexpr int64_t time_internal::GetRepHi(Duration d); |
|
friend constexpr uint32_t time_internal::GetRepLo(Duration d); |
|
friend constexpr Duration time_internal::MakeDuration(int64_t hi, |
|
uint32_t lo); |
|
constexpr Duration(int64_t hi, uint32_t lo) : rep_hi_(hi), rep_lo_(lo) {} |
|
int64_t rep_hi_; |
|
uint32_t rep_lo_; |
|
}; |
|
|
|
// Relational Operators |
|
constexpr bool operator<(Duration lhs, Duration rhs); |
|
constexpr bool operator>(Duration lhs, Duration rhs) { return rhs < lhs; } |
|
constexpr bool operator>=(Duration lhs, Duration rhs) { return !(lhs < rhs); } |
|
constexpr bool operator<=(Duration lhs, Duration rhs) { return !(rhs < lhs); } |
|
constexpr bool operator==(Duration lhs, Duration rhs); |
|
constexpr bool operator!=(Duration lhs, Duration rhs) { return !(lhs == rhs); } |
|
|
|
// Additive Operators |
|
constexpr Duration operator-(Duration d); |
|
inline Duration operator+(Duration lhs, Duration rhs) { return lhs += rhs; } |
|
inline Duration operator-(Duration lhs, Duration rhs) { return lhs -= rhs; } |
|
|
|
// Multiplicative Operators |
|
template <typename T> |
|
Duration operator*(Duration lhs, T rhs) { |
|
return lhs *= rhs; |
|
} |
|
template <typename T> |
|
Duration operator*(T lhs, Duration rhs) { |
|
return rhs *= lhs; |
|
} |
|
template <typename T> |
|
Duration operator/(Duration lhs, T rhs) { |
|
return lhs /= rhs; |
|
} |
|
inline int64_t operator/(Duration lhs, Duration rhs) { |
|
return time_internal::IDivDuration(true, lhs, rhs, |
|
&lhs); // trunc towards zero |
|
} |
|
inline Duration operator%(Duration lhs, Duration rhs) { return lhs %= rhs; } |
|
|
|
// IDivDuration() |
|
// |
|
// Divides a numerator `Duration` by a denominator `Duration`, returning the |
|
// quotient and remainder. The remainder always has the same sign as the |
|
// numerator. The returned quotient and remainder respect the identity: |
|
// |
|
// numerator = denominator * quotient + remainder |
|
// |
|
// Returned quotients are capped to the range of `int64_t`, with the difference |
|
// spilling into the remainder to uphold the above identity. This means that the |
|
// remainder returned could differ from the remainder returned by |
|
// `Duration::operator%` for huge quotients. |
|
// |
|
// See also the notes on `InfiniteDuration()` below regarding the behavior of |
|
// division involving zero and infinite durations. |
|
// |
|
// Example: |
|
// |
|
// constexpr absl::Duration a = |
|
// absl::Seconds(std::numeric_limits<int64_t>::max()); // big |
|
// constexpr absl::Duration b = absl::Nanoseconds(1); // small |
|
// |
|
// absl::Duration rem = a % b; |
|
// // rem == absl::ZeroDuration() |
|
// |
|
// // Here, q would overflow int64_t, so rem accounts for the difference. |
|
// int64_t q = absl::IDivDuration(a, b, &rem); |
|
// // q == std::numeric_limits<int64_t>::max(), rem == a - b * q |
|
inline int64_t IDivDuration(Duration num, Duration den, Duration* rem) { |
|
return time_internal::IDivDuration(true, num, den, |
|
rem); // trunc towards zero |
|
} |
|
|
|
// FDivDuration() |
|
// |
|
// Divides a `Duration` numerator into a fractional number of units of a |
|
// `Duration` denominator. |
|
// |
|
// See also the notes on `InfiniteDuration()` below regarding the behavior of |
|
// division involving zero and infinite durations. |
|
// |
|
// Example: |
|
// |
|
// double d = absl::FDivDuration(absl::Milliseconds(1500), absl::Seconds(1)); |
|
// // d == 1.5 |
|
double FDivDuration(Duration num, Duration den); |
|
|
|
// ZeroDuration() |
|
// |
|
// Returns a zero-length duration. This function behaves just like the default |
|
// constructor, but the name helps make the semantics clear at call sites. |
|
constexpr Duration ZeroDuration() { return Duration(); } |
|
|
|
// AbsDuration() |
|
// |
|
// Returns the absolute value of a duration. |
|
inline Duration AbsDuration(Duration d) { |
|
return (d < ZeroDuration()) ? -d : d; |
|
} |
|
|
|
// Trunc() |
|
// |
|
// Truncates a duration (toward zero) to a multiple of a non-zero unit. |
|
// |
|
// Example: |
|
// |
|
// absl::Duration d = absl::Nanoseconds(123456789); |
|
// absl::Duration a = absl::Trunc(d, absl::Microseconds(1)); // 123456us |
|
Duration Trunc(Duration d, Duration unit); |
|
|
|
// Floor() |
|
// |
|
// Floors a duration using the passed duration unit to its largest value not |
|
// greater than the duration. |
|
// |
|
// Example: |
|
// |
|
// absl::Duration d = absl::Nanoseconds(123456789); |
|
// absl::Duration b = absl::Floor(d, absl::Microseconds(1)); // 123456us |
|
Duration Floor(Duration d, Duration unit); |
|
|
|
// Ceil() |
|
// |
|
// Returns the ceiling of a duration using the passed duration unit to its |
|
// smallest value not less than the duration. |
|
// |
|
// Example: |
|
// |
|
// absl::Duration d = absl::Nanoseconds(123456789); |
|
// absl::Duration c = absl::Ceil(d, absl::Microseconds(1)); // 123457us |
|
Duration Ceil(Duration d, Duration unit); |
|
|
|
// InfiniteDuration() |
|
// |
|
// Returns an infinite `Duration`. To get a `Duration` representing negative |
|
// infinity, use `-InfiniteDuration()`. |
|
// |
|
// Duration arithmetic overflows to +/- infinity and saturates. In general, |
|
// arithmetic with `Duration` infinities is similar to IEEE 754 infinities |
|
// except where IEEE 754 NaN would be involved, in which case +/- |
|
// `InfiniteDuration()` is used in place of a "nan" Duration. |
|
// |
|
// Examples: |
|
// |
|
// constexpr absl::Duration inf = absl::InfiniteDuration(); |
|
// const absl::Duration d = ... any finite duration ... |
|
// |
|
// inf == inf + inf |
|
// inf == inf + d |
|
// inf == inf - inf |
|
// -inf == d - inf |
|
// |
|
// inf == d * 1e100 |
|
// inf == inf / 2 |
|
// 0 == d / inf |
|
// INT64_MAX == inf / d |
|
// |
|
// d < inf |
|
// -inf < d |
|
// |
|
// // Division by zero returns infinity, or INT64_MIN/MAX where appropriate. |
|
// inf == d / 0 |
|
// INT64_MAX == d / absl::ZeroDuration() |
|
// |
|
// The examples involving the `/` operator above also apply to `IDivDuration()` |
|
// and `FDivDuration()`. |
|
constexpr Duration InfiniteDuration(); |
|
|
|
// Nanoseconds() |
|
// Microseconds() |
|
// Milliseconds() |
|
// Seconds() |
|
// Minutes() |
|
// Hours() |
|
// |
|
// Factory functions for constructing `Duration` values from an integral number |
|
// of the unit indicated by the factory function's name. |
|
// |
|
// Note: no "Days()" factory function exists because "a day" is ambiguous. |
|
// Civil days are not always 24 hours long, and a 24-hour duration often does |
|
// not correspond with a civil day. If a 24-hour duration is needed, use |
|
// `absl::Hours(24)`. (If you actually want a civil day, use absl::CivilDay |
|
// from civil_time.h.) |
|
// |
|
// Example: |
|
// |
|
// absl::Duration a = absl::Seconds(60); |
|
// absl::Duration b = absl::Minutes(1); // b == a |
|
constexpr Duration Nanoseconds(int64_t n); |
|
constexpr Duration Microseconds(int64_t n); |
|
constexpr Duration Milliseconds(int64_t n); |
|
constexpr Duration Seconds(int64_t n); |
|
constexpr Duration Minutes(int64_t n); |
|
constexpr Duration Hours(int64_t n); |
|
|
|
// Factory overloads for constructing `Duration` values from a floating-point |
|
// number of the unit indicated by the factory function's name. These functions |
|
// exist for convenience, but they are not as efficient as the integral |
|
// factories, which should be preferred. |
|
// |
|
// Example: |
|
// |
|
// auto a = absl::Seconds(1.5); // OK |
|
// auto b = absl::Milliseconds(1500); // BETTER |
|
template <typename T, time_internal::EnableIfFloat<T> = 0> |
|
Duration Nanoseconds(T n) { |
|
return n * Nanoseconds(1); |
|
} |
|
template <typename T, time_internal::EnableIfFloat<T> = 0> |
|
Duration Microseconds(T n) { |
|
return n * Microseconds(1); |
|
} |
|
template <typename T, time_internal::EnableIfFloat<T> = 0> |
|
Duration Milliseconds(T n) { |
|
return n * Milliseconds(1); |
|
} |
|
template <typename T, time_internal::EnableIfFloat<T> = 0> |
|
Duration Seconds(T n) { |
|
if (n >= 0) { // Note: `NaN >= 0` is false. |
|
if (n >= (std::numeric_limits<int64_t>::max)()) return InfiniteDuration(); |
|
return time_internal::MakePosDoubleDuration(n); |
|
} else { |
|
if (std::isnan(n)) |
|
return std::signbit(n) ? -InfiniteDuration() : InfiniteDuration(); |
|
if (n <= (std::numeric_limits<int64_t>::min)()) return -InfiniteDuration(); |
|
return -time_internal::MakePosDoubleDuration(-n); |
|
} |
|
} |
|
template <typename T, time_internal::EnableIfFloat<T> = 0> |
|
Duration Minutes(T n) { |
|
return n * Minutes(1); |
|
} |
|
template <typename T, time_internal::EnableIfFloat<T> = 0> |
|
Duration Hours(T n) { |
|
return n * Hours(1); |
|
} |
|
|
|
// ToInt64Nanoseconds() |
|
// ToInt64Microseconds() |
|
// ToInt64Milliseconds() |
|
// ToInt64Seconds() |
|
// ToInt64Minutes() |
|
// ToInt64Hours() |
|
// |
|
// Helper functions that convert a Duration to an integral count of the |
|
// indicated unit. These functions are shorthand for the `IDivDuration()` |
|
// function above; see its documentation for details about overflow, etc. |
|
// |
|
// Example: |
|
// |
|
// absl::Duration d = absl::Milliseconds(1500); |
|
// int64_t isec = absl::ToInt64Seconds(d); // isec == 1 |
|
int64_t ToInt64Nanoseconds(Duration d); |
|
int64_t ToInt64Microseconds(Duration d); |
|
int64_t ToInt64Milliseconds(Duration d); |
|
int64_t ToInt64Seconds(Duration d); |
|
int64_t ToInt64Minutes(Duration d); |
|
int64_t ToInt64Hours(Duration d); |
|
|
|
// ToDoubleNanoSeconds() |
|
// ToDoubleMicroseconds() |
|
// ToDoubleMilliseconds() |
|
// ToDoubleSeconds() |
|
// ToDoubleMinutes() |
|
// ToDoubleHours() |
|
// |
|
// Helper functions that convert a Duration to a floating point count of the |
|
// indicated unit. These functions are shorthand for the `FDivDuration()` |
|
// function above; see its documentation for details about overflow, etc. |
|
// |
|
// Example: |
|
// |
|
// absl::Duration d = absl::Milliseconds(1500); |
|
// double dsec = absl::ToDoubleSeconds(d); // dsec == 1.5 |
|
double ToDoubleNanoseconds(Duration d); |
|
double ToDoubleMicroseconds(Duration d); |
|
double ToDoubleMilliseconds(Duration d); |
|
double ToDoubleSeconds(Duration d); |
|
double ToDoubleMinutes(Duration d); |
|
double ToDoubleHours(Duration d); |
|
|
|
// FromChrono() |
|
// |
|
// Converts any of the pre-defined std::chrono durations to an absl::Duration. |
|
// |
|
// Example: |
|
// |
|
// std::chrono::milliseconds ms(123); |
|
// absl::Duration d = absl::FromChrono(ms); |
|
constexpr Duration FromChrono(const std::chrono::nanoseconds& d); |
|
constexpr Duration FromChrono(const std::chrono::microseconds& d); |
|
constexpr Duration FromChrono(const std::chrono::milliseconds& d); |
|
constexpr Duration FromChrono(const std::chrono::seconds& d); |
|
constexpr Duration FromChrono(const std::chrono::minutes& d); |
|
constexpr Duration FromChrono(const std::chrono::hours& d); |
|
|
|
// ToChronoNanoseconds() |
|
// ToChronoMicroseconds() |
|
// ToChronoMilliseconds() |
|
// ToChronoSeconds() |
|
// ToChronoMinutes() |
|
// ToChronoHours() |
|
// |
|
// Converts an absl::Duration to any of the pre-defined std::chrono durations. |
|
// If overflow would occur, the returned value will saturate at the min/max |
|
// chrono duration value instead. |
|
// |
|
// Example: |
|
// |
|
// absl::Duration d = absl::Microseconds(123); |
|
// auto x = absl::ToChronoMicroseconds(d); |
|
// auto y = absl::ToChronoNanoseconds(d); // x == y |
|
// auto z = absl::ToChronoSeconds(absl::InfiniteDuration()); |
|
// // z == std::chrono::seconds::max() |
|
std::chrono::nanoseconds ToChronoNanoseconds(Duration d); |
|
std::chrono::microseconds ToChronoMicroseconds(Duration d); |
|
std::chrono::milliseconds ToChronoMilliseconds(Duration d); |
|
std::chrono::seconds ToChronoSeconds(Duration d); |
|
std::chrono::minutes ToChronoMinutes(Duration d); |
|
std::chrono::hours ToChronoHours(Duration d); |
|
|
|
// FormatDuration() |
|
// |
|
// Returns a string representing the duration in the form "72h3m0.5s". |
|
// Returns "inf" or "-inf" for +/- `InfiniteDuration()`. |
|
std::string FormatDuration(Duration d); |
|
|
|
// Output stream operator. |
|
inline std::ostream& operator<<(std::ostream& os, Duration d) { |
|
return os << FormatDuration(d); |
|
} |
|
|
|
// ParseDuration() |
|
// |
|
// Parses a duration string consisting of a possibly signed sequence of |
|
// decimal numbers, each with an optional fractional part and a unit |
|
// suffix. The valid suffixes are "ns", "us" "ms", "s", "m", and "h". |
|
// Simple examples include "300ms", "-1.5h", and "2h45m". Parses "0" as |
|
// `ZeroDuration()`. Parses "inf" and "-inf" as +/- `InfiniteDuration()`. |
|
bool ParseDuration(const std::string& dur_string, Duration* d); |
|
|
|
// Support for flag values of type Duration. Duration flags must be specified |
|
// in a format that is valid input for absl::ParseDuration(). |
|
bool ParseFlag(const std::string& text, Duration* dst, std::string* error); |
|
std::string UnparseFlag(Duration d); |
|
|
|
// Time |
|
// |
|
// An `absl::Time` represents a specific instant in time. Arithmetic operators |
|
// are provided for naturally expressing time calculations. Instances are |
|
// created using `absl::Now()` and the `absl::From*()` factory functions that |
|
// accept the gamut of other time representations. Formatting and parsing |
|
// functions are provided for conversion to and from strings. `absl::Time` |
|
// should be passed by value rather than const reference. |
|
// |
|
// `absl::Time` assumes there are 60 seconds in a minute, which means the |
|
// underlying time scales must be "smeared" to eliminate leap seconds. |
|
// See https://developers.google.com/time/smear. |
|
// |
|
// Even though `absl::Time` supports a wide range of timestamps, exercise |
|
// caution when using values in the distant past. `absl::Time` uses the |
|
// Proleptic Gregorian calendar, which extends the Gregorian calendar backward |
|
// to dates before its introduction in 1582. |
|
// See https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar |
|
// for more information. Use the ICU calendar classes to convert a date in |
|
// some other calendar (http://userguide.icu-project.org/datetime/calendar). |
|
// |
|
// Similarly, standardized time zones are a reasonably recent innovation, with |
|
// the Greenwich prime meridian being established in 1884. The TZ database |
|
// itself does not profess accurate offsets for timestamps prior to 1970. The |
|
// breakdown of future timestamps is subject to the whim of regional |
|
// governments. |
|
// |
|
// The `absl::Time` class represents an instant in time as a count of clock |
|
// ticks of some granularity (resolution) from some starting point (epoch). |
|
// |
|
// `absl::Time` uses a resolution that is high enough to avoid loss in |
|
// precision, and a range that is wide enough to avoid overflow, when |
|
// converting between tick counts in most Google time scales (i.e., resolution |
|
// of at least one nanosecond, and range +/-100 billion years). Conversions |
|
// between the time scales are performed by truncating (towards negative |
|
// infinity) to the nearest representable point. |
|
// |
|
// Examples: |
|
// |
|
// absl::Time t1 = ...; |
|
// absl::Time t2 = t1 + absl::Minutes(2); |
|
// absl::Duration d = t2 - t1; // == absl::Minutes(2) |
|
// |
|
class Time { |
|
public: |
|
// Value semantics. |
|
|
|
// Returns the Unix epoch. However, those reading your code may not know |
|
// or expect the Unix epoch as the default value, so make your code more |
|
// readable by explicitly initializing all instances before use. |
|
// |
|
// Example: |
|
// absl::Time t = absl::UnixEpoch(); |
|
// absl::Time t = absl::Now(); |
|
// absl::Time t = absl::TimeFromTimeval(tv); |
|
// absl::Time t = absl::InfinitePast(); |
|
constexpr Time() = default; |
|
|
|
// Copyable. |
|
constexpr Time(const Time& t) = default; |
|
Time& operator=(const Time& t) = default; |
|
|
|
// Assignment operators. |
|
Time& operator+=(Duration d) { |
|
rep_ += d; |
|
return *this; |
|
} |
|
Time& operator-=(Duration d) { |
|
rep_ -= d; |
|
return *this; |
|
} |
|
|
|
// Time::Breakdown |
|
// |
|
// The calendar and wall-clock (aka "civil time") components of an |
|
// `absl::Time` in a certain `absl::TimeZone`. This struct is not |
|
// intended to represent an instant in time. So, rather than passing |
|
// a `Time::Breakdown` to a function, pass an `absl::Time` and an |
|
// `absl::TimeZone`. |
|
// |
|
// Deprecated. Use `absl::TimeZone::CivilInfo`. |
|
struct |
|
Breakdown { |
|
int64_t year; // year (e.g., 2013) |
|
int month; // month of year [1:12] |
|
int day; // day of month [1:31] |
|
int hour; // hour of day [0:23] |
|
int minute; // minute of hour [0:59] |
|
int second; // second of minute [0:59] |
|
Duration subsecond; // [Seconds(0):Seconds(1)) if finite |
|
int weekday; // 1==Mon, ..., 7=Sun |
|
int yearday; // day of year [1:366] |
|
|
|
// Note: The following fields exist for backward compatibility |
|
// with older APIs. Accessing these fields directly is a sign of |
|
// imprudent logic in the calling code. Modern time-related code |
|
// should only access this data indirectly by way of FormatTime(). |
|
// These fields are undefined for InfiniteFuture() and InfinitePast(). |
|
int offset; // seconds east of UTC |
|
bool is_dst; // is offset non-standard? |
|
const char* zone_abbr; // time-zone abbreviation (e.g., "PST") |
|
}; |
|
|
|
// Time::In() |
|
// |
|
// Returns the breakdown of this instant in the given TimeZone. |
|
// |
|
// Deprecated. Use `absl::TimeZone::At(Time)`. |
|
Breakdown In(TimeZone tz) const; |
|
|
|
template <typename H> |
|
friend H AbslHashValue(H h, Time t) { |
|
return H::combine(std::move(h), t.rep_); |
|
} |
|
|
|
private: |
|
friend constexpr Time time_internal::FromUnixDuration(Duration d); |
|
friend constexpr Duration time_internal::ToUnixDuration(Time t); |
|
friend constexpr bool operator<(Time lhs, Time rhs); |
|
friend constexpr bool operator==(Time lhs, Time rhs); |
|
friend Duration operator-(Time lhs, Time rhs); |
|
friend constexpr Time UniversalEpoch(); |
|
friend constexpr Time InfiniteFuture(); |
|
friend constexpr Time InfinitePast(); |
|
constexpr explicit Time(Duration rep) : rep_(rep) {} |
|
Duration rep_; |
|
}; |
|
|
|
// Relational Operators |
|
constexpr bool operator<(Time lhs, Time rhs) { return lhs.rep_ < rhs.rep_; } |
|
constexpr bool operator>(Time lhs, Time rhs) { return rhs < lhs; } |
|
constexpr bool operator>=(Time lhs, Time rhs) { return !(lhs < rhs); } |
|
constexpr bool operator<=(Time lhs, Time rhs) { return !(rhs < lhs); } |
|
constexpr bool operator==(Time lhs, Time rhs) { return lhs.rep_ == rhs.rep_; } |
|
constexpr bool operator!=(Time lhs, Time rhs) { return !(lhs == rhs); } |
|
|
|
// Additive Operators |
|
inline Time operator+(Time lhs, Duration rhs) { return lhs += rhs; } |
|
inline Time operator+(Duration lhs, Time rhs) { return rhs += lhs; } |
|
inline Time operator-(Time lhs, Duration rhs) { return lhs -= rhs; } |
|
inline Duration operator-(Time lhs, Time rhs) { return lhs.rep_ - rhs.rep_; } |
|
|
|
// UnixEpoch() |
|
// |
|
// Returns the `absl::Time` representing "1970-01-01 00:00:00.0 +0000". |
|
constexpr Time UnixEpoch() { return Time(); } |
|
|
|
// UniversalEpoch() |
|
// |
|
// Returns the `absl::Time` representing "0001-01-01 00:00:00.0 +0000", the |
|
// epoch of the ICU Universal Time Scale. |
|
constexpr Time UniversalEpoch() { |
|
// 719162 is the number of days from 0001-01-01 to 1970-01-01, |
|
// assuming the Gregorian calendar. |
|
return Time(time_internal::MakeDuration(-24 * 719162 * int64_t{3600}, 0U)); |
|
} |
|
|
|
// InfiniteFuture() |
|
// |
|
// Returns an `absl::Time` that is infinitely far in the future. |
|
constexpr Time InfiniteFuture() { |
|
return Time( |
|
time_internal::MakeDuration((std::numeric_limits<int64_t>::max)(), ~0U)); |
|
} |
|
|
|
// InfinitePast() |
|
// |
|
// Returns an `absl::Time` that is infinitely far in the past. |
|
constexpr Time InfinitePast() { |
|
return Time( |
|
time_internal::MakeDuration((std::numeric_limits<int64_t>::min)(), ~0U)); |
|
} |
|
|
|
// FromUnixNanos() |
|
// FromUnixMicros() |
|
// FromUnixMillis() |
|
// FromUnixSeconds() |
|
// FromTimeT() |
|
// FromUDate() |
|
// FromUniversal() |
|
// |
|
// Creates an `absl::Time` from a variety of other representations. |
|
constexpr Time FromUnixNanos(int64_t ns); |
|
constexpr Time FromUnixMicros(int64_t us); |
|
constexpr Time FromUnixMillis(int64_t ms); |
|
constexpr Time FromUnixSeconds(int64_t s); |
|
constexpr Time FromTimeT(time_t t); |
|
Time FromUDate(double udate); |
|
Time FromUniversal(int64_t universal); |
|
|
|
// ToUnixNanos() |
|
// ToUnixMicros() |
|
// ToUnixMillis() |
|
// ToUnixSeconds() |
|
// ToTimeT() |
|
// ToUDate() |
|
// ToUniversal() |
|
// |
|
// Converts an `absl::Time` to a variety of other representations. Note that |
|
// these operations round down toward negative infinity where necessary to |
|
// adjust to the resolution of the result type. Beware of possible time_t |
|
// over/underflow in ToTime{T,val,spec}() on 32-bit platforms. |
|
int64_t ToUnixNanos(Time t); |
|
int64_t ToUnixMicros(Time t); |
|
int64_t ToUnixMillis(Time t); |
|
int64_t ToUnixSeconds(Time t); |
|
time_t ToTimeT(Time t); |
|
double ToUDate(Time t); |
|
int64_t ToUniversal(Time t); |
|
|
|
// DurationFromTimespec() |
|
// DurationFromTimeval() |
|
// ToTimespec() |
|
// ToTimeval() |
|
// TimeFromTimespec() |
|
// TimeFromTimeval() |
|
// ToTimespec() |
|
// ToTimeval() |
|
// |
|
// Some APIs use a timespec or a timeval as a Duration (e.g., nanosleep(2) |
|
// and select(2)), while others use them as a Time (e.g. clock_gettime(2) |
|
// and gettimeofday(2)), so conversion functions are provided for both cases. |
|
// The "to timespec/val" direction is easily handled via overloading, but |
|
// for "from timespec/val" the desired type is part of the function name. |
|
Duration DurationFromTimespec(timespec ts); |
|
Duration DurationFromTimeval(timeval tv); |
|
timespec ToTimespec(Duration d); |
|
timeval ToTimeval(Duration d); |
|
Time TimeFromTimespec(timespec ts); |
|
Time TimeFromTimeval(timeval tv); |
|
timespec ToTimespec(Time t); |
|
timeval ToTimeval(Time t); |
|
|
|
// FromChrono() |
|
// |
|
// Converts a std::chrono::system_clock::time_point to an absl::Time. |
|
// |
|
// Example: |
|
// |
|
// auto tp = std::chrono::system_clock::from_time_t(123); |
|
// absl::Time t = absl::FromChrono(tp); |
|
// // t == absl::FromTimeT(123) |
|
Time FromChrono(const std::chrono::system_clock::time_point& tp); |
|
|
|
// ToChronoTime() |
|
// |
|
// Converts an absl::Time to a std::chrono::system_clock::time_point. If |
|
// overflow would occur, the returned value will saturate at the min/max time |
|
// point value instead. |
|
// |
|
// Example: |
|
// |
|
// absl::Time t = absl::FromTimeT(123); |
|
// auto tp = absl::ToChronoTime(t); |
|
// // tp == std::chrono::system_clock::from_time_t(123); |
|
std::chrono::system_clock::time_point ToChronoTime(Time); |
|
|
|
// Support for flag values of type Time. Time flags must be specified in a |
|
// format that matches absl::RFC3339_full. For example: |
|
// |
|
// --start_time=2016-01-02T03:04:05.678+08:00 |
|
// |
|
// Note: A UTC offset (or 'Z' indicating a zero-offset from UTC) is required. |
|
// |
|
// Additionally, if you'd like to specify a time as a count of |
|
// seconds/milliseconds/etc from the Unix epoch, use an absl::Duration flag |
|
// and add that duration to absl::UnixEpoch() to get an absl::Time. |
|
bool ParseFlag(const std::string& text, Time* t, std::string* error); |
|
std::string UnparseFlag(Time t); |
|
|
|
// TimeZone |
|
// |
|
// The `absl::TimeZone` is an opaque, small, value-type class representing a |
|
// geo-political region within which particular rules are used for converting |
|
// between absolute and civil times (see https://git.io/v59Ly). `absl::TimeZone` |
|
// values are named using the TZ identifiers from the IANA Time Zone Database, |
|
// such as "America/Los_Angeles" or "Australia/Sydney". `absl::TimeZone` values |
|
// are created from factory functions such as `absl::LoadTimeZone()`. Note: |
|
// strings like "PST" and "EDT" are not valid TZ identifiers. Prefer to pass by |
|
// value rather than const reference. |
|
// |
|
// For more on the fundamental concepts of time zones, absolute times, and civil |
|
// times, see https://github.com/google/cctz#fundamental-concepts |
|
// |
|
// Examples: |
|
// |
|
// absl::TimeZone utc = absl::UTCTimeZone(); |
|
// absl::TimeZone pst = absl::FixedTimeZone(-8 * 60 * 60); |
|
// absl::TimeZone loc = absl::LocalTimeZone(); |
|
// absl::TimeZone lax; |
|
// if (!absl::LoadTimeZone("America/Los_Angeles", &lax)) { |
|
// // handle error case |
|
// } |
|
// |
|
// See also: |
|
// - https://github.com/google/cctz |
|
// - https://www.iana.org/time-zones |
|
// - https://en.wikipedia.org/wiki/Zoneinfo |
|
class TimeZone { |
|
public: |
|
explicit TimeZone(time_internal::cctz::time_zone tz) : cz_(tz) {} |
|
TimeZone() = default; // UTC, but prefer UTCTimeZone() to be explicit. |
|
|
|
// Copyable. |
|
TimeZone(const TimeZone&) = default; |
|
TimeZone& operator=(const TimeZone&) = default; |
|
|
|
explicit operator time_internal::cctz::time_zone() const { return cz_; } |
|
|
|
std::string name() const { return cz_.name(); } |
|
|
|
// TimeZone::CivilInfo |
|
// |
|
// Information about the civil time corresponding to an absolute time. |
|
// This struct is not intended to represent an instant in time. So, rather |
|
// than passing a `TimeZone::CivilInfo` to a function, pass an `absl::Time` |
|
// and an `absl::TimeZone`. |
|
struct CivilInfo { |
|
CivilSecond cs; |
|
Duration subsecond; |
|
|
|
// Note: The following fields exist for backward compatibility |
|
// with older APIs. Accessing these fields directly is a sign of |
|
// imprudent logic in the calling code. Modern time-related code |
|
// should only access this data indirectly by way of FormatTime(). |
|
// These fields are undefined for InfiniteFuture() and InfinitePast(). |
|
int offset; // seconds east of UTC |
|
bool is_dst; // is offset non-standard? |
|
const char* zone_abbr; // time-zone abbreviation (e.g., "PST") |
|
}; |
|
|
|
// TimeZone::At(Time) |
|
// |
|
// Returns the civil time for this TimeZone at a certain `absl::Time`. |
|
// If the input time is infinite, the output civil second will be set to |
|
// CivilSecond::max() or min(), and the subsecond will be infinite. |
|
// |
|
// Example: |
|
// |
|
// const auto epoch = lax.At(absl::UnixEpoch()); |
|
// // epoch.cs == 1969-12-31 16:00:00 |
|
// // epoch.subsecond == absl::ZeroDuration() |
|
// // epoch.offset == -28800 |
|
// // epoch.is_dst == false |
|
// // epoch.abbr == "PST" |
|
CivilInfo At(Time t) const; |
|
|
|
// TimeZone::TimeInfo |
|
// |
|
// Information about the absolute times corresponding to a civil time. |
|
// (Subseconds must be handled separately.) |
|
// |
|
// It is possible for a caller to pass a civil-time value that does |
|
// not represent an actual or unique instant in time (due to a shift |
|
// in UTC offset in the TimeZone, which results in a discontinuity in |
|
// the civil-time components). For example, a daylight-saving-time |
|
// transition skips or repeats civil times---in the United States, |
|
// March 13, 2011 02:15 never occurred, while November 6, 2011 01:15 |
|
// occurred twice---so requests for such times are not well-defined. |
|
// To account for these possibilities, `absl::TimeZone::TimeInfo` is |
|
// richer than just a single `absl::Time`. |
|
struct TimeInfo { |
|
enum CivilKind { |
|
UNIQUE, // the civil time was singular (pre == trans == post) |
|
SKIPPED, // the civil time did not exist (pre >= trans > post) |
|
REPEATED, // the civil time was ambiguous (pre < trans <= post) |
|
} kind; |
|
Time pre; // time calculated using the pre-transition offset |
|
Time trans; // when the civil-time discontinuity occurred |
|
Time post; // time calculated using the post-transition offset |
|
}; |
|
|
|
// TimeZone::At(CivilSecond) |
|
// |
|
// Returns an `absl::TimeInfo` containing the absolute time(s) for this |
|
// TimeZone at an `absl::CivilSecond`. When the civil time is skipped or |
|
// repeated, returns times calculated using the pre-transition and post- |
|
// transition UTC offsets, plus the transition time itself. |
|
// |
|
// Examples: |
|
// |
|
// // A unique civil time |
|
// const auto jan01 = lax.At(absl::CivilSecond(2011, 1, 1, 0, 0, 0)); |
|
// // jan01.kind == TimeZone::TimeInfo::UNIQUE |
|
// // jan01.pre is 2011-01-01 00:00:00 -0800 |
|
// // jan01.trans is 2011-01-01 00:00:00 -0800 |
|
// // jan01.post is 2011-01-01 00:00:00 -0800 |
|
// |
|
// // A Spring DST transition, when there is a gap in civil time |
|
// const auto mar13 = lax.At(absl::CivilSecond(2011, 3, 13, 2, 15, 0)); |
|
// // mar13.kind == TimeZone::TimeInfo::SKIPPED |
|
// // mar13.pre is 2011-03-13 03:15:00 -0700 |
|
// // mar13.trans is 2011-03-13 03:00:00 -0700 |
|
// // mar13.post is 2011-03-13 01:15:00 -0800 |
|
// |
|
// // A Fall DST transition, when civil times are repeated |
|
// const auto nov06 = lax.At(absl::CivilSecond(2011, 11, 6, 1, 15, 0)); |
|
// // nov06.kind == TimeZone::TimeInfo::REPEATED |
|
// // nov06.pre is 2011-11-06 01:15:00 -0700 |
|
// // nov06.trans is 2011-11-06 01:00:00 -0800 |
|
// // nov06.post is 2011-11-06 01:15:00 -0800 |
|
TimeInfo At(CivilSecond ct) const; |
|
|
|
// TimeZone::NextTransition() |
|
// TimeZone::PrevTransition() |
|
// |
|
// Finds the time of the next/previous offset change in this time zone. |
|
// |
|
// By definition, `NextTransition(t, &trans)` returns false when `t` is |
|
// `InfiniteFuture()`, and `PrevTransition(t, &trans)` returns false |
|
// when `t` is `InfinitePast()`. If the zone has no transitions, the |
|
// result will also be false no matter what the argument. |
|
// |
|
// Otherwise, when `t` is `InfinitePast()`, `NextTransition(t, &trans)` |
|
// returns true and sets `trans` to the first recorded transition. Chains |
|
// of calls to `NextTransition()/PrevTransition()` will eventually return |
|
// false, but it is unspecified exactly when `NextTransition(t, &trans)` |
|
// jumps to false, or what time is set by `PrevTransition(t, &trans)` for |
|
// a very distant `t`. |
|
// |
|
// Note: Enumeration of time-zone transitions is for informational purposes |
|
// only. Modern time-related code should not care about when offset changes |
|
// occur. |
|
// |
|
// Example: |
|
// absl::TimeZone nyc; |
|
// if (!absl::LoadTimeZone("America/New_York", &nyc)) { ... } |
|
// const auto now = absl::Now(); |
|
// auto t = absl::InfinitePast(); |
|
// absl::TimeZone::CivilTransition trans; |
|
// while (t <= now && nyc.NextTransition(t, &trans)) { |
|
// // transition: trans.from -> trans.to |
|
// t = nyc.At(trans.to).trans; |
|
// } |
|
struct CivilTransition { |
|
CivilSecond from; // the civil time we jump from |
|
CivilSecond to; // the civil time we jump to |
|
}; |
|
bool NextTransition(Time t, CivilTransition* trans) const; |
|
bool PrevTransition(Time t, CivilTransition* trans) const; |
|
|
|
template <typename H> |
|
friend H AbslHashValue(H h, TimeZone tz) { |
|
return H::combine(std::move(h), tz.cz_); |
|
} |
|
|
|
private: |
|
friend bool operator==(TimeZone a, TimeZone b) { return a.cz_ == b.cz_; } |
|
friend bool operator!=(TimeZone a, TimeZone b) { return a.cz_ != b.cz_; } |
|
friend std::ostream& operator<<(std::ostream& os, TimeZone tz) { |
|
return os << tz.name(); |
|
} |
|
|
|
time_internal::cctz::time_zone cz_; |
|
}; |
|
|
|
// LoadTimeZone() |
|
// |
|
// Loads the named zone. May perform I/O on the initial load of the named |
|
// zone. If the name is invalid, or some other kind of error occurs, returns |
|
// `false` and `*tz` is set to the UTC time zone. |
|
inline bool LoadTimeZone(const std::string& name, TimeZone* tz) { |
|
if (name == "localtime") { |
|
*tz = TimeZone(time_internal::cctz::local_time_zone()); |
|
return true; |
|
} |
|
time_internal::cctz::time_zone cz; |
|
const bool b = time_internal::cctz::load_time_zone(name, &cz); |
|
*tz = TimeZone(cz); |
|
return b; |
|
} |
|
|
|
// FixedTimeZone() |
|
// |
|
// Returns a TimeZone that is a fixed offset (seconds east) from UTC. |
|
// Note: If the absolute value of the offset is greater than 24 hours |
|
// you'll get UTC (i.e., no offset) instead. |
|
inline TimeZone FixedTimeZone(int seconds) { |
|
return TimeZone( |
|
time_internal::cctz::fixed_time_zone(std::chrono::seconds(seconds))); |
|
} |
|
|
|
// UTCTimeZone() |
|
// |
|
// Convenience method returning the UTC time zone. |
|
inline TimeZone UTCTimeZone() { |
|
return TimeZone(time_internal::cctz::utc_time_zone()); |
|
} |
|
|
|
// LocalTimeZone() |
|
// |
|
// Convenience method returning the local time zone, or UTC if there is |
|
// no configured local zone. Warning: Be wary of using LocalTimeZone(), |
|
// and particularly so in a server process, as the zone configured for the |
|
// local machine should be irrelevant. Prefer an explicit zone name. |
|
inline TimeZone LocalTimeZone() { |
|
return TimeZone(time_internal::cctz::local_time_zone()); |
|
} |
|
|
|
// ToCivilSecond() |
|
// ToCivilMinute() |
|
// ToCivilHour() |
|
// ToCivilDay() |
|
// ToCivilMonth() |
|
// ToCivilYear() |
|
// |
|
// Helpers for TimeZone::At(Time) to return particularly aligned civil times. |
|
// |
|
// Example: |
|
// |
|
// absl::Time t = ...; |
|
// absl::TimeZone tz = ...; |
|
// const auto cd = absl::ToCivilDay(t, tz); |
|
inline CivilSecond ToCivilSecond(Time t, TimeZone tz) { |
|
return tz.At(t).cs; // already a CivilSecond |
|
} |
|
inline CivilMinute ToCivilMinute(Time t, TimeZone tz) { |
|
return CivilMinute(tz.At(t).cs); |
|
} |
|
inline CivilHour ToCivilHour(Time t, TimeZone tz) { |
|
return CivilHour(tz.At(t).cs); |
|
} |
|
inline CivilDay ToCivilDay(Time t, TimeZone tz) { |
|
return CivilDay(tz.At(t).cs); |
|
} |
|
inline CivilMonth ToCivilMonth(Time t, TimeZone tz) { |
|
return CivilMonth(tz.At(t).cs); |
|
} |
|
inline CivilYear ToCivilYear(Time t, TimeZone tz) { |
|
return CivilYear(tz.At(t).cs); |
|
} |
|
|
|
// FromCivil() |
|
// |
|
// Helper for TimeZone::At(CivilSecond) that provides "order-preserving |
|
// semantics." If the civil time maps to a unique time, that time is |
|
// returned. If the civil time is repeated in the given time zone, the |
|
// time using the pre-transition offset is returned. Otherwise, the |
|
// civil time is skipped in the given time zone, and the transition time |
|
// is returned. This means that for any two civil times, ct1 and ct2, |
|
// (ct1 < ct2) => (FromCivil(ct1) <= FromCivil(ct2)), the equal case |
|
// being when two non-existent civil times map to the same transition time. |
|
// |
|
// Note: Accepts civil times of any alignment. |
|
inline Time FromCivil(CivilSecond ct, TimeZone tz) { |
|
const auto ti = tz.At(ct); |
|
if (ti.kind == TimeZone::TimeInfo::SKIPPED) return ti.trans; |
|
return ti.pre; |
|
} |
|
|
|
// TimeConversion |
|
// |
|
// An `absl::TimeConversion` represents the conversion of year, month, day, |
|
// hour, minute, and second values (i.e., a civil time), in a particular |
|
// `absl::TimeZone`, to a time instant (an absolute time), as returned by |
|
// `absl::ConvertDateTime()`. Lecacy version of `absl::TimeZone::TimeInfo`. |
|
// |
|
// Deprecated. Use `absl::TimeZone::TimeInfo`. |
|
struct |
|
TimeConversion { |
|
Time pre; // time calculated using the pre-transition offset |
|
Time trans; // when the civil-time discontinuity occurred |
|
Time post; // time calculated using the post-transition offset |
|
|
|
enum Kind { |
|
UNIQUE, // the civil time was singular (pre == trans == post) |
|
SKIPPED, // the civil time did not exist |
|
REPEATED, // the civil time was ambiguous |
|
}; |
|
Kind kind; |
|
|
|
bool normalized; // input values were outside their valid ranges |
|
}; |
|
|
|
// ConvertDateTime() |
|
// |
|
// Legacy version of `absl::TimeZone::At(absl::CivilSecond)` that takes |
|
// the civil time as six, separate values (YMDHMS). |
|
// |
|
// The input month, day, hour, minute, and second values can be outside |
|
// of their valid ranges, in which case they will be "normalized" during |
|
// the conversion. |
|
// |
|
// Example: |
|
// |
|
// // "October 32" normalizes to "November 1". |
|
// absl::TimeConversion tc = |
|
// absl::ConvertDateTime(2013, 10, 32, 8, 30, 0, lax); |
|
// // tc.kind == TimeConversion::UNIQUE && tc.normalized == true |
|
// // absl::ToCivilDay(tc.pre, tz).month() == 11 |
|
// // absl::ToCivilDay(tc.pre, tz).day() == 1 |
|
// |
|
// Deprecated. Use `absl::TimeZone::At(CivilSecond)`. |
|
TimeConversion ConvertDateTime(int64_t year, int mon, int day, int hour, |
|
int min, int sec, TimeZone tz); |
|
|
|
// FromDateTime() |
|
// |
|
// A convenience wrapper for `absl::ConvertDateTime()` that simply returns |
|
// the "pre" `absl::Time`. That is, the unique result, or the instant that |
|
// is correct using the pre-transition offset (as if the transition never |
|
// happened). |
|
// |
|
// Example: |
|
// |
|
// absl::Time t = absl::FromDateTime(2017, 9, 26, 9, 30, 0, lax); |
|
// // t = 2017-09-26 09:30:00 -0700 |
|
// |
|
// Deprecated. Use `absl::FromCivil(CivilSecond, TimeZone)`. Note that the |
|
// behavior of `FromCivil()` differs from `FromDateTime()` for skipped civil |
|
// times. If you care about that see `absl::TimeZone::At(absl::CivilSecond)`. |
|
inline Time FromDateTime(int64_t year, int mon, int day, int hour, |
|
int min, int sec, TimeZone tz) { |
|
return ConvertDateTime(year, mon, day, hour, min, sec, tz).pre; |
|
} |
|
|
|
// FromTM() |
|
// |
|
// Converts the `tm_year`, `tm_mon`, `tm_mday`, `tm_hour`, `tm_min`, and |
|
// `tm_sec` fields to an `absl::Time` using the given time zone. See ctime(3) |
|
// for a description of the expected values of the tm fields. If the indicated |
|
// time instant is not unique (see `absl::TimeZone::At(absl::CivilSecond)` |
|
// above), the `tm_isdst` field is consulted to select the desired instant |
|
// (`tm_isdst` > 0 means DST, `tm_isdst` == 0 means no DST, `tm_isdst` < 0 |
|
// means use the post-transition offset). |
|
Time FromTM(const struct tm& tm, TimeZone tz); |
|
|
|
// ToTM() |
|
// |
|
// Converts the given `absl::Time` to a struct tm using the given time zone. |
|
// See ctime(3) for a description of the values of the tm fields. |
|
struct tm ToTM(Time t, TimeZone tz); |
|
|
|
// RFC3339_full |
|
// RFC3339_sec |
|
// |
|
// FormatTime()/ParseTime() format specifiers for RFC3339 date/time strings, |
|
// with trailing zeros trimmed or with fractional seconds omitted altogether. |
|
// |
|
// Note that RFC3339_sec[] matches an ISO 8601 extended format for date and |
|
// time with UTC offset. Also note the use of "%Y": RFC3339 mandates that |
|
// years have exactly four digits, but we allow them to take their natural |
|
// width. |
|
extern const char RFC3339_full[]; // %Y-%m-%dT%H:%M:%E*S%Ez |
|
extern const char RFC3339_sec[]; // %Y-%m-%dT%H:%M:%S%Ez |
|
|
|
// RFC1123_full |
|
// RFC1123_no_wday |
|
// |
|
// FormatTime()/ParseTime() format specifiers for RFC1123 date/time strings. |
|
extern const char RFC1123_full[]; // %a, %d %b %E4Y %H:%M:%S %z |
|
extern const char RFC1123_no_wday[]; // %d %b %E4Y %H:%M:%S %z |
|
|
|
// FormatTime() |
|
// |
|
// Formats the given `absl::Time` in the `absl::TimeZone` according to the |
|
// provided format string. Uses strftime()-like formatting options, with |
|
// the following extensions: |
|
// |
|
// - %Ez - RFC3339-compatible numeric UTC offset (+hh:mm or -hh:mm) |
|
// - %E*z - Full-resolution numeric UTC offset (+hh:mm:ss or -hh:mm:ss) |
|
// - %E#S - Seconds with # digits of fractional precision |
|
// - %E*S - Seconds with full fractional precision (a literal '*') |
|
// - %E#f - Fractional seconds with # digits of precision |
|
// - %E*f - Fractional seconds with full precision (a literal '*') |
|
// - %E4Y - Four-character years (-999 ... -001, 0000, 0001 ... 9999) |
|
// |
|
// Note that %E0S behaves like %S, and %E0f produces no characters. In |
|
// contrast %E*f always produces at least one digit, which may be '0'. |
|
// |
|
// Note that %Y produces as many characters as it takes to fully render the |
|
// year. A year outside of [-999:9999] when formatted with %E4Y will produce |
|
// more than four characters, just like %Y. |
|
// |
|
// We recommend that format strings include the UTC offset (%z, %Ez, or %E*z) |
|
// so that the result uniquely identifies a time instant. |
|
// |
|
// Example: |
|
// |
|
// absl::CivilSecond cs(2013, 1, 2, 3, 4, 5); |
|
// absl::Time t = absl::FromCivil(cs, lax); |
|
// std::string f = absl::FormatTime("%H:%M:%S", t, lax); // "03:04:05" |
|
// f = absl::FormatTime("%H:%M:%E3S", t, lax); // "03:04:05.000" |
|
// |
|
// Note: If the given `absl::Time` is `absl::InfiniteFuture()`, the returned |
|
// string will be exactly "infinite-future". If the given `absl::Time` is |
|
// `absl::InfinitePast()`, the returned string will be exactly "infinite-past". |
|
// In both cases the given format string and `absl::TimeZone` are ignored. |
|
// |
|
std::string FormatTime(const std::string& format, Time t, TimeZone tz); |
|
|
|
// Convenience functions that format the given time using the RFC3339_full |
|
// format. The first overload uses the provided TimeZone, while the second |
|
// uses LocalTimeZone(). |
|
std::string FormatTime(Time t, TimeZone tz); |
|
std::string FormatTime(Time t); |
|
|
|
// Output stream operator. |
|
inline std::ostream& operator<<(std::ostream& os, Time t) { |
|
return os << FormatTime(t); |
|
} |
|
|
|
// ParseTime() |
|
// |
|
// Parses an input string according to the provided format string and |
|
// returns the corresponding `absl::Time`. Uses strftime()-like formatting |
|
// options, with the same extensions as FormatTime(), but with the |
|
// exceptions that %E#S is interpreted as %E*S, and %E#f as %E*f. %Ez |
|
// and %E*z also accept the same inputs. |
|
// |
|
// %Y consumes as many numeric characters as it can, so the matching data |
|
// should always be terminated with a non-numeric. %E4Y always consumes |
|
// exactly four characters, including any sign. |
|
// |
|
// Unspecified fields are taken from the default date and time of ... |
|
// |
|
// "1970-01-01 00:00:00.0 +0000" |
|
// |
|
// For example, parsing a string of "15:45" (%H:%M) will return an absl::Time |
|
// that represents "1970-01-01 15:45:00.0 +0000". |
|
// |
|
// Note that since ParseTime() returns time instants, it makes the most sense |
|
// to parse fully-specified date/time strings that include a UTC offset (%z, |
|
// %Ez, or %E*z). |
|
// |
|
// Note also that `absl::ParseTime()` only heeds the fields year, month, day, |
|
// hour, minute, (fractional) second, and UTC offset. Other fields, like |
|
// weekday (%a or %A), while parsed for syntactic validity, are ignored |
|
// in the conversion. |
|
// |
|
// Date and time fields that are out-of-range will be treated as errors |
|
// rather than normalizing them like `absl::CivilSecond` does. For example, |
|
// it is an error to parse the date "Oct 32, 2013" because 32 is out of range. |
|
// |
|
// A leap second of ":60" is normalized to ":00" of the following minute |
|
// with fractional seconds discarded. The following table shows how the |
|
// given seconds and subseconds will be parsed: |
|
// |
|
// "59.x" -> 59.x // exact |
|
// "60.x" -> 00.0 // normalized |
|
// "00.x" -> 00.x // exact |
|
// |
|
// Errors are indicated by returning false and assigning an error message |
|
// to the "err" out param if it is non-null. |
|
// |
|
// Note: If the input string is exactly "infinite-future", the returned |
|
// `absl::Time` will be `absl::InfiniteFuture()` and `true` will be returned. |
|
// If the input string is "infinite-past", the returned `absl::Time` will be |
|
// `absl::InfinitePast()` and `true` will be returned. |
|
// |
|
bool ParseTime(const std::string& format, const std::string& input, Time* time, |
|
std::string* err); |
|
|
|
// Like ParseTime() above, but if the format string does not contain a UTC |
|
// offset specification (%z/%Ez/%E*z) then the input is interpreted in the |
|
// given TimeZone. This means that the input, by itself, does not identify a |
|
// unique instant. Being time-zone dependent, it also admits the possibility |
|
// of ambiguity or non-existence, in which case the "pre" time (as defined |
|
// by TimeZone::TimeInfo) is returned. For these reasons we recommend that |
|
// all date/time strings include a UTC offset so they're context independent. |
|
bool ParseTime(const std::string& format, const std::string& input, TimeZone tz, |
|
Time* time, std::string* err); |
|
|
|
// ============================================================================ |
|
// Implementation Details Follow |
|
// ============================================================================ |
|
|
|
namespace time_internal { |
|
|
|
// Creates a Duration with a given representation. |
|
// REQUIRES: hi,lo is a valid representation of a Duration as specified |
|
// in time/duration.cc. |
|
constexpr Duration MakeDuration(int64_t hi, uint32_t lo = 0) { |
|
return Duration(hi, lo); |
|
} |
|
|
|
constexpr Duration MakeDuration(int64_t hi, int64_t lo) { |
|
return MakeDuration(hi, static_cast<uint32_t>(lo)); |
|
} |
|
|
|
// Make a Duration value from a floating-point number, as long as that number |
|
// is in the range [ 0 .. numeric_limits<int64_t>::max ), that is, as long as |
|
// it's positive and can be converted to int64_t without risk of UB. |
|
inline Duration MakePosDoubleDuration(double n) { |
|
const int64_t int_secs = static_cast<int64_t>(n); |
|
const uint32_t ticks = |
|
static_cast<uint32_t>((n - int_secs) * kTicksPerSecond + 0.5); |
|
return ticks < kTicksPerSecond |
|
? MakeDuration(int_secs, ticks) |
|
: MakeDuration(int_secs + 1, ticks - kTicksPerSecond); |
|
} |
|
|
|
// Creates a normalized Duration from an almost-normalized (sec,ticks) |
|
// pair. sec may be positive or negative. ticks must be in the range |
|
// -kTicksPerSecond < *ticks < kTicksPerSecond. If ticks is negative it |
|
// will be normalized to a positive value in the resulting Duration. |
|
constexpr Duration MakeNormalizedDuration(int64_t sec, int64_t ticks) { |
|
return (ticks < 0) ? MakeDuration(sec - 1, ticks + kTicksPerSecond) |
|
: MakeDuration(sec, ticks); |
|
} |
|
|
|
// Provide access to the Duration representation. |
|
constexpr int64_t GetRepHi(Duration d) { return d.rep_hi_; } |
|
constexpr uint32_t GetRepLo(Duration d) { return d.rep_lo_; } |
|
|
|
// Returns true iff d is positive or negative infinity. |
|
constexpr bool IsInfiniteDuration(Duration d) { return GetRepLo(d) == ~0U; } |
|
|
|
// Returns an infinite Duration with the opposite sign. |
|
// REQUIRES: IsInfiniteDuration(d) |
|
constexpr Duration OppositeInfinity(Duration d) { |
|
return GetRepHi(d) < 0 |
|
? MakeDuration((std::numeric_limits<int64_t>::max)(), ~0U) |
|
: MakeDuration((std::numeric_limits<int64_t>::min)(), ~0U); |
|
} |
|
|
|
// Returns (-n)-1 (equivalently -(n+1)) without avoidable overflow. |
|
constexpr int64_t NegateAndSubtractOne(int64_t n) { |
|
// Note: Good compilers will optimize this expression to ~n when using |
|
// a two's-complement representation (which is required for int64_t). |
|
return (n < 0) ? -(n + 1) : (-n) - 1; |
|
} |
|
|
|
// Map between a Time and a Duration since the Unix epoch. Note that these |
|
// functions depend on the above mentioned choice of the Unix epoch for the |
|
// Time representation (and both need to be Time friends). Without this |
|
// knowledge, we would need to add-in/subtract-out UnixEpoch() respectively. |
|
constexpr Time FromUnixDuration(Duration d) { return Time(d); } |
|
constexpr Duration ToUnixDuration(Time t) { return t.rep_; } |
|
|
|
template <std::intmax_t N> |
|
constexpr Duration FromInt64(int64_t v, std::ratio<1, N>) { |
|
static_assert(0 < N && N <= 1000 * 1000 * 1000, "Unsupported ratio"); |
|
// Subsecond ratios cannot overflow. |
|
return MakeNormalizedDuration( |
|
v / N, v % N * kTicksPerNanosecond * 1000 * 1000 * 1000 / N); |
|
} |
|
constexpr Duration FromInt64(int64_t v, std::ratio<60>) { |
|
return (v <= (std::numeric_limits<int64_t>::max)() / 60 && |
|
v >= (std::numeric_limits<int64_t>::min)() / 60) |
|
? MakeDuration(v * 60) |
|
: v > 0 ? InfiniteDuration() : -InfiniteDuration(); |
|
} |
|
constexpr Duration FromInt64(int64_t v, std::ratio<3600>) { |
|
return (v <= (std::numeric_limits<int64_t>::max)() / 3600 && |
|
v >= (std::numeric_limits<int64_t>::min)() / 3600) |
|
? MakeDuration(v * 3600) |
|
: v > 0 ? InfiniteDuration() : -InfiniteDuration(); |
|
} |
|
|
|
// IsValidRep64<T>(0) is true if the expression `int64_t{std::declval<T>()}` is |
|
// valid. That is, if a T can be assigned to an int64_t without narrowing. |
|
template <typename T> |
|
constexpr auto IsValidRep64(int) |
|
-> decltype(int64_t{std::declval<T>()}, bool()) { |
|
return true; |
|
} |
|
template <typename T> |
|
constexpr auto IsValidRep64(char) -> bool { |
|
return false; |
|
} |
|
|
|
// Converts a std::chrono::duration to an absl::Duration. |
|
template <typename Rep, typename Period> |
|
constexpr Duration FromChrono(const std::chrono::duration<Rep, Period>& d) { |
|
static_assert(IsValidRep64<Rep>(0), "duration::rep is invalid"); |
|
return FromInt64(int64_t{d.count()}, Period{}); |
|
} |
|
|
|
template <typename Ratio> |
|
int64_t ToInt64(Duration d, Ratio) { |
|
// Note: This may be used on MSVC, which may have a system_clock period of |
|
// std::ratio<1, 10 * 1000 * 1000> |
|
return ToInt64Seconds(d * Ratio::den / Ratio::num); |
|
} |
|
// Fastpath implementations for the 6 common duration units. |
|
inline int64_t ToInt64(Duration d, std::nano) { |
|
return ToInt64Nanoseconds(d); |
|
} |
|
inline int64_t ToInt64(Duration d, std::micro) { |
|
return ToInt64Microseconds(d); |
|
} |
|
inline int64_t ToInt64(Duration d, std::milli) { |
|
return ToInt64Milliseconds(d); |
|
} |
|
inline int64_t ToInt64(Duration d, std::ratio<1>) { |
|
return ToInt64Seconds(d); |
|
} |
|
inline int64_t ToInt64(Duration d, std::ratio<60>) { |
|
return ToInt64Minutes(d); |
|
} |
|
inline int64_t ToInt64(Duration d, std::ratio<3600>) { |
|
return ToInt64Hours(d); |
|
} |
|
|
|
// Converts an absl::Duration to a chrono duration of type T. |
|
template <typename T> |
|
T ToChronoDuration(Duration d) { |
|
using Rep = typename T::rep; |
|
using Period = typename T::period; |
|
static_assert(IsValidRep64<Rep>(0), "duration::rep is invalid"); |
|
if (time_internal::IsInfiniteDuration(d)) |
|
return d < ZeroDuration() ? (T::min)() : (T::max)(); |
|
const auto v = ToInt64(d, Period{}); |
|
if (v > (std::numeric_limits<Rep>::max)()) return (T::max)(); |
|
if (v < (std::numeric_limits<Rep>::min)()) return (T::min)(); |
|
return T{v}; |
|
} |
|
|
|
} // namespace time_internal |
|
|
|
constexpr Duration Nanoseconds(int64_t n) { |
|
return time_internal::FromInt64(n, std::nano{}); |
|
} |
|
constexpr Duration Microseconds(int64_t n) { |
|
return time_internal::FromInt64(n, std::micro{}); |
|
} |
|
constexpr Duration Milliseconds(int64_t n) { |
|
return time_internal::FromInt64(n, std::milli{}); |
|
} |
|
constexpr Duration Seconds(int64_t n) { |
|
return time_internal::FromInt64(n, std::ratio<1>{}); |
|
} |
|
constexpr Duration Minutes(int64_t n) { |
|
return time_internal::FromInt64(n, std::ratio<60>{}); |
|
} |
|
constexpr Duration Hours(int64_t n) { |
|
return time_internal::FromInt64(n, std::ratio<3600>{}); |
|
} |
|
|
|
constexpr bool operator<(Duration lhs, Duration rhs) { |
|
return time_internal::GetRepHi(lhs) != time_internal::GetRepHi(rhs) |
|
? time_internal::GetRepHi(lhs) < time_internal::GetRepHi(rhs) |
|
: time_internal::GetRepHi(lhs) == |
|
(std::numeric_limits<int64_t>::min)() |
|
? time_internal::GetRepLo(lhs) + 1 < |
|
time_internal::GetRepLo(rhs) + 1 |
|
: time_internal::GetRepLo(lhs) < |
|
time_internal::GetRepLo(rhs); |
|
} |
|
|
|
constexpr bool operator==(Duration lhs, Duration rhs) { |
|
return time_internal::GetRepHi(lhs) == time_internal::GetRepHi(rhs) && |
|
time_internal::GetRepLo(lhs) == time_internal::GetRepLo(rhs); |
|
} |
|
|
|
constexpr Duration operator-(Duration d) { |
|
// This is a little interesting because of the special cases. |
|
// |
|
// If rep_lo_ is zero, we have it easy; it's safe to negate rep_hi_, we're |
|
// dealing with an integral number of seconds, and the only special case is |
|
// the maximum negative finite duration, which can't be negated. |
|
// |
|
// Infinities stay infinite, and just change direction. |
|
// |
|
// Finally we're in the case where rep_lo_ is non-zero, and we can borrow |
|
// a second's worth of ticks and avoid overflow (as negating int64_t-min + 1 |
|
// is safe). |
|
return time_internal::GetRepLo(d) == 0 |
|
? time_internal::GetRepHi(d) == |
|
(std::numeric_limits<int64_t>::min)() |
|
? InfiniteDuration() |
|
: time_internal::MakeDuration(-time_internal::GetRepHi(d)) |
|
: time_internal::IsInfiniteDuration(d) |
|
? time_internal::OppositeInfinity(d) |
|
: time_internal::MakeDuration( |
|
time_internal::NegateAndSubtractOne( |
|
time_internal::GetRepHi(d)), |
|
time_internal::kTicksPerSecond - |
|
time_internal::GetRepLo(d)); |
|
} |
|
|
|
constexpr Duration InfiniteDuration() { |
|
return time_internal::MakeDuration((std::numeric_limits<int64_t>::max)(), |
|
~0U); |
|
} |
|
|
|
constexpr Duration FromChrono(const std::chrono::nanoseconds& d) { |
|
return time_internal::FromChrono(d); |
|
} |
|
constexpr Duration FromChrono(const std::chrono::microseconds& d) { |
|
return time_internal::FromChrono(d); |
|
} |
|
constexpr Duration FromChrono(const std::chrono::milliseconds& d) { |
|
return time_internal::FromChrono(d); |
|
} |
|
constexpr Duration FromChrono(const std::chrono::seconds& d) { |
|
return time_internal::FromChrono(d); |
|
} |
|
constexpr Duration FromChrono(const std::chrono::minutes& d) { |
|
return time_internal::FromChrono(d); |
|
} |
|
constexpr Duration FromChrono(const std::chrono::hours& d) { |
|
return time_internal::FromChrono(d); |
|
} |
|
|
|
constexpr Time FromUnixNanos(int64_t ns) { |
|
return time_internal::FromUnixDuration(Nanoseconds(ns)); |
|
} |
|
|
|
constexpr Time FromUnixMicros(int64_t us) { |
|
return time_internal::FromUnixDuration(Microseconds(us)); |
|
} |
|
|
|
constexpr Time FromUnixMillis(int64_t ms) { |
|
return time_internal::FromUnixDuration(Milliseconds(ms)); |
|
} |
|
|
|
constexpr Time FromUnixSeconds(int64_t s) { |
|
return time_internal::FromUnixDuration(Seconds(s)); |
|
} |
|
|
|
constexpr Time FromTimeT(time_t t) { |
|
return time_internal::FromUnixDuration(Seconds(t)); |
|
} |
|
|
|
} // namespace absl |
|
|
|
#endif // ABSL_TIME_TIME_H_
|
|
|