Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
452 lines
18 KiB
452 lines
18 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
// |
|
// ----------------------------------------------------------------------------- |
|
// File: distributions.h |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// This header defines functions representing distributions, which you use in |
|
// combination with an Abseil random bit generator to produce random values |
|
// according to the rules of that distribution. |
|
// |
|
// The Abseil random library defines the following distributions within this |
|
// file: |
|
// |
|
// * `absl::Uniform` for uniform (constant) distributions having constant |
|
// probability |
|
// * `absl::Bernoulli` for discrete distributions having exactly two outcomes |
|
// * `absl::Beta` for continuous distributions parameterized through two |
|
// free parameters |
|
// * `absl::Exponential` for discrete distributions of events occurring |
|
// continuously and independently at a constant average rate |
|
// * `absl::Gaussian` (also known as "normal distributions") for continuous |
|
// distributions using an associated quadratic function |
|
// * `absl::LogUniform` for continuous uniform distributions where the log |
|
// to the given base of all values is uniform |
|
// * `absl::Poisson` for discrete probability distributions that express the |
|
// probability of a given number of events occurring within a fixed interval |
|
// * `absl::Zipf` for discrete probability distributions commonly used for |
|
// modelling of rare events |
|
// |
|
// Prefer use of these distribution function classes over manual construction of |
|
// your own distribution classes, as it allows library maintainers greater |
|
// flexibility to change the underlying implementation in the future. |
|
|
|
#ifndef ABSL_RANDOM_DISTRIBUTIONS_H_ |
|
#define ABSL_RANDOM_DISTRIBUTIONS_H_ |
|
|
|
#include <algorithm> |
|
#include <cmath> |
|
#include <limits> |
|
#include <random> |
|
#include <type_traits> |
|
|
|
#include "absl/base/internal/inline_variable.h" |
|
#include "absl/random/bernoulli_distribution.h" |
|
#include "absl/random/beta_distribution.h" |
|
#include "absl/random/exponential_distribution.h" |
|
#include "absl/random/gaussian_distribution.h" |
|
#include "absl/random/internal/distribution_caller.h" // IWYU pragma: export |
|
#include "absl/random/internal/uniform_helper.h" // IWYU pragma: export |
|
#include "absl/random/log_uniform_int_distribution.h" |
|
#include "absl/random/poisson_distribution.h" |
|
#include "absl/random/uniform_int_distribution.h" |
|
#include "absl/random/uniform_real_distribution.h" |
|
#include "absl/random/zipf_distribution.h" |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
|
|
ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalClosedClosedTag, IntervalClosedClosed, |
|
{}); |
|
ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalClosedClosedTag, IntervalClosed, {}); |
|
ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalClosedOpenTag, IntervalClosedOpen, {}); |
|
ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalOpenOpenTag, IntervalOpenOpen, {}); |
|
ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalOpenOpenTag, IntervalOpen, {}); |
|
ABSL_INTERNAL_INLINE_CONSTEXPR(IntervalOpenClosedTag, IntervalOpenClosed, {}); |
|
|
|
// ----------------------------------------------------------------------------- |
|
// absl::Uniform<T>(tag, bitgen, lo, hi) |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// `absl::Uniform()` produces random values of type `T` uniformly distributed in |
|
// a defined interval {lo, hi}. The interval `tag` defines the type of interval |
|
// which should be one of the following possible values: |
|
// |
|
// * `absl::IntervalOpenOpen` |
|
// * `absl::IntervalOpenClosed` |
|
// * `absl::IntervalClosedOpen` |
|
// * `absl::IntervalClosedClosed` |
|
// |
|
// where "open" refers to an exclusive value (excluded) from the output, while |
|
// "closed" refers to an inclusive value (included) from the output. |
|
// |
|
// In the absence of an explicit return type `T`, `absl::Uniform()` will deduce |
|
// the return type based on the provided endpoint arguments {A lo, B hi}. |
|
// Given these endpoints, one of {A, B} will be chosen as the return type, if |
|
// a type can be implicitly converted into the other in a lossless way. The |
|
// lack of any such implicit conversion between {A, B} will produce a |
|
// compile-time error |
|
// |
|
// See https://en.wikipedia.org/wiki/Uniform_distribution_(continuous) |
|
// |
|
// Example: |
|
// |
|
// absl::BitGen bitgen; |
|
// |
|
// // Produce a random float value between 0.0 and 1.0, inclusive |
|
// auto x = absl::Uniform(absl::IntervalClosedClosed, bitgen, 0.0f, 1.0f); |
|
// |
|
// // The most common interval of `absl::IntervalClosedOpen` is available by |
|
// // default: |
|
// |
|
// auto x = absl::Uniform(bitgen, 0.0f, 1.0f); |
|
// |
|
// // Return-types are typically inferred from the arguments, however callers |
|
// // can optionally provide an explicit return-type to the template. |
|
// |
|
// auto x = absl::Uniform<float>(bitgen, 0, 1); |
|
// |
|
template <typename R = void, typename TagType, typename URBG> |
|
typename absl::enable_if_t<!std::is_same<R, void>::value, R> // |
|
Uniform(TagType tag, |
|
URBG&& urbg, // NOLINT(runtime/references) |
|
R lo, R hi) { |
|
using gen_t = absl::decay_t<URBG>; |
|
using distribution_t = random_internal::UniformDistributionWrapper<R>; |
|
|
|
auto a = random_internal::uniform_lower_bound(tag, lo, hi); |
|
auto b = random_internal::uniform_upper_bound(tag, lo, hi); |
|
if (a > b) return a; |
|
|
|
return random_internal::DistributionCaller<gen_t>::template Call< |
|
distribution_t>(&urbg, tag, lo, hi); |
|
} |
|
|
|
// absl::Uniform<T>(bitgen, lo, hi) |
|
// |
|
// Overload of `Uniform()` using the default closed-open interval of [lo, hi), |
|
// and returning values of type `T` |
|
template <typename R = void, typename URBG> |
|
typename absl::enable_if_t<!std::is_same<R, void>::value, R> // |
|
Uniform(URBG&& urbg, // NOLINT(runtime/references) |
|
R lo, R hi) { |
|
using gen_t = absl::decay_t<URBG>; |
|
using distribution_t = random_internal::UniformDistributionWrapper<R>; |
|
|
|
constexpr auto tag = absl::IntervalClosedOpen; |
|
auto a = random_internal::uniform_lower_bound(tag, lo, hi); |
|
auto b = random_internal::uniform_upper_bound(tag, lo, hi); |
|
if (a > b) return a; |
|
|
|
return random_internal::DistributionCaller<gen_t>::template Call< |
|
distribution_t>(&urbg, lo, hi); |
|
} |
|
|
|
// absl::Uniform(tag, bitgen, lo, hi) |
|
// |
|
// Overload of `Uniform()` using different (but compatible) lo, hi types. Note |
|
// that a compile-error will result if the return type cannot be deduced |
|
// correctly from the passed types. |
|
template <typename R = void, typename TagType, typename URBG, typename A, |
|
typename B> |
|
typename absl::enable_if_t<std::is_same<R, void>::value, |
|
random_internal::uniform_inferred_return_t<A, B>> |
|
Uniform(TagType tag, |
|
URBG&& urbg, // NOLINT(runtime/references) |
|
A lo, B hi) { |
|
using gen_t = absl::decay_t<URBG>; |
|
using return_t = typename random_internal::uniform_inferred_return_t<A, B>; |
|
using distribution_t = random_internal::UniformDistributionWrapper<return_t>; |
|
|
|
auto a = random_internal::uniform_lower_bound<return_t>(tag, lo, hi); |
|
auto b = random_internal::uniform_upper_bound<return_t>(tag, lo, hi); |
|
if (a > b) return a; |
|
|
|
return random_internal::DistributionCaller<gen_t>::template Call< |
|
distribution_t>(&urbg, tag, static_cast<return_t>(lo), |
|
static_cast<return_t>(hi)); |
|
} |
|
|
|
// absl::Uniform(bitgen, lo, hi) |
|
// |
|
// Overload of `Uniform()` using different (but compatible) lo, hi types and the |
|
// default closed-open interval of [lo, hi). Note that a compile-error will |
|
// result if the return type cannot be deduced correctly from the passed types. |
|
template <typename R = void, typename URBG, typename A, typename B> |
|
typename absl::enable_if_t<std::is_same<R, void>::value, |
|
random_internal::uniform_inferred_return_t<A, B>> |
|
Uniform(URBG&& urbg, // NOLINT(runtime/references) |
|
A lo, B hi) { |
|
using gen_t = absl::decay_t<URBG>; |
|
using return_t = typename random_internal::uniform_inferred_return_t<A, B>; |
|
using distribution_t = random_internal::UniformDistributionWrapper<return_t>; |
|
|
|
constexpr auto tag = absl::IntervalClosedOpen; |
|
auto a = random_internal::uniform_lower_bound<return_t>(tag, lo, hi); |
|
auto b = random_internal::uniform_upper_bound<return_t>(tag, lo, hi); |
|
if (a > b) return a; |
|
|
|
return random_internal::DistributionCaller<gen_t>::template Call< |
|
distribution_t>(&urbg, static_cast<return_t>(lo), |
|
static_cast<return_t>(hi)); |
|
} |
|
|
|
// absl::Uniform<unsigned T>(bitgen) |
|
// |
|
// Overload of Uniform() using the minimum and maximum values of a given type |
|
// `T` (which must be unsigned), returning a value of type `unsigned T` |
|
template <typename R, typename URBG> |
|
typename absl::enable_if_t<!std::is_signed<R>::value, R> // |
|
Uniform(URBG&& urbg) { // NOLINT(runtime/references) |
|
using gen_t = absl::decay_t<URBG>; |
|
using distribution_t = random_internal::UniformDistributionWrapper<R>; |
|
|
|
return random_internal::DistributionCaller<gen_t>::template Call< |
|
distribution_t>(&urbg); |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// absl::Bernoulli(bitgen, p) |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// `absl::Bernoulli` produces a random boolean value, with probability `p` |
|
// (where 0.0 <= p <= 1.0) equaling `true`. |
|
// |
|
// Prefer `absl::Bernoulli` to produce boolean values over other alternatives |
|
// such as comparing an `absl::Uniform()` value to a specific output. |
|
// |
|
// See https://en.wikipedia.org/wiki/Bernoulli_distribution |
|
// |
|
// Example: |
|
// |
|
// absl::BitGen bitgen; |
|
// ... |
|
// if (absl::Bernoulli(bitgen, 1.0/3721.0)) { |
|
// std::cout << "Asteroid field navigation successful."; |
|
// } |
|
// |
|
template <typename URBG> |
|
bool Bernoulli(URBG&& urbg, // NOLINT(runtime/references) |
|
double p) { |
|
using gen_t = absl::decay_t<URBG>; |
|
using distribution_t = absl::bernoulli_distribution; |
|
|
|
return random_internal::DistributionCaller<gen_t>::template Call< |
|
distribution_t>(&urbg, p); |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// absl::Beta<T>(bitgen, alpha, beta) |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// `absl::Beta` produces a floating point number distributed in the closed |
|
// interval [0,1] and parameterized by two values `alpha` and `beta` as per a |
|
// Beta distribution. `T` must be a floating point type, but may be inferred |
|
// from the types of `alpha` and `beta`. |
|
// |
|
// See https://en.wikipedia.org/wiki/Beta_distribution. |
|
// |
|
// Example: |
|
// |
|
// absl::BitGen bitgen; |
|
// ... |
|
// double sample = absl::Beta(bitgen, 3.0, 2.0); |
|
// |
|
template <typename RealType, typename URBG> |
|
RealType Beta(URBG&& urbg, // NOLINT(runtime/references) |
|
RealType alpha, RealType beta) { |
|
static_assert( |
|
std::is_floating_point<RealType>::value, |
|
"Template-argument 'RealType' must be a floating-point type, in " |
|
"absl::Beta<RealType, URBG>(...)"); |
|
|
|
using gen_t = absl::decay_t<URBG>; |
|
using distribution_t = typename absl::beta_distribution<RealType>; |
|
|
|
return random_internal::DistributionCaller<gen_t>::template Call< |
|
distribution_t>(&urbg, alpha, beta); |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// absl::Exponential<T>(bitgen, lambda = 1) |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// `absl::Exponential` produces a floating point number representing the |
|
// distance (time) between two consecutive events in a point process of events |
|
// occurring continuously and independently at a constant average rate. `T` must |
|
// be a floating point type, but may be inferred from the type of `lambda`. |
|
// |
|
// See https://en.wikipedia.org/wiki/Exponential_distribution. |
|
// |
|
// Example: |
|
// |
|
// absl::BitGen bitgen; |
|
// ... |
|
// double call_length = absl::Exponential(bitgen, 7.0); |
|
// |
|
template <typename RealType, typename URBG> |
|
RealType Exponential(URBG&& urbg, // NOLINT(runtime/references) |
|
RealType lambda = 1) { |
|
static_assert( |
|
std::is_floating_point<RealType>::value, |
|
"Template-argument 'RealType' must be a floating-point type, in " |
|
"absl::Exponential<RealType, URBG>(...)"); |
|
|
|
using gen_t = absl::decay_t<URBG>; |
|
using distribution_t = typename absl::exponential_distribution<RealType>; |
|
|
|
return random_internal::DistributionCaller<gen_t>::template Call< |
|
distribution_t>(&urbg, lambda); |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// absl::Gaussian<T>(bitgen, mean = 0, stddev = 1) |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// `absl::Gaussian` produces a floating point number selected from the Gaussian |
|
// (ie. "Normal") distribution. `T` must be a floating point type, but may be |
|
// inferred from the types of `mean` and `stddev`. |
|
// |
|
// See https://en.wikipedia.org/wiki/Normal_distribution |
|
// |
|
// Example: |
|
// |
|
// absl::BitGen bitgen; |
|
// ... |
|
// double giraffe_height = absl::Gaussian(bitgen, 16.3, 3.3); |
|
// |
|
template <typename RealType, typename URBG> |
|
RealType Gaussian(URBG&& urbg, // NOLINT(runtime/references) |
|
RealType mean = 0, RealType stddev = 1) { |
|
static_assert( |
|
std::is_floating_point<RealType>::value, |
|
"Template-argument 'RealType' must be a floating-point type, in " |
|
"absl::Gaussian<RealType, URBG>(...)"); |
|
|
|
using gen_t = absl::decay_t<URBG>; |
|
using distribution_t = typename absl::gaussian_distribution<RealType>; |
|
|
|
return random_internal::DistributionCaller<gen_t>::template Call< |
|
distribution_t>(&urbg, mean, stddev); |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// absl::LogUniform<T>(bitgen, lo, hi, base = 2) |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// `absl::LogUniform` produces random values distributed where the log to a |
|
// given base of all values is uniform in a closed interval [lo, hi]. `T` must |
|
// be an integral type, but may be inferred from the types of `lo` and `hi`. |
|
// |
|
// I.e., `LogUniform(0, n, b)` is uniformly distributed across buckets |
|
// [0], [1, b-1], [b, b^2-1] .. [b^(k-1), (b^k)-1] .. [b^floor(log(n, b)), n] |
|
// and is uniformly distributed within each bucket. |
|
// |
|
// The resulting probability density is inversely related to bucket size, though |
|
// values in the final bucket may be more likely than previous values. (In the |
|
// extreme case where n = b^i the final value will be tied with zero as the most |
|
// probable result. |
|
// |
|
// If `lo` is nonzero then this distribution is shifted to the desired interval, |
|
// so LogUniform(lo, hi, b) is equivalent to LogUniform(0, hi-lo, b)+lo. |
|
// |
|
// See http://ecolego.facilia.se/ecolego/show/Log-Uniform%20Distribution |
|
// |
|
// Example: |
|
// |
|
// absl::BitGen bitgen; |
|
// ... |
|
// int v = absl::LogUniform(bitgen, 0, 1000); |
|
// |
|
template <typename IntType, typename URBG> |
|
IntType LogUniform(URBG&& urbg, // NOLINT(runtime/references) |
|
IntType lo, IntType hi, IntType base = 2) { |
|
static_assert(std::is_integral<IntType>::value, |
|
"Template-argument 'IntType' must be an integral type, in " |
|
"absl::LogUniform<IntType, URBG>(...)"); |
|
|
|
using gen_t = absl::decay_t<URBG>; |
|
using distribution_t = typename absl::log_uniform_int_distribution<IntType>; |
|
|
|
return random_internal::DistributionCaller<gen_t>::template Call< |
|
distribution_t>(&urbg, lo, hi, base); |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// absl::Poisson<T>(bitgen, mean = 1) |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// `absl::Poisson` produces discrete probabilities for a given number of events |
|
// occurring within a fixed interval within the closed interval [0, max]. `T` |
|
// must be an integral type. |
|
// |
|
// See https://en.wikipedia.org/wiki/Poisson_distribution |
|
// |
|
// Example: |
|
// |
|
// absl::BitGen bitgen; |
|
// ... |
|
// int requests_per_minute = absl::Poisson<int>(bitgen, 3.2); |
|
// |
|
template <typename IntType, typename URBG> |
|
IntType Poisson(URBG&& urbg, // NOLINT(runtime/references) |
|
double mean = 1.0) { |
|
static_assert(std::is_integral<IntType>::value, |
|
"Template-argument 'IntType' must be an integral type, in " |
|
"absl::Poisson<IntType, URBG>(...)"); |
|
|
|
using gen_t = absl::decay_t<URBG>; |
|
using distribution_t = typename absl::poisson_distribution<IntType>; |
|
|
|
return random_internal::DistributionCaller<gen_t>::template Call< |
|
distribution_t>(&urbg, mean); |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// absl::Zipf<T>(bitgen, hi = max, q = 2, v = 1) |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// `absl::Zipf` produces discrete probabilities commonly used for modelling of |
|
// rare events over the closed interval [0, hi]. The parameters `v` and `q` |
|
// determine the skew of the distribution. `T` must be an integral type, but |
|
// may be inferred from the type of `hi`. |
|
// |
|
// See http://mathworld.wolfram.com/ZipfDistribution.html |
|
// |
|
// Example: |
|
// |
|
// absl::BitGen bitgen; |
|
// ... |
|
// int term_rank = absl::Zipf<int>(bitgen); |
|
// |
|
template <typename IntType, typename URBG> |
|
IntType Zipf(URBG&& urbg, // NOLINT(runtime/references) |
|
IntType hi = (std::numeric_limits<IntType>::max)(), double q = 2.0, |
|
double v = 1.0) { |
|
static_assert(std::is_integral<IntType>::value, |
|
"Template-argument 'IntType' must be an integral type, in " |
|
"absl::Zipf<IntType, URBG>(...)"); |
|
|
|
using gen_t = absl::decay_t<URBG>; |
|
using distribution_t = typename absl::zipf_distribution<IntType>; |
|
|
|
return random_internal::DistributionCaller<gen_t>::template Call< |
|
distribution_t>(&urbg, hi, q, v); |
|
} |
|
|
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
|
|
#endif // ABSL_RANDOM_DISTRIBUTIONS_H_
|
|
|