Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1227 lines
47 KiB
1227 lines
47 KiB
#include <errno.h> |
|
#include <stdarg.h> |
|
#include <stdio.h> |
|
|
|
#include <cctype> |
|
#include <cmath> |
|
#include <limits> |
|
#include <string> |
|
#include <thread> // NOLINT |
|
|
|
#include "gmock/gmock.h" |
|
#include "gtest/gtest.h" |
|
#include "absl/base/internal/raw_logging.h" |
|
#include "absl/strings/internal/str_format/bind.h" |
|
#include "absl/strings/match.h" |
|
#include "absl/types/optional.h" |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
namespace str_format_internal { |
|
namespace { |
|
|
|
struct NativePrintfTraits { |
|
bool hex_float_has_glibc_rounding; |
|
bool hex_float_prefers_denormal_repr; |
|
bool hex_float_uses_minimal_precision_when_not_specified; |
|
bool hex_float_optimizes_leading_digit_bit_count; |
|
}; |
|
|
|
template <typename T, size_t N> |
|
size_t ArraySize(T (&)[N]) { |
|
return N; |
|
} |
|
|
|
std::string LengthModFor(float) { return ""; } |
|
std::string LengthModFor(double) { return ""; } |
|
std::string LengthModFor(long double) { return "L"; } |
|
std::string LengthModFor(char) { return "hh"; } |
|
std::string LengthModFor(signed char) { return "hh"; } |
|
std::string LengthModFor(unsigned char) { return "hh"; } |
|
std::string LengthModFor(short) { return "h"; } // NOLINT |
|
std::string LengthModFor(unsigned short) { return "h"; } // NOLINT |
|
std::string LengthModFor(int) { return ""; } |
|
std::string LengthModFor(unsigned) { return ""; } |
|
std::string LengthModFor(long) { return "l"; } // NOLINT |
|
std::string LengthModFor(unsigned long) { return "l"; } // NOLINT |
|
std::string LengthModFor(long long) { return "ll"; } // NOLINT |
|
std::string LengthModFor(unsigned long long) { return "ll"; } // NOLINT |
|
|
|
std::string EscCharImpl(int v) { |
|
if (std::isprint(static_cast<unsigned char>(v))) { |
|
return std::string(1, static_cast<char>(v)); |
|
} |
|
char buf[64]; |
|
int n = snprintf(buf, sizeof(buf), "\\%#.2x", |
|
static_cast<unsigned>(v & 0xff)); |
|
assert(n > 0 && n < sizeof(buf)); |
|
return std::string(buf, n); |
|
} |
|
|
|
std::string Esc(char v) { return EscCharImpl(v); } |
|
std::string Esc(signed char v) { return EscCharImpl(v); } |
|
std::string Esc(unsigned char v) { return EscCharImpl(v); } |
|
|
|
template <typename T> |
|
std::string Esc(const T &v) { |
|
std::ostringstream oss; |
|
oss << v; |
|
return oss.str(); |
|
} |
|
|
|
void StrAppendV(std::string *dst, const char *format, va_list ap) { |
|
// First try with a small fixed size buffer |
|
static const int kSpaceLength = 1024; |
|
char space[kSpaceLength]; |
|
|
|
// It's possible for methods that use a va_list to invalidate |
|
// the data in it upon use. The fix is to make a copy |
|
// of the structure before using it and use that copy instead. |
|
va_list backup_ap; |
|
va_copy(backup_ap, ap); |
|
int result = vsnprintf(space, kSpaceLength, format, backup_ap); |
|
va_end(backup_ap); |
|
if (result < kSpaceLength) { |
|
if (result >= 0) { |
|
// Normal case -- everything fit. |
|
dst->append(space, result); |
|
return; |
|
} |
|
if (result < 0) { |
|
// Just an error. |
|
return; |
|
} |
|
} |
|
|
|
// Increase the buffer size to the size requested by vsnprintf, |
|
// plus one for the closing \0. |
|
int length = result + 1; |
|
char *buf = new char[length]; |
|
|
|
// Restore the va_list before we use it again |
|
va_copy(backup_ap, ap); |
|
result = vsnprintf(buf, length, format, backup_ap); |
|
va_end(backup_ap); |
|
|
|
if (result >= 0 && result < length) { |
|
// It fit |
|
dst->append(buf, result); |
|
} |
|
delete[] buf; |
|
} |
|
|
|
void StrAppend(std::string *out, const char *format, ...) { |
|
va_list ap; |
|
va_start(ap, format); |
|
StrAppendV(out, format, ap); |
|
va_end(ap); |
|
} |
|
|
|
std::string StrPrint(const char *format, ...) { |
|
va_list ap; |
|
va_start(ap, format); |
|
std::string result; |
|
StrAppendV(&result, format, ap); |
|
va_end(ap); |
|
return result; |
|
} |
|
|
|
NativePrintfTraits VerifyNativeImplementationImpl() { |
|
NativePrintfTraits result; |
|
|
|
// >>> hex_float_has_glibc_rounding. To have glibc's rounding behavior we need |
|
// to meet three requirements: |
|
// |
|
// - The threshold for rounding up is 8 (for e.g. MSVC uses 9). |
|
// - If the digits lower than than the 8 are non-zero then we round up. |
|
// - If the digits lower than the 8 are all zero then we round toward even. |
|
// |
|
// The numbers below represent all the cases covering {below,at,above} the |
|
// threshold (8) with both {zero,non-zero} lower bits and both {even,odd} |
|
// preceding digits. |
|
const double d0079 = 65657.0; // 0x1.0079p+16 |
|
const double d0179 = 65913.0; // 0x1.0179p+16 |
|
const double d0080 = 65664.0; // 0x1.0080p+16 |
|
const double d0180 = 65920.0; // 0x1.0180p+16 |
|
const double d0081 = 65665.0; // 0x1.0081p+16 |
|
const double d0181 = 65921.0; // 0x1.0181p+16 |
|
result.hex_float_has_glibc_rounding = |
|
StartsWith(StrPrint("%.2a", d0079), "0x1.00") && |
|
StartsWith(StrPrint("%.2a", d0179), "0x1.01") && |
|
StartsWith(StrPrint("%.2a", d0080), "0x1.00") && |
|
StartsWith(StrPrint("%.2a", d0180), "0x1.02") && |
|
StartsWith(StrPrint("%.2a", d0081), "0x1.01") && |
|
StartsWith(StrPrint("%.2a", d0181), "0x1.02"); |
|
|
|
// >>> hex_float_prefers_denormal_repr. Formatting `denormal` on glibc yields |
|
// "0x0.0000000000001p-1022", whereas on std libs that don't use denormal |
|
// representation it would either be 0x1p-1074 or 0x1.0000000000000-1074. |
|
const double denormal = std::numeric_limits<double>::denorm_min(); |
|
result.hex_float_prefers_denormal_repr = |
|
StartsWith(StrPrint("%a", denormal), "0x0.0000000000001"); |
|
|
|
// >>> hex_float_uses_minimal_precision_when_not_specified. Some (non-glibc) |
|
// libs will format the following as "0x1.0079000000000p+16". |
|
result.hex_float_uses_minimal_precision_when_not_specified = |
|
(StrPrint("%a", d0079) == "0x1.0079p+16"); |
|
|
|
// >>> hex_float_optimizes_leading_digit_bit_count. The number 1.5, when |
|
// formatted by glibc should yield "0x1.8p+0" for `double` and "0xcp-3" for |
|
// `long double`, i.e., number of bits in the leading digit is adapted to the |
|
// number of bits in the mantissa. |
|
const double d_15 = 1.5; |
|
const long double ld_15 = 1.5; |
|
result.hex_float_optimizes_leading_digit_bit_count = |
|
StartsWith(StrPrint("%a", d_15), "0x1.8") && |
|
StartsWith(StrPrint("%La", ld_15), "0xc"); |
|
|
|
return result; |
|
} |
|
|
|
const NativePrintfTraits &VerifyNativeImplementation() { |
|
static NativePrintfTraits native_traits = VerifyNativeImplementationImpl(); |
|
return native_traits; |
|
} |
|
|
|
class FormatConvertTest : public ::testing::Test { }; |
|
|
|
template <typename T> |
|
void TestStringConvert(const T& str) { |
|
const FormatArgImpl args[] = {FormatArgImpl(str)}; |
|
struct Expectation { |
|
const char *out; |
|
const char *fmt; |
|
}; |
|
const Expectation kExpect[] = { |
|
{"hello", "%1$s" }, |
|
{"", "%1$.s" }, |
|
{"", "%1$.0s" }, |
|
{"h", "%1$.1s" }, |
|
{"he", "%1$.2s" }, |
|
{"hello", "%1$.10s" }, |
|
{" hello", "%1$6s" }, |
|
{" he", "%1$5.2s" }, |
|
{"he ", "%1$-5.2s" }, |
|
{"hello ", "%1$-6.10s" }, |
|
}; |
|
for (const Expectation &e : kExpect) { |
|
UntypedFormatSpecImpl format(e.fmt); |
|
EXPECT_EQ(e.out, FormatPack(format, absl::MakeSpan(args))); |
|
} |
|
} |
|
|
|
TEST_F(FormatConvertTest, BasicString) { |
|
TestStringConvert("hello"); // As char array. |
|
TestStringConvert(static_cast<const char*>("hello")); |
|
TestStringConvert(std::string("hello")); |
|
TestStringConvert(string_view("hello")); |
|
} |
|
|
|
TEST_F(FormatConvertTest, NullString) { |
|
const char* p = nullptr; |
|
UntypedFormatSpecImpl format("%s"); |
|
EXPECT_EQ("", FormatPack(format, {FormatArgImpl(p)})); |
|
} |
|
|
|
TEST_F(FormatConvertTest, StringPrecision) { |
|
// We cap at the precision. |
|
char c = 'a'; |
|
const char* p = &c; |
|
UntypedFormatSpecImpl format("%.1s"); |
|
EXPECT_EQ("a", FormatPack(format, {FormatArgImpl(p)})); |
|
|
|
// We cap at the NUL-terminator. |
|
p = "ABC"; |
|
UntypedFormatSpecImpl format2("%.10s"); |
|
EXPECT_EQ("ABC", FormatPack(format2, {FormatArgImpl(p)})); |
|
} |
|
|
|
// Pointer formatting is implementation defined. This checks that the argument |
|
// can be matched to `ptr`. |
|
MATCHER_P(MatchesPointerString, ptr, "") { |
|
if (ptr == nullptr && arg == "(nil)") { |
|
return true; |
|
} |
|
void* parsed = nullptr; |
|
if (sscanf(arg.c_str(), "%p", &parsed) != 1) { |
|
ABSL_RAW_LOG(FATAL, "Could not parse %s", arg.c_str()); |
|
} |
|
return ptr == parsed; |
|
} |
|
|
|
TEST_F(FormatConvertTest, Pointer) { |
|
static int x = 0; |
|
const int *xp = &x; |
|
char c = 'h'; |
|
char *mcp = &c; |
|
const char *cp = "hi"; |
|
const char *cnil = nullptr; |
|
const int *inil = nullptr; |
|
using VoidF = void (*)(); |
|
VoidF fp = [] {}, fnil = nullptr; |
|
volatile char vc; |
|
volatile char *vcp = &vc; |
|
volatile char *vcnil = nullptr; |
|
const FormatArgImpl args_array[] = { |
|
FormatArgImpl(xp), FormatArgImpl(cp), FormatArgImpl(inil), |
|
FormatArgImpl(cnil), FormatArgImpl(mcp), FormatArgImpl(fp), |
|
FormatArgImpl(fnil), FormatArgImpl(vcp), FormatArgImpl(vcnil), |
|
}; |
|
auto args = absl::MakeConstSpan(args_array); |
|
|
|
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%p"), args), |
|
MatchesPointerString(&x)); |
|
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%20p"), args), |
|
MatchesPointerString(&x)); |
|
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%.1p"), args), |
|
MatchesPointerString(&x)); |
|
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%.20p"), args), |
|
MatchesPointerString(&x)); |
|
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%30.20p"), args), |
|
MatchesPointerString(&x)); |
|
|
|
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%-p"), args), |
|
MatchesPointerString(&x)); |
|
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%-20p"), args), |
|
MatchesPointerString(&x)); |
|
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%-.1p"), args), |
|
MatchesPointerString(&x)); |
|
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%.20p"), args), |
|
MatchesPointerString(&x)); |
|
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%-30.20p"), args), |
|
MatchesPointerString(&x)); |
|
|
|
// const char* |
|
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%2$p"), args), |
|
MatchesPointerString(cp)); |
|
// null const int* |
|
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%3$p"), args), |
|
MatchesPointerString(nullptr)); |
|
// null const char* |
|
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%4$p"), args), |
|
MatchesPointerString(nullptr)); |
|
// nonconst char* |
|
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%5$p"), args), |
|
MatchesPointerString(mcp)); |
|
|
|
// function pointers |
|
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%6$p"), args), |
|
MatchesPointerString(reinterpret_cast<const void*>(fp))); |
|
EXPECT_THAT( |
|
FormatPack(UntypedFormatSpecImpl("%8$p"), args), |
|
MatchesPointerString(reinterpret_cast<volatile const void *>(vcp))); |
|
|
|
// null function pointers |
|
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%7$p"), args), |
|
MatchesPointerString(nullptr)); |
|
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%9$p"), args), |
|
MatchesPointerString(nullptr)); |
|
} |
|
|
|
struct Cardinal { |
|
enum Pos { k1 = 1, k2 = 2, k3 = 3 }; |
|
enum Neg { kM1 = -1, kM2 = -2, kM3 = -3 }; |
|
}; |
|
|
|
TEST_F(FormatConvertTest, Enum) { |
|
const Cardinal::Pos k3 = Cardinal::k3; |
|
const Cardinal::Neg km3 = Cardinal::kM3; |
|
const FormatArgImpl args[] = {FormatArgImpl(k3), FormatArgImpl(km3)}; |
|
UntypedFormatSpecImpl format("%1$d"); |
|
UntypedFormatSpecImpl format2("%2$d"); |
|
EXPECT_EQ("3", FormatPack(format, absl::MakeSpan(args))); |
|
EXPECT_EQ("-3", FormatPack(format2, absl::MakeSpan(args))); |
|
} |
|
|
|
template <typename T> |
|
class TypedFormatConvertTest : public FormatConvertTest { }; |
|
|
|
TYPED_TEST_SUITE_P(TypedFormatConvertTest); |
|
|
|
std::vector<std::string> AllFlagCombinations() { |
|
const char kFlags[] = {'-', '#', '0', '+', ' '}; |
|
std::vector<std::string> result; |
|
for (size_t fsi = 0; fsi < (1ull << ArraySize(kFlags)); ++fsi) { |
|
std::string flag_set; |
|
for (size_t fi = 0; fi < ArraySize(kFlags); ++fi) |
|
if (fsi & (1ull << fi)) |
|
flag_set += kFlags[fi]; |
|
result.push_back(flag_set); |
|
} |
|
return result; |
|
} |
|
|
|
TYPED_TEST_P(TypedFormatConvertTest, AllIntsWithFlags) { |
|
typedef TypeParam T; |
|
typedef typename std::make_unsigned<T>::type UnsignedT; |
|
using remove_volatile_t = typename std::remove_volatile<T>::type; |
|
const T kMin = std::numeric_limits<remove_volatile_t>::min(); |
|
const T kMax = std::numeric_limits<remove_volatile_t>::max(); |
|
const T kVals[] = { |
|
remove_volatile_t(1), |
|
remove_volatile_t(2), |
|
remove_volatile_t(3), |
|
remove_volatile_t(123), |
|
remove_volatile_t(-1), |
|
remove_volatile_t(-2), |
|
remove_volatile_t(-3), |
|
remove_volatile_t(-123), |
|
remove_volatile_t(0), |
|
kMax - remove_volatile_t(1), |
|
kMax, |
|
kMin + remove_volatile_t(1), |
|
kMin, |
|
}; |
|
const char kConvChars[] = {'d', 'i', 'u', 'o', 'x', 'X'}; |
|
const std::string kWid[] = {"", "4", "10"}; |
|
const std::string kPrec[] = {"", ".", ".0", ".4", ".10"}; |
|
|
|
const std::vector<std::string> flag_sets = AllFlagCombinations(); |
|
|
|
for (size_t vi = 0; vi < ArraySize(kVals); ++vi) { |
|
const T val = kVals[vi]; |
|
SCOPED_TRACE(Esc(val)); |
|
const FormatArgImpl args[] = {FormatArgImpl(val)}; |
|
for (size_t ci = 0; ci < ArraySize(kConvChars); ++ci) { |
|
const char conv_char = kConvChars[ci]; |
|
for (size_t fsi = 0; fsi < flag_sets.size(); ++fsi) { |
|
const std::string &flag_set = flag_sets[fsi]; |
|
for (size_t wi = 0; wi < ArraySize(kWid); ++wi) { |
|
const std::string &wid = kWid[wi]; |
|
for (size_t pi = 0; pi < ArraySize(kPrec); ++pi) { |
|
const std::string &prec = kPrec[pi]; |
|
|
|
const bool is_signed_conv = (conv_char == 'd' || conv_char == 'i'); |
|
const bool is_unsigned_to_signed = |
|
!std::is_signed<T>::value && is_signed_conv; |
|
// Don't consider sign-related flags '+' and ' ' when doing |
|
// unsigned to signed conversions. |
|
if (is_unsigned_to_signed && |
|
flag_set.find_first_of("+ ") != std::string::npos) { |
|
continue; |
|
} |
|
|
|
std::string new_fmt("%"); |
|
new_fmt += flag_set; |
|
new_fmt += wid; |
|
new_fmt += prec; |
|
// old and new always agree up to here. |
|
std::string old_fmt = new_fmt; |
|
new_fmt += conv_char; |
|
std::string old_result; |
|
if (is_unsigned_to_signed) { |
|
// don't expect agreement on unsigned formatted as signed, |
|
// as printf can't do that conversion properly. For those |
|
// cases, we do expect agreement with printf with a "%u" |
|
// and the unsigned equivalent of 'val'. |
|
UnsignedT uval = val; |
|
old_fmt += LengthModFor(uval); |
|
old_fmt += "u"; |
|
old_result = StrPrint(old_fmt.c_str(), uval); |
|
} else { |
|
old_fmt += LengthModFor(val); |
|
old_fmt += conv_char; |
|
old_result = StrPrint(old_fmt.c_str(), val); |
|
} |
|
|
|
SCOPED_TRACE(std::string() + " old_fmt: \"" + old_fmt + |
|
"\"'" |
|
" new_fmt: \"" + |
|
new_fmt + "\""); |
|
UntypedFormatSpecImpl format(new_fmt); |
|
EXPECT_EQ(old_result, FormatPack(format, absl::MakeSpan(args))); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
TYPED_TEST_P(TypedFormatConvertTest, Char) { |
|
typedef TypeParam T; |
|
using remove_volatile_t = typename std::remove_volatile<T>::type; |
|
static const T kMin = std::numeric_limits<remove_volatile_t>::min(); |
|
static const T kMax = std::numeric_limits<remove_volatile_t>::max(); |
|
T kVals[] = { |
|
remove_volatile_t(1), remove_volatile_t(2), remove_volatile_t(10), |
|
remove_volatile_t(-1), remove_volatile_t(-2), remove_volatile_t(-10), |
|
remove_volatile_t(0), |
|
kMin + remove_volatile_t(1), kMin, |
|
kMax - remove_volatile_t(1), kMax |
|
}; |
|
for (const T &c : kVals) { |
|
const FormatArgImpl args[] = {FormatArgImpl(c)}; |
|
UntypedFormatSpecImpl format("%c"); |
|
EXPECT_EQ(StrPrint("%c", c), FormatPack(format, absl::MakeSpan(args))); |
|
} |
|
} |
|
|
|
REGISTER_TYPED_TEST_CASE_P(TypedFormatConvertTest, AllIntsWithFlags, Char); |
|
|
|
typedef ::testing::Types< |
|
int, unsigned, volatile int, |
|
short, unsigned short, |
|
long, unsigned long, |
|
long long, unsigned long long, |
|
signed char, unsigned char, char> |
|
AllIntTypes; |
|
INSTANTIATE_TYPED_TEST_CASE_P(TypedFormatConvertTestWithAllIntTypes, |
|
TypedFormatConvertTest, AllIntTypes); |
|
TEST_F(FormatConvertTest, VectorBool) { |
|
// Make sure vector<bool>'s values behave as bools. |
|
std::vector<bool> v = {true, false}; |
|
const std::vector<bool> cv = {true, false}; |
|
EXPECT_EQ("1,0,1,0", |
|
FormatPack(UntypedFormatSpecImpl("%d,%d,%d,%d"), |
|
absl::Span<const FormatArgImpl>( |
|
{FormatArgImpl(v[0]), FormatArgImpl(v[1]), |
|
FormatArgImpl(cv[0]), FormatArgImpl(cv[1])}))); |
|
} |
|
|
|
|
|
TEST_F(FormatConvertTest, Int128) { |
|
absl::int128 positive = static_cast<absl::int128>(0x1234567890abcdef) * 1979; |
|
absl::int128 negative = -positive; |
|
absl::int128 max = absl::Int128Max(), min = absl::Int128Min(); |
|
const FormatArgImpl args[] = {FormatArgImpl(positive), |
|
FormatArgImpl(negative), FormatArgImpl(max), |
|
FormatArgImpl(min)}; |
|
|
|
struct Case { |
|
const char* format; |
|
const char* expected; |
|
} cases[] = { |
|
{"%1$d", "2595989796776606496405"}, |
|
{"%1$30d", " 2595989796776606496405"}, |
|
{"%1$-30d", "2595989796776606496405 "}, |
|
{"%1$u", "2595989796776606496405"}, |
|
{"%1$x", "8cba9876066020f695"}, |
|
{"%2$d", "-2595989796776606496405"}, |
|
{"%2$30d", " -2595989796776606496405"}, |
|
{"%2$-30d", "-2595989796776606496405 "}, |
|
{"%2$u", "340282366920938460867384810655161715051"}, |
|
{"%2$x", "ffffffffffffff73456789f99fdf096b"}, |
|
{"%3$d", "170141183460469231731687303715884105727"}, |
|
{"%3$u", "170141183460469231731687303715884105727"}, |
|
{"%3$x", "7fffffffffffffffffffffffffffffff"}, |
|
{"%4$d", "-170141183460469231731687303715884105728"}, |
|
{"%4$x", "80000000000000000000000000000000"}, |
|
}; |
|
|
|
for (auto c : cases) { |
|
UntypedFormatSpecImpl format(c.format); |
|
EXPECT_EQ(c.expected, FormatPack(format, absl::MakeSpan(args))); |
|
} |
|
} |
|
|
|
TEST_F(FormatConvertTest, Uint128) { |
|
absl::uint128 v = static_cast<absl::uint128>(0x1234567890abcdef) * 1979; |
|
absl::uint128 max = absl::Uint128Max(); |
|
const FormatArgImpl args[] = {FormatArgImpl(v), FormatArgImpl(max)}; |
|
|
|
struct Case { |
|
const char* format; |
|
const char* expected; |
|
} cases[] = { |
|
{"%1$d", "2595989796776606496405"}, |
|
{"%1$30d", " 2595989796776606496405"}, |
|
{"%1$-30d", "2595989796776606496405 "}, |
|
{"%1$u", "2595989796776606496405"}, |
|
{"%1$x", "8cba9876066020f695"}, |
|
{"%2$d", "340282366920938463463374607431768211455"}, |
|
{"%2$u", "340282366920938463463374607431768211455"}, |
|
{"%2$x", "ffffffffffffffffffffffffffffffff"}, |
|
}; |
|
|
|
for (auto c : cases) { |
|
UntypedFormatSpecImpl format(c.format); |
|
EXPECT_EQ(c.expected, FormatPack(format, absl::MakeSpan(args))); |
|
} |
|
} |
|
|
|
template <typename Floating> |
|
void TestWithMultipleFormatsHelper(const std::vector<Floating> &floats) { |
|
const NativePrintfTraits &native_traits = VerifyNativeImplementation(); |
|
// Reserve the space to ensure we don't allocate memory in the output itself. |
|
std::string str_format_result; |
|
str_format_result.reserve(1 << 20); |
|
std::string string_printf_result; |
|
string_printf_result.reserve(1 << 20); |
|
|
|
const char *const kFormats[] = { |
|
"%", "%.3", "%8.5", "%500", "%.5000", "%.60", "%.30", "%03", |
|
"%+", "% ", "%-10", "%#15.3", "%#.0", "%.0", "%1$*2$", "%1$.*2$"}; |
|
|
|
for (const char *fmt : kFormats) { |
|
for (char f : {'f', 'F', // |
|
'g', 'G', // |
|
'a', 'A', // |
|
'e', 'E'}) { |
|
std::string fmt_str = std::string(fmt) + f; |
|
|
|
if (fmt == absl::string_view("%.5000") && f != 'f' && f != 'F' && |
|
f != 'a' && f != 'A') { |
|
// This particular test takes way too long with snprintf. |
|
// Disable for the case we are not implementing natively. |
|
continue; |
|
} |
|
|
|
if ((f == 'a' || f == 'A') && |
|
!native_traits.hex_float_has_glibc_rounding) { |
|
continue; |
|
} |
|
|
|
for (Floating d : floats) { |
|
if (!native_traits.hex_float_prefers_denormal_repr && |
|
(f == 'a' || f == 'A') && std::fpclassify(d) == FP_SUBNORMAL) { |
|
continue; |
|
} |
|
int i = -10; |
|
FormatArgImpl args[2] = {FormatArgImpl(d), FormatArgImpl(i)}; |
|
UntypedFormatSpecImpl format(fmt_str); |
|
|
|
string_printf_result.clear(); |
|
StrAppend(&string_printf_result, fmt_str.c_str(), d, i); |
|
str_format_result.clear(); |
|
|
|
{ |
|
AppendPack(&str_format_result, format, absl::MakeSpan(args)); |
|
} |
|
|
|
if (string_printf_result != str_format_result) { |
|
// We use ASSERT_EQ here because failures are usually correlated and a |
|
// bug would print way too many failed expectations causing the test |
|
// to time out. |
|
ASSERT_EQ(string_printf_result, str_format_result) |
|
<< fmt_str << " " << StrPrint("%.18g", d) << " " |
|
<< StrPrint("%a", d) << " " << StrPrint("%.50f", d); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
TEST_F(FormatConvertTest, Float) { |
|
#ifdef _MSC_VER |
|
// MSVC has a different rounding policy than us so we can't test our |
|
// implementation against the native one there. |
|
return; |
|
#endif // _MSC_VER |
|
|
|
std::vector<float> floats = {0.0f, |
|
-0.0f, |
|
.9999999f, |
|
9999999.f, |
|
std::numeric_limits<float>::max(), |
|
-std::numeric_limits<float>::max(), |
|
std::numeric_limits<float>::min(), |
|
-std::numeric_limits<float>::min(), |
|
std::numeric_limits<float>::lowest(), |
|
-std::numeric_limits<float>::lowest(), |
|
std::numeric_limits<float>::epsilon(), |
|
std::numeric_limits<float>::epsilon() + 1.0f, |
|
std::numeric_limits<float>::infinity(), |
|
-std::numeric_limits<float>::infinity()}; |
|
|
|
// Some regression tests. |
|
floats.push_back(0.999999989f); |
|
|
|
if (std::numeric_limits<float>::has_denorm != std::denorm_absent) { |
|
floats.push_back(std::numeric_limits<float>::denorm_min()); |
|
floats.push_back(-std::numeric_limits<float>::denorm_min()); |
|
} |
|
|
|
for (float base : |
|
{1.f, 12.f, 123.f, 1234.f, 12345.f, 123456.f, 1234567.f, 12345678.f, |
|
123456789.f, 1234567890.f, 12345678901.f, 12345678.f, 12345678.f}) { |
|
for (int exp = -123; exp <= 123; ++exp) { |
|
for (int sign : {1, -1}) { |
|
floats.push_back(sign * std::ldexp(base, exp)); |
|
} |
|
} |
|
} |
|
|
|
for (int exp = -300; exp <= 300; ++exp) { |
|
const float all_ones_mantissa = 0xffffff; |
|
floats.push_back(std::ldexp(all_ones_mantissa, exp)); |
|
} |
|
|
|
// Remove duplicates to speed up the logic below. |
|
std::sort(floats.begin(), floats.end()); |
|
floats.erase(std::unique(floats.begin(), floats.end()), floats.end()); |
|
|
|
#ifndef __APPLE__ |
|
// Apple formats NaN differently (+nan) vs. (nan) |
|
floats.push_back(std::nan("")); |
|
#endif |
|
|
|
TestWithMultipleFormatsHelper(floats); |
|
} |
|
|
|
TEST_F(FormatConvertTest, Double) { |
|
#ifdef _MSC_VER |
|
// MSVC has a different rounding policy than us so we can't test our |
|
// implementation against the native one there. |
|
return; |
|
#endif // _MSC_VER |
|
|
|
std::vector<double> doubles = {0.0, |
|
-0.0, |
|
.99999999999999, |
|
99999999999999., |
|
std::numeric_limits<double>::max(), |
|
-std::numeric_limits<double>::max(), |
|
std::numeric_limits<double>::min(), |
|
-std::numeric_limits<double>::min(), |
|
std::numeric_limits<double>::lowest(), |
|
-std::numeric_limits<double>::lowest(), |
|
std::numeric_limits<double>::epsilon(), |
|
std::numeric_limits<double>::epsilon() + 1, |
|
std::numeric_limits<double>::infinity(), |
|
-std::numeric_limits<double>::infinity()}; |
|
|
|
// Some regression tests. |
|
doubles.push_back(0.99999999999999989); |
|
|
|
if (std::numeric_limits<double>::has_denorm != std::denorm_absent) { |
|
doubles.push_back(std::numeric_limits<double>::denorm_min()); |
|
doubles.push_back(-std::numeric_limits<double>::denorm_min()); |
|
} |
|
|
|
for (double base : |
|
{1., 12., 123., 1234., 12345., 123456., 1234567., 12345678., 123456789., |
|
1234567890., 12345678901., 123456789012., 1234567890123.}) { |
|
for (int exp = -123; exp <= 123; ++exp) { |
|
for (int sign : {1, -1}) { |
|
doubles.push_back(sign * std::ldexp(base, exp)); |
|
} |
|
} |
|
} |
|
|
|
// Workaround libc bug. |
|
// https://sourceware.org/bugzilla/show_bug.cgi?id=22142 |
|
const bool gcc_bug_22142 = |
|
StrPrint("%f", std::numeric_limits<double>::max()) != |
|
"1797693134862315708145274237317043567980705675258449965989174768031" |
|
"5726078002853876058955863276687817154045895351438246423432132688946" |
|
"4182768467546703537516986049910576551282076245490090389328944075868" |
|
"5084551339423045832369032229481658085593321233482747978262041447231" |
|
"68738177180919299881250404026184124858368.000000"; |
|
|
|
if (!gcc_bug_22142) { |
|
for (int exp = -300; exp <= 300; ++exp) { |
|
const double all_ones_mantissa = 0x1fffffffffffff; |
|
doubles.push_back(std::ldexp(all_ones_mantissa, exp)); |
|
} |
|
} |
|
|
|
if (gcc_bug_22142) { |
|
for (auto &d : doubles) { |
|
using L = std::numeric_limits<double>; |
|
double d2 = std::abs(d); |
|
if (d2 == L::max() || d2 == L::min() || d2 == L::denorm_min()) { |
|
d = 0; |
|
} |
|
} |
|
} |
|
|
|
// Remove duplicates to speed up the logic below. |
|
std::sort(doubles.begin(), doubles.end()); |
|
doubles.erase(std::unique(doubles.begin(), doubles.end()), doubles.end()); |
|
|
|
#ifndef __APPLE__ |
|
// Apple formats NaN differently (+nan) vs. (nan) |
|
doubles.push_back(std::nan("")); |
|
#endif |
|
|
|
TestWithMultipleFormatsHelper(doubles); |
|
} |
|
|
|
TEST_F(FormatConvertTest, DoubleRound) { |
|
std::string s; |
|
const auto format = [&](const char *fmt, double d) -> std::string & { |
|
s.clear(); |
|
FormatArgImpl args[1] = {FormatArgImpl(d)}; |
|
AppendPack(&s, UntypedFormatSpecImpl(fmt), absl::MakeSpan(args)); |
|
#if !defined(_MSC_VER) |
|
// MSVC has a different rounding policy than us so we can't test our |
|
// implementation against the native one there. |
|
EXPECT_EQ(StrPrint(fmt, d), s); |
|
#endif // _MSC_VER |
|
|
|
return s; |
|
}; |
|
// All of these values have to be exactly represented. |
|
// Otherwise we might not be testing what we think we are testing. |
|
|
|
// These values can fit in a 64bit "fast" representation. |
|
const double exact_value = 0.00000000000005684341886080801486968994140625; |
|
assert(exact_value == std::pow(2, -44)); |
|
// Round up at a 5xx. |
|
EXPECT_EQ(format("%.13f", exact_value), "0.0000000000001"); |
|
// Round up at a >5 |
|
EXPECT_EQ(format("%.14f", exact_value), "0.00000000000006"); |
|
// Round down at a <5 |
|
EXPECT_EQ(format("%.16f", exact_value), "0.0000000000000568"); |
|
// Nine handling |
|
EXPECT_EQ(format("%.35f", exact_value), |
|
"0.00000000000005684341886080801486969"); |
|
EXPECT_EQ(format("%.36f", exact_value), |
|
"0.000000000000056843418860808014869690"); |
|
// Round down the last nine. |
|
EXPECT_EQ(format("%.37f", exact_value), |
|
"0.0000000000000568434188608080148696899"); |
|
EXPECT_EQ(format("%.10f", 0.000003814697265625), "0.0000038147"); |
|
// Round up the last nine |
|
EXPECT_EQ(format("%.11f", 0.000003814697265625), "0.00000381470"); |
|
EXPECT_EQ(format("%.12f", 0.000003814697265625), "0.000003814697"); |
|
|
|
// Round to even (down) |
|
EXPECT_EQ(format("%.43f", exact_value), |
|
"0.0000000000000568434188608080148696899414062"); |
|
// Exact |
|
EXPECT_EQ(format("%.44f", exact_value), |
|
"0.00000000000005684341886080801486968994140625"); |
|
// Round to even (up), let make the last digits 75 instead of 25 |
|
EXPECT_EQ(format("%.43f", exact_value + std::pow(2, -43)), |
|
"0.0000000000001705302565824240446090698242188"); |
|
// Exact, just to check. |
|
EXPECT_EQ(format("%.44f", exact_value + std::pow(2, -43)), |
|
"0.00000000000017053025658242404460906982421875"); |
|
|
|
// This value has to be small enough that it won't fit in the uint128 |
|
// representation for printing. |
|
const double small_exact_value = |
|
0.000000000000000000000000000000000000752316384526264005099991383822237233803945956334136013765601092018187046051025390625; // NOLINT |
|
assert(small_exact_value == std::pow(2, -120)); |
|
// Round up at a 5xx. |
|
EXPECT_EQ(format("%.37f", small_exact_value), |
|
"0.0000000000000000000000000000000000008"); |
|
// Round down at a <5 |
|
EXPECT_EQ(format("%.38f", small_exact_value), |
|
"0.00000000000000000000000000000000000075"); |
|
// Round up at a >5 |
|
EXPECT_EQ(format("%.41f", small_exact_value), |
|
"0.00000000000000000000000000000000000075232"); |
|
// Nine handling |
|
EXPECT_EQ(format("%.55f", small_exact_value), |
|
"0.0000000000000000000000000000000000007523163845262640051"); |
|
EXPECT_EQ(format("%.56f", small_exact_value), |
|
"0.00000000000000000000000000000000000075231638452626400510"); |
|
EXPECT_EQ(format("%.57f", small_exact_value), |
|
"0.000000000000000000000000000000000000752316384526264005100"); |
|
EXPECT_EQ(format("%.58f", small_exact_value), |
|
"0.0000000000000000000000000000000000007523163845262640051000"); |
|
// Round down the last nine |
|
EXPECT_EQ(format("%.59f", small_exact_value), |
|
"0.00000000000000000000000000000000000075231638452626400509999"); |
|
// Round up the last nine |
|
EXPECT_EQ(format("%.79f", small_exact_value), |
|
"0.000000000000000000000000000000000000" |
|
"7523163845262640050999913838222372338039460"); |
|
|
|
// Round to even (down) |
|
EXPECT_EQ(format("%.119f", small_exact_value), |
|
"0.000000000000000000000000000000000000" |
|
"75231638452626400509999138382223723380" |
|
"394595633413601376560109201818704605102539062"); |
|
// Exact |
|
EXPECT_EQ(format("%.120f", small_exact_value), |
|
"0.000000000000000000000000000000000000" |
|
"75231638452626400509999138382223723380" |
|
"3945956334136013765601092018187046051025390625"); |
|
// Round to even (up), let make the last digits 75 instead of 25 |
|
EXPECT_EQ(format("%.119f", small_exact_value + std::pow(2, -119)), |
|
"0.000000000000000000000000000000000002" |
|
"25694915357879201529997415146671170141" |
|
"183786900240804129680327605456113815307617188"); |
|
// Exact, just to check. |
|
EXPECT_EQ(format("%.120f", small_exact_value + std::pow(2, -119)), |
|
"0.000000000000000000000000000000000002" |
|
"25694915357879201529997415146671170141" |
|
"1837869002408041296803276054561138153076171875"); |
|
} |
|
|
|
TEST_F(FormatConvertTest, DoubleRoundA) { |
|
const NativePrintfTraits &native_traits = VerifyNativeImplementation(); |
|
std::string s; |
|
const auto format = [&](const char *fmt, double d) -> std::string & { |
|
s.clear(); |
|
FormatArgImpl args[1] = {FormatArgImpl(d)}; |
|
AppendPack(&s, UntypedFormatSpecImpl(fmt), absl::MakeSpan(args)); |
|
if (native_traits.hex_float_has_glibc_rounding) { |
|
EXPECT_EQ(StrPrint(fmt, d), s); |
|
} |
|
return s; |
|
}; |
|
|
|
// 0x1.00018000p+100 |
|
const double on_boundary_odd = 1267679614447900152596896153600.0; |
|
EXPECT_EQ(format("%.0a", on_boundary_odd), "0x1p+100"); |
|
EXPECT_EQ(format("%.1a", on_boundary_odd), "0x1.0p+100"); |
|
EXPECT_EQ(format("%.2a", on_boundary_odd), "0x1.00p+100"); |
|
EXPECT_EQ(format("%.3a", on_boundary_odd), "0x1.000p+100"); |
|
EXPECT_EQ(format("%.4a", on_boundary_odd), "0x1.0002p+100"); // round |
|
EXPECT_EQ(format("%.5a", on_boundary_odd), "0x1.00018p+100"); |
|
EXPECT_EQ(format("%.6a", on_boundary_odd), "0x1.000180p+100"); |
|
|
|
// 0x1.00028000p-2 |
|
const double on_boundary_even = 0.250009536743164062500; |
|
EXPECT_EQ(format("%.0a", on_boundary_even), "0x1p-2"); |
|
EXPECT_EQ(format("%.1a", on_boundary_even), "0x1.0p-2"); |
|
EXPECT_EQ(format("%.2a", on_boundary_even), "0x1.00p-2"); |
|
EXPECT_EQ(format("%.3a", on_boundary_even), "0x1.000p-2"); |
|
EXPECT_EQ(format("%.4a", on_boundary_even), "0x1.0002p-2"); // no round |
|
EXPECT_EQ(format("%.5a", on_boundary_even), "0x1.00028p-2"); |
|
EXPECT_EQ(format("%.6a", on_boundary_even), "0x1.000280p-2"); |
|
|
|
// 0x1.00018001p+1 |
|
const double slightly_over = 2.00004577683284878730773925781250; |
|
EXPECT_EQ(format("%.0a", slightly_over), "0x1p+1"); |
|
EXPECT_EQ(format("%.1a", slightly_over), "0x1.0p+1"); |
|
EXPECT_EQ(format("%.2a", slightly_over), "0x1.00p+1"); |
|
EXPECT_EQ(format("%.3a", slightly_over), "0x1.000p+1"); |
|
EXPECT_EQ(format("%.4a", slightly_over), "0x1.0002p+1"); |
|
EXPECT_EQ(format("%.5a", slightly_over), "0x1.00018p+1"); |
|
EXPECT_EQ(format("%.6a", slightly_over), "0x1.000180p+1"); |
|
|
|
// 0x1.00017fffp+0 |
|
const double slightly_under = 1.000022887950763106346130371093750; |
|
EXPECT_EQ(format("%.0a", slightly_under), "0x1p+0"); |
|
EXPECT_EQ(format("%.1a", slightly_under), "0x1.0p+0"); |
|
EXPECT_EQ(format("%.2a", slightly_under), "0x1.00p+0"); |
|
EXPECT_EQ(format("%.3a", slightly_under), "0x1.000p+0"); |
|
EXPECT_EQ(format("%.4a", slightly_under), "0x1.0001p+0"); |
|
EXPECT_EQ(format("%.5a", slightly_under), "0x1.00018p+0"); |
|
EXPECT_EQ(format("%.6a", slightly_under), "0x1.000180p+0"); |
|
EXPECT_EQ(format("%.7a", slightly_under), "0x1.0001800p+0"); |
|
|
|
// 0x1.1b3829ac28058p+3 |
|
const double hex_value = 8.85060580848964661981881363317370414733886718750; |
|
EXPECT_EQ(format("%.0a", hex_value), "0x1p+3"); |
|
EXPECT_EQ(format("%.1a", hex_value), "0x1.2p+3"); |
|
EXPECT_EQ(format("%.2a", hex_value), "0x1.1bp+3"); |
|
EXPECT_EQ(format("%.3a", hex_value), "0x1.1b4p+3"); |
|
EXPECT_EQ(format("%.4a", hex_value), "0x1.1b38p+3"); |
|
EXPECT_EQ(format("%.5a", hex_value), "0x1.1b383p+3"); |
|
EXPECT_EQ(format("%.6a", hex_value), "0x1.1b382ap+3"); |
|
EXPECT_EQ(format("%.7a", hex_value), "0x1.1b3829bp+3"); |
|
EXPECT_EQ(format("%.8a", hex_value), "0x1.1b3829acp+3"); |
|
EXPECT_EQ(format("%.9a", hex_value), "0x1.1b3829ac3p+3"); |
|
EXPECT_EQ(format("%.10a", hex_value), "0x1.1b3829ac28p+3"); |
|
EXPECT_EQ(format("%.11a", hex_value), "0x1.1b3829ac280p+3"); |
|
EXPECT_EQ(format("%.12a", hex_value), "0x1.1b3829ac2806p+3"); |
|
EXPECT_EQ(format("%.13a", hex_value), "0x1.1b3829ac28058p+3"); |
|
EXPECT_EQ(format("%.14a", hex_value), "0x1.1b3829ac280580p+3"); |
|
EXPECT_EQ(format("%.15a", hex_value), "0x1.1b3829ac2805800p+3"); |
|
EXPECT_EQ(format("%.16a", hex_value), "0x1.1b3829ac28058000p+3"); |
|
EXPECT_EQ(format("%.17a", hex_value), "0x1.1b3829ac280580000p+3"); |
|
EXPECT_EQ(format("%.18a", hex_value), "0x1.1b3829ac2805800000p+3"); |
|
EXPECT_EQ(format("%.19a", hex_value), "0x1.1b3829ac28058000000p+3"); |
|
EXPECT_EQ(format("%.20a", hex_value), "0x1.1b3829ac280580000000p+3"); |
|
EXPECT_EQ(format("%.21a", hex_value), "0x1.1b3829ac2805800000000p+3"); |
|
|
|
// 0x1.0818283848586p+3 |
|
const double hex_value2 = 8.2529488658208371987257123691961169242858886718750; |
|
EXPECT_EQ(format("%.0a", hex_value2), "0x1p+3"); |
|
EXPECT_EQ(format("%.1a", hex_value2), "0x1.1p+3"); |
|
EXPECT_EQ(format("%.2a", hex_value2), "0x1.08p+3"); |
|
EXPECT_EQ(format("%.3a", hex_value2), "0x1.082p+3"); |
|
EXPECT_EQ(format("%.4a", hex_value2), "0x1.0818p+3"); |
|
EXPECT_EQ(format("%.5a", hex_value2), "0x1.08183p+3"); |
|
EXPECT_EQ(format("%.6a", hex_value2), "0x1.081828p+3"); |
|
EXPECT_EQ(format("%.7a", hex_value2), "0x1.0818284p+3"); |
|
EXPECT_EQ(format("%.8a", hex_value2), "0x1.08182838p+3"); |
|
EXPECT_EQ(format("%.9a", hex_value2), "0x1.081828385p+3"); |
|
EXPECT_EQ(format("%.10a", hex_value2), "0x1.0818283848p+3"); |
|
EXPECT_EQ(format("%.11a", hex_value2), "0x1.08182838486p+3"); |
|
EXPECT_EQ(format("%.12a", hex_value2), "0x1.081828384858p+3"); |
|
EXPECT_EQ(format("%.13a", hex_value2), "0x1.0818283848586p+3"); |
|
EXPECT_EQ(format("%.14a", hex_value2), "0x1.08182838485860p+3"); |
|
EXPECT_EQ(format("%.15a", hex_value2), "0x1.081828384858600p+3"); |
|
EXPECT_EQ(format("%.16a", hex_value2), "0x1.0818283848586000p+3"); |
|
EXPECT_EQ(format("%.17a", hex_value2), "0x1.08182838485860000p+3"); |
|
EXPECT_EQ(format("%.18a", hex_value2), "0x1.081828384858600000p+3"); |
|
EXPECT_EQ(format("%.19a", hex_value2), "0x1.0818283848586000000p+3"); |
|
EXPECT_EQ(format("%.20a", hex_value2), "0x1.08182838485860000000p+3"); |
|
EXPECT_EQ(format("%.21a", hex_value2), "0x1.081828384858600000000p+3"); |
|
} |
|
|
|
TEST_F(FormatConvertTest, LongDoubleRoundA) { |
|
if (std::numeric_limits<long double>::digits % 4 != 0) { |
|
// This test doesn't really make sense to run on platforms where a long |
|
// double has a different mantissa size (mod 4) than Prod, since then the |
|
// leading digit will be formatted differently. |
|
return; |
|
} |
|
const NativePrintfTraits &native_traits = VerifyNativeImplementation(); |
|
std::string s; |
|
const auto format = [&](const char *fmt, long double d) -> std::string & { |
|
s.clear(); |
|
FormatArgImpl args[1] = {FormatArgImpl(d)}; |
|
AppendPack(&s, UntypedFormatSpecImpl(fmt), absl::MakeSpan(args)); |
|
if (native_traits.hex_float_has_glibc_rounding && |
|
native_traits.hex_float_optimizes_leading_digit_bit_count) { |
|
EXPECT_EQ(StrPrint(fmt, d), s); |
|
} |
|
return s; |
|
}; |
|
|
|
// 0x8.8p+4 |
|
const long double on_boundary_even = 136.0; |
|
EXPECT_EQ(format("%.0La", on_boundary_even), "0x8p+4"); |
|
EXPECT_EQ(format("%.1La", on_boundary_even), "0x8.8p+4"); |
|
EXPECT_EQ(format("%.2La", on_boundary_even), "0x8.80p+4"); |
|
EXPECT_EQ(format("%.3La", on_boundary_even), "0x8.800p+4"); |
|
EXPECT_EQ(format("%.4La", on_boundary_even), "0x8.8000p+4"); |
|
EXPECT_EQ(format("%.5La", on_boundary_even), "0x8.80000p+4"); |
|
EXPECT_EQ(format("%.6La", on_boundary_even), "0x8.800000p+4"); |
|
|
|
// 0x9.8p+4 |
|
const long double on_boundary_odd = 152.0; |
|
EXPECT_EQ(format("%.0La", on_boundary_odd), "0xap+4"); |
|
EXPECT_EQ(format("%.1La", on_boundary_odd), "0x9.8p+4"); |
|
EXPECT_EQ(format("%.2La", on_boundary_odd), "0x9.80p+4"); |
|
EXPECT_EQ(format("%.3La", on_boundary_odd), "0x9.800p+4"); |
|
EXPECT_EQ(format("%.4La", on_boundary_odd), "0x9.8000p+4"); |
|
EXPECT_EQ(format("%.5La", on_boundary_odd), "0x9.80000p+4"); |
|
EXPECT_EQ(format("%.6La", on_boundary_odd), "0x9.800000p+4"); |
|
|
|
// 0x8.80001p+24 |
|
const long double slightly_over = 142606352.0; |
|
EXPECT_EQ(format("%.0La", slightly_over), "0x9p+24"); |
|
EXPECT_EQ(format("%.1La", slightly_over), "0x8.8p+24"); |
|
EXPECT_EQ(format("%.2La", slightly_over), "0x8.80p+24"); |
|
EXPECT_EQ(format("%.3La", slightly_over), "0x8.800p+24"); |
|
EXPECT_EQ(format("%.4La", slightly_over), "0x8.8000p+24"); |
|
EXPECT_EQ(format("%.5La", slightly_over), "0x8.80001p+24"); |
|
EXPECT_EQ(format("%.6La", slightly_over), "0x8.800010p+24"); |
|
|
|
// 0x8.7ffffp+24 |
|
const long double slightly_under = 142606320.0; |
|
EXPECT_EQ(format("%.0La", slightly_under), "0x8p+24"); |
|
EXPECT_EQ(format("%.1La", slightly_under), "0x8.8p+24"); |
|
EXPECT_EQ(format("%.2La", slightly_under), "0x8.80p+24"); |
|
EXPECT_EQ(format("%.3La", slightly_under), "0x8.800p+24"); |
|
EXPECT_EQ(format("%.4La", slightly_under), "0x8.8000p+24"); |
|
EXPECT_EQ(format("%.5La", slightly_under), "0x8.7ffffp+24"); |
|
EXPECT_EQ(format("%.6La", slightly_under), "0x8.7ffff0p+24"); |
|
EXPECT_EQ(format("%.7La", slightly_under), "0x8.7ffff00p+24"); |
|
|
|
// 0xc.0828384858688000p+128 |
|
const long double eights = 4094231060438608800781871108094404067328.0; |
|
EXPECT_EQ(format("%.0La", eights), "0xcp+128"); |
|
EXPECT_EQ(format("%.1La", eights), "0xc.1p+128"); |
|
EXPECT_EQ(format("%.2La", eights), "0xc.08p+128"); |
|
EXPECT_EQ(format("%.3La", eights), "0xc.083p+128"); |
|
EXPECT_EQ(format("%.4La", eights), "0xc.0828p+128"); |
|
EXPECT_EQ(format("%.5La", eights), "0xc.08284p+128"); |
|
EXPECT_EQ(format("%.6La", eights), "0xc.082838p+128"); |
|
EXPECT_EQ(format("%.7La", eights), "0xc.0828385p+128"); |
|
EXPECT_EQ(format("%.8La", eights), "0xc.08283848p+128"); |
|
EXPECT_EQ(format("%.9La", eights), "0xc.082838486p+128"); |
|
EXPECT_EQ(format("%.10La", eights), "0xc.0828384858p+128"); |
|
EXPECT_EQ(format("%.11La", eights), "0xc.08283848587p+128"); |
|
EXPECT_EQ(format("%.12La", eights), "0xc.082838485868p+128"); |
|
EXPECT_EQ(format("%.13La", eights), "0xc.0828384858688p+128"); |
|
EXPECT_EQ(format("%.14La", eights), "0xc.08283848586880p+128"); |
|
EXPECT_EQ(format("%.15La", eights), "0xc.082838485868800p+128"); |
|
EXPECT_EQ(format("%.16La", eights), "0xc.0828384858688000p+128"); |
|
} |
|
|
|
// We don't actually store the results. This is just to exercise the rest of the |
|
// machinery. |
|
struct NullSink { |
|
friend void AbslFormatFlush(NullSink *sink, string_view str) {} |
|
}; |
|
|
|
template <typename... T> |
|
bool FormatWithNullSink(absl::string_view fmt, const T &... a) { |
|
NullSink sink; |
|
FormatArgImpl args[] = {FormatArgImpl(a)...}; |
|
return FormatUntyped(&sink, UntypedFormatSpecImpl(fmt), absl::MakeSpan(args)); |
|
} |
|
|
|
TEST_F(FormatConvertTest, ExtremeWidthPrecision) { |
|
for (const char *fmt : {"f"}) { |
|
for (double d : {1e-100, 1.0, 1e100}) { |
|
constexpr int max = std::numeric_limits<int>::max(); |
|
EXPECT_TRUE(FormatWithNullSink(std::string("%.*") + fmt, max, d)); |
|
EXPECT_TRUE(FormatWithNullSink(std::string("%1.*") + fmt, max, d)); |
|
EXPECT_TRUE(FormatWithNullSink(std::string("%*") + fmt, max, d)); |
|
EXPECT_TRUE(FormatWithNullSink(std::string("%*.*") + fmt, max, max, d)); |
|
} |
|
} |
|
} |
|
|
|
TEST_F(FormatConvertTest, LongDouble) { |
|
#ifdef _MSC_VER |
|
// MSVC has a different rounding policy than us so we can't test our |
|
// implementation against the native one there. |
|
return; |
|
#endif // _MSC_VER |
|
const NativePrintfTraits &native_traits = VerifyNativeImplementation(); |
|
const char *const kFormats[] = {"%", "%.3", "%8.5", "%9", "%.5000", |
|
"%.60", "%+", "% ", "%-10"}; |
|
|
|
std::vector<long double> doubles = { |
|
0.0, |
|
-0.0, |
|
std::numeric_limits<long double>::max(), |
|
-std::numeric_limits<long double>::max(), |
|
std::numeric_limits<long double>::min(), |
|
-std::numeric_limits<long double>::min(), |
|
std::numeric_limits<long double>::infinity(), |
|
-std::numeric_limits<long double>::infinity()}; |
|
|
|
for (long double base : {1.L, 12.L, 123.L, 1234.L, 12345.L, 123456.L, |
|
1234567.L, 12345678.L, 123456789.L, 1234567890.L, |
|
12345678901.L, 123456789012.L, 1234567890123.L, |
|
// This value is not representable in double, but it |
|
// is in long double that uses the extended format. |
|
// This is to verify that we are not truncating the |
|
// value mistakenly through a double. |
|
10000000000000000.25L}) { |
|
for (int exp : {-1000, -500, 0, 500, 1000}) { |
|
for (int sign : {1, -1}) { |
|
doubles.push_back(sign * std::ldexp(base, exp)); |
|
doubles.push_back(sign / std::ldexp(base, exp)); |
|
} |
|
} |
|
} |
|
|
|
// Regression tests |
|
// |
|
// Using a string literal because not all platforms support hex literals or it |
|
// might be out of range. |
|
doubles.push_back(std::strtold("-0xf.ffffffb5feafffbp-16324L", nullptr)); |
|
|
|
for (const char *fmt : kFormats) { |
|
for (char f : {'f', 'F', // |
|
'g', 'G', // |
|
'a', 'A', // |
|
'e', 'E'}) { |
|
std::string fmt_str = std::string(fmt) + 'L' + f; |
|
|
|
if (fmt == absl::string_view("%.5000") && f != 'f' && f != 'F' && |
|
f != 'a' && f != 'A') { |
|
// This particular test takes way too long with snprintf. |
|
// Disable for the case we are not implementing natively. |
|
continue; |
|
} |
|
|
|
if (f == 'a' || f == 'A') { |
|
if (!native_traits.hex_float_has_glibc_rounding || |
|
!native_traits.hex_float_optimizes_leading_digit_bit_count) { |
|
continue; |
|
} |
|
} |
|
|
|
for (auto d : doubles) { |
|
FormatArgImpl arg(d); |
|
UntypedFormatSpecImpl format(fmt_str); |
|
// We use ASSERT_EQ here because failures are usually correlated and a |
|
// bug would print way too many failed expectations causing the test to |
|
// time out. |
|
ASSERT_EQ(StrPrint(fmt_str.c_str(), d), FormatPack(format, {&arg, 1})) |
|
<< fmt_str << " " << StrPrint("%.18Lg", d) << " " |
|
<< StrPrint("%La", d) << " " << StrPrint("%.1080Lf", d); |
|
} |
|
} |
|
} |
|
} |
|
|
|
TEST_F(FormatConvertTest, IntAsDouble) { |
|
const NativePrintfTraits &native_traits = VerifyNativeImplementation(); |
|
const int kMin = std::numeric_limits<int>::min(); |
|
const int kMax = std::numeric_limits<int>::max(); |
|
const int ia[] = { |
|
1, 2, 3, 123, |
|
-1, -2, -3, -123, |
|
0, kMax - 1, kMax, kMin + 1, kMin }; |
|
for (const int fx : ia) { |
|
SCOPED_TRACE(fx); |
|
const FormatArgImpl args[] = {FormatArgImpl(fx)}; |
|
struct Expectation { |
|
int line; |
|
std::string out; |
|
const char *fmt; |
|
}; |
|
const double dx = static_cast<double>(fx); |
|
std::vector<Expectation> expect = { |
|
{__LINE__, StrPrint("%f", dx), "%f"}, |
|
{__LINE__, StrPrint("%12f", dx), "%12f"}, |
|
{__LINE__, StrPrint("%.12f", dx), "%.12f"}, |
|
{__LINE__, StrPrint("%.12a", dx), "%.12a"}, |
|
}; |
|
if (native_traits.hex_float_uses_minimal_precision_when_not_specified) { |
|
expect.push_back({__LINE__, StrPrint("%12a", dx), "%12a"}); |
|
} |
|
for (const Expectation &e : expect) { |
|
SCOPED_TRACE(e.line); |
|
SCOPED_TRACE(e.fmt); |
|
UntypedFormatSpecImpl format(e.fmt); |
|
EXPECT_EQ(e.out, FormatPack(format, absl::MakeSpan(args))); |
|
} |
|
} |
|
} |
|
|
|
template <typename T> |
|
bool FormatFails(const char* test_format, T value) { |
|
std::string format_string = std::string("<<") + test_format + ">>"; |
|
UntypedFormatSpecImpl format(format_string); |
|
|
|
int one = 1; |
|
const FormatArgImpl args[] = {FormatArgImpl(value), FormatArgImpl(one)}; |
|
EXPECT_EQ(FormatPack(format, absl::MakeSpan(args)), "") |
|
<< "format=" << test_format << " value=" << value; |
|
return FormatPack(format, absl::MakeSpan(args)).empty(); |
|
} |
|
|
|
TEST_F(FormatConvertTest, ExpectedFailures) { |
|
// Int input |
|
EXPECT_TRUE(FormatFails("%p", 1)); |
|
EXPECT_TRUE(FormatFails("%s", 1)); |
|
EXPECT_TRUE(FormatFails("%n", 1)); |
|
|
|
// Double input |
|
EXPECT_TRUE(FormatFails("%p", 1.)); |
|
EXPECT_TRUE(FormatFails("%s", 1.)); |
|
EXPECT_TRUE(FormatFails("%n", 1.)); |
|
EXPECT_TRUE(FormatFails("%c", 1.)); |
|
EXPECT_TRUE(FormatFails("%d", 1.)); |
|
EXPECT_TRUE(FormatFails("%x", 1.)); |
|
EXPECT_TRUE(FormatFails("%*d", 1.)); |
|
|
|
// String input |
|
EXPECT_TRUE(FormatFails("%n", "")); |
|
EXPECT_TRUE(FormatFails("%c", "")); |
|
EXPECT_TRUE(FormatFails("%d", "")); |
|
EXPECT_TRUE(FormatFails("%x", "")); |
|
EXPECT_TRUE(FormatFails("%f", "")); |
|
EXPECT_TRUE(FormatFails("%*d", "")); |
|
} |
|
|
|
// Sanity check to make sure that we are testing what we think we're testing on |
|
// e.g. the x86_64+glibc platform. |
|
TEST_F(FormatConvertTest, GlibcHasCorrectTraits) { |
|
#if !defined(__GLIBC__) || !defined(__x86_64__) |
|
return; |
|
#endif |
|
const NativePrintfTraits &native_traits = VerifyNativeImplementation(); |
|
// If one of the following tests break then it is either because the above PP |
|
// macro guards failed to exclude a new platform (likely) or because something |
|
// has changed in the implemention of glibc sprintf float formatting behavior. |
|
// If the latter, then the code that computes these flags needs to be |
|
// revisited and/or possibly the StrFormat implementation. |
|
EXPECT_TRUE(native_traits.hex_float_has_glibc_rounding); |
|
EXPECT_TRUE(native_traits.hex_float_prefers_denormal_repr); |
|
EXPECT_TRUE( |
|
native_traits.hex_float_uses_minimal_precision_when_not_specified); |
|
EXPECT_TRUE(native_traits.hex_float_optimizes_leading_digit_bit_count); |
|
} |
|
|
|
} // namespace |
|
} // namespace str_format_internal |
|
ABSL_NAMESPACE_END |
|
} // namespace absl
|
|
|