Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1028 lines
41 KiB
1028 lines
41 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// http://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
// |
|
// ----------------------------------------------------------------------------- |
|
// mutex.h |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// This header file defines a `Mutex` -- a mutually exclusive lock -- and the |
|
// most common type of synchronization primitive for facilitating locks on |
|
// shared resources. A mutex is used to prevent multiple threads from accessing |
|
// and/or writing to a shared resource concurrently. |
|
// |
|
// Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional |
|
// features: |
|
// * Conditional predicates intrinsic to the `Mutex` object |
|
// * Shared/reader locks, in addition to standard exclusive/writer locks |
|
// * Deadlock detection and debug support. |
|
// |
|
// The following helper classes are also defined within this file: |
|
// |
|
// MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/ |
|
// write access within the current scope. |
|
// ReaderMutexLock |
|
// - An RAII wrapper to acquire and release a `Mutex` for shared/read |
|
// access within the current scope. |
|
// |
|
// WriterMutexLock |
|
// - Alias for `MutexLock` above, designed for use in distinguishing |
|
// reader and writer locks within code. |
|
// |
|
// In addition to simple mutex locks, this file also defines ways to perform |
|
// locking under certain conditions. |
|
// |
|
// Condition - (Preferred) Used to wait for a particular predicate that |
|
// depends on state protected by the `Mutex` to become true. |
|
// CondVar - A lower-level variant of `Condition` that relies on |
|
// application code to explicitly signal the `CondVar` when |
|
// a condition has been met. |
|
// |
|
// See below for more information on using `Condition` or `CondVar`. |
|
// |
|
// Mutexes and mutex behavior can be quite complicated. The information within |
|
// this header file is limited, as a result. Please consult the Mutex guide for |
|
// more complete information and examples. |
|
|
|
#ifndef ABSL_SYNCHRONIZATION_MUTEX_H_ |
|
#define ABSL_SYNCHRONIZATION_MUTEX_H_ |
|
|
|
#include <atomic> |
|
#include <cstdint> |
|
#include <string> |
|
|
|
#include "absl/base/internal/identity.h" |
|
#include "absl/base/internal/low_level_alloc.h" |
|
#include "absl/base/internal/thread_identity.h" |
|
#include "absl/base/internal/tsan_mutex_interface.h" |
|
#include "absl/base/port.h" |
|
#include "absl/base/thread_annotations.h" |
|
#include "absl/synchronization/internal/kernel_timeout.h" |
|
#include "absl/synchronization/internal/per_thread_sem.h" |
|
#include "absl/time/time.h" |
|
|
|
// Decide if we should use the non-production implementation because |
|
// the production implementation hasn't been fully ported yet. |
|
#ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX |
|
#error ABSL_INTERNAL_USE_NONPROD_MUTEX cannot be directly set |
|
#elif defined(ABSL_LOW_LEVEL_ALLOC_MISSING) |
|
#define ABSL_INTERNAL_USE_NONPROD_MUTEX 1 |
|
#include "absl/synchronization/internal/mutex_nonprod.inc" |
|
#endif |
|
|
|
namespace absl { |
|
|
|
class Condition; |
|
struct SynchWaitParams; |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Mutex |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock |
|
// on some resource, typically a variable or data structure with associated |
|
// invariants. Proper usage of mutexes prevents concurrent access by different |
|
// threads to the same resource. |
|
// |
|
// A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`. |
|
// The `Lock()` operation *acquires* a `Mutex` (in a state known as an |
|
// *exclusive* -- or write -- lock), while the `Unlock()` operation *releases* a |
|
// Mutex. During the span of time between the Lock() and Unlock() operations, |
|
// a mutex is said to be *held*. By design all mutexes support exclusive/write |
|
// locks, as this is the most common way to use a mutex. |
|
// |
|
// The `Mutex` state machine for basic lock/unlock operations is quite simple: |
|
// |
|
// | | Lock() | Unlock() | |
|
// |----------------+------------+----------| |
|
// | Free | Exclusive | invalid | |
|
// | Exclusive | blocks | Free | |
|
// |
|
// Attempts to `Unlock()` must originate from the thread that performed the |
|
// corresponding `Lock()` operation. |
|
// |
|
// An "invalid" operation is disallowed by the API. The `Mutex` implementation |
|
// is allowed to do anything on an invalid call, including but not limited to |
|
// crashing with a useful error message, silently succeeding, or corrupting |
|
// data structures. In debug mode, the implementation attempts to crash with a |
|
// useful error message. |
|
// |
|
// `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it |
|
// is, however, approximately fair over long periods, and starvation-free for |
|
// threads at the same priority. |
|
// |
|
// The lock/unlock primitives are now annotated with lock annotations |
|
// defined in (base/thread_annotations.h). When writing multi-threaded code, |
|
// you should use lock annotations whenever possible to document your lock |
|
// synchronization policy. Besides acting as documentation, these annotations |
|
// also help compilers or static analysis tools to identify and warn about |
|
// issues that could potentially result in race conditions and deadlocks. |
|
// |
|
// For more information about the lock annotations, please see |
|
// [Thread Safety Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html) |
|
// in the Clang documentation. |
|
// |
|
// See also `MutexLock`, below, for scoped `Mutex` acquisition. |
|
|
|
class LOCKABLE Mutex { |
|
public: |
|
Mutex(); |
|
~Mutex(); |
|
|
|
// Mutex::Lock() |
|
// |
|
// Blocks the calling thread, if necessary, until this `Mutex` is free, and |
|
// then acquires it exclusively. (This lock is also known as a "write lock.") |
|
void Lock() EXCLUSIVE_LOCK_FUNCTION(); |
|
|
|
// Mutex::Unlock() |
|
// |
|
// Releases this `Mutex` and returns it from the exclusive/write state to the |
|
// free state. Caller must hold the `Mutex` exclusively. |
|
void Unlock() UNLOCK_FUNCTION(); |
|
|
|
// Mutex::TryLock() |
|
// |
|
// If the mutex can be acquired without blocking, does so exclusively and |
|
// returns `true`. Otherwise, returns `false`. Returns `true` with high |
|
// probability if the `Mutex` was free. |
|
bool TryLock() EXCLUSIVE_TRYLOCK_FUNCTION(true); |
|
|
|
// Mutex::AssertHeld() |
|
// |
|
// Return immediately if this thread holds the `Mutex` exclusively (in write |
|
// mode). Otherwise, may report an error (typically by crashing with a |
|
// diagnostic), or may return immediately. |
|
void AssertHeld() const ASSERT_EXCLUSIVE_LOCK(); |
|
|
|
// --------------------------------------------------------------------------- |
|
// Reader-Writer Locking |
|
// --------------------------------------------------------------------------- |
|
|
|
// A Mutex can also be used as a starvation-free reader-writer lock. |
|
// Neither read-locks nor write-locks are reentrant/recursive to avoid |
|
// potential client programming errors. |
|
// |
|
// The Mutex API provides `Writer*()` aliases for the existing `Lock()`, |
|
// `Unlock()` and `TryLock()` methods for use within applications mixing |
|
// reader/writer locks. Using `Reader*()` and `Writer*()` operations in this |
|
// manner can make locking behavior clearer when mixing read and write modes. |
|
// |
|
// Introducing reader locks necessarily complicates the `Mutex` state |
|
// machine somewhat. The table below illustrates the allowed state transitions |
|
// of a mutex in such cases. Note that ReaderLock() may block even if the lock |
|
// is held in shared mode; this occurs when another thread is blocked on a |
|
// call to WriterLock(). |
|
// |
|
// --------------------------------------------------------------------------- |
|
// Operation: WriterLock() Unlock() ReaderLock() ReaderUnlock() |
|
// --------------------------------------------------------------------------- |
|
// State |
|
// --------------------------------------------------------------------------- |
|
// Free Exclusive invalid Shared(1) invalid |
|
// Shared(1) blocks invalid Shared(2) or blocks Free |
|
// Shared(n) n>1 blocks invalid Shared(n+1) or blocks Shared(n-1) |
|
// Exclusive blocks Free blocks invalid |
|
// --------------------------------------------------------------------------- |
|
// |
|
// In comments below, "shared" refers to a state of Shared(n) for any n > 0. |
|
|
|
// Mutex::ReaderLock() |
|
// |
|
// Blocks the calling thread, if necessary, until this `Mutex` is either free, |
|
// or in shared mode, and then acquires a share of it. Note that |
|
// `ReaderLock()` will block if some other thread has an exclusive/writer lock |
|
// on the mutex. |
|
|
|
void ReaderLock() SHARED_LOCK_FUNCTION(); |
|
|
|
// Mutex::ReaderUnlock() |
|
// |
|
// Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to |
|
// the free state if this thread holds the last reader lock on the mutex. Note |
|
// that you cannot call `ReaderUnlock()` on a mutex held in write mode. |
|
void ReaderUnlock() UNLOCK_FUNCTION(); |
|
|
|
// Mutex::ReaderTryLock() |
|
// |
|
// If the mutex can be acquired without blocking, acquires this mutex for |
|
// shared access and returns `true`. Otherwise, returns `false`. Returns |
|
// `true` with high probability if the `Mutex` was free or shared. |
|
bool ReaderTryLock() SHARED_TRYLOCK_FUNCTION(true); |
|
|
|
// Mutex::AssertReaderHeld() |
|
// |
|
// Returns immediately if this thread holds the `Mutex` in at least shared |
|
// mode (read mode). Otherwise, may report an error (typically by |
|
// crashing with a diagnostic), or may return immediately. |
|
void AssertReaderHeld() const ASSERT_SHARED_LOCK(); |
|
|
|
// Mutex::WriterLock() |
|
// Mutex::WriterUnlock() |
|
// Mutex::WriterTryLock() |
|
// |
|
// Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`. |
|
// |
|
// These methods may be used (along with the complementary `Reader*()` |
|
// methods) to distingish simple exclusive `Mutex` usage (`Lock()`, |
|
// etc.) from reader/writer lock usage. |
|
void WriterLock() EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); } |
|
|
|
void WriterUnlock() UNLOCK_FUNCTION() { this->Unlock(); } |
|
|
|
bool WriterTryLock() EXCLUSIVE_TRYLOCK_FUNCTION(true) { |
|
return this->TryLock(); |
|
} |
|
|
|
// --------------------------------------------------------------------------- |
|
// Conditional Critical Regions |
|
// --------------------------------------------------------------------------- |
|
|
|
// Conditional usage of a `Mutex` can occur using two distinct paradigms: |
|
// |
|
// * Use of `Mutex` member functions with `Condition` objects. |
|
// * Use of the separate `CondVar` abstraction. |
|
// |
|
// In general, prefer use of `Condition` and the `Mutex` member functions |
|
// listed below over `CondVar`. When there are multiple threads waiting on |
|
// distinctly different conditions, however, a battery of `CondVar`s may be |
|
// more efficient. This section discusses use of `Condition` objects. |
|
// |
|
// `Mutex` contains member functions for performing lock operations only under |
|
// certain conditions, of class `Condition`. For correctness, the `Condition` |
|
// must return a boolean that is a pure function, only of state protected by |
|
// the `Mutex`. The condition must be invariant w.r.t. environmental state |
|
// such as thread, cpu id, or time, and must be `noexcept`. The condition will |
|
// always be invoked with the mutex held in at least read mode, so you should |
|
// not block it for long periods or sleep it on a timer. |
|
// |
|
// Since a condition must not depend directly on the current time, use |
|
// `*WithTimeout()` member function variants to make your condition |
|
// effectively true after a given duration, or `*WithDeadline()` variants to |
|
// make your condition effectively true after a given time. |
|
// |
|
// The condition function should have no side-effects aside from debug |
|
// logging; as a special exception, the function may acquire other mutexes |
|
// provided it releases all those that it acquires. (This exception was |
|
// required to allow logging.) |
|
|
|
// Mutex::Await() |
|
// |
|
// Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true` |
|
// and this `Mutex` can be reacquired, then reacquires this `Mutex` in the |
|
// same mode in which it was previously held. If the condition is initially |
|
// `true`, `Await()` *may* skip the release/re-acquire step. |
|
// |
|
// `Await()` requires that this thread holds this `Mutex` in some mode. |
|
void Await(const Condition &cond); |
|
|
|
// Mutex::LockWhen() |
|
// Mutex::ReaderLockWhen() |
|
// Mutex::WriterLockWhen() |
|
// |
|
// Blocks until simultaneously both `cond` is `true` and this `Mutex` can |
|
// be acquired, then atomically acquires this `Mutex`. `LockWhen()` is |
|
// logically equivalent to `*Lock(); Await();` though they may have different |
|
// performance characteristics. |
|
void LockWhen(const Condition &cond) EXCLUSIVE_LOCK_FUNCTION(); |
|
|
|
void ReaderLockWhen(const Condition &cond) SHARED_LOCK_FUNCTION(); |
|
|
|
void WriterLockWhen(const Condition &cond) EXCLUSIVE_LOCK_FUNCTION() { |
|
this->LockWhen(cond); |
|
} |
|
|
|
// --------------------------------------------------------------------------- |
|
// Mutex Variants with Timeouts/Deadlines |
|
// --------------------------------------------------------------------------- |
|
|
|
// Mutex::AwaitWithTimeout() |
|
// Mutex::AwaitWithDeadline() |
|
// |
|
// If `cond` is initially true, do nothing, or act as though `cond` is |
|
// initially false. |
|
// |
|
// If `cond` is initially false, unlock this `Mutex` and block until |
|
// simultaneously: |
|
// - either `cond` is true or the {timeout has expired, deadline has passed} |
|
// and |
|
// - this `Mutex` can be reacquired, |
|
// then reacquire this `Mutex` in the same mode in which it was previously |
|
// held, returning `true` iff `cond` is `true` on return. |
|
// |
|
// Deadlines in the past are equivalent to an immediate deadline. |
|
// Negative timeouts are equivalent to a zero timeout. |
|
// |
|
// This method requires that this thread holds this `Mutex` in some mode. |
|
bool AwaitWithTimeout(const Condition &cond, absl::Duration timeout); |
|
|
|
bool AwaitWithDeadline(const Condition &cond, absl::Time deadline); |
|
|
|
// Mutex::LockWhenWithTimeout() |
|
// Mutex::ReaderLockWhenWithTimeout() |
|
// Mutex::WriterLockWhenWithTimeout() |
|
// |
|
// Blocks until simultaneously both: |
|
// - either `cond` is `true` or the timeout has expired, and |
|
// - this `Mutex` can be acquired, |
|
// then atomically acquires this `Mutex`, returning `true` iff `cond` is |
|
// `true` on return. |
|
// |
|
// Negative timeouts are equivalent to a zero timeout. |
|
bool LockWhenWithTimeout(const Condition &cond, absl::Duration timeout) |
|
EXCLUSIVE_LOCK_FUNCTION(); |
|
bool ReaderLockWhenWithTimeout(const Condition &cond, absl::Duration timeout) |
|
SHARED_LOCK_FUNCTION(); |
|
bool WriterLockWhenWithTimeout(const Condition &cond, absl::Duration timeout) |
|
EXCLUSIVE_LOCK_FUNCTION() { |
|
return this->LockWhenWithTimeout(cond, timeout); |
|
} |
|
|
|
// Mutex::LockWhenWithDeadline() |
|
// Mutex::ReaderLockWhenWithDeadline() |
|
// Mutex::WriterLockWhenWithDeadline() |
|
// |
|
// Blocks until simultaneously both: |
|
// - either `cond` is `true` or the deadline has been passed, and |
|
// - this `Mutex` can be acquired, |
|
// then atomically acquires this Mutex, returning `true` iff `cond` is `true` |
|
// on return. |
|
// |
|
// Deadlines in the past are equivalent to an immediate deadline. |
|
bool LockWhenWithDeadline(const Condition &cond, absl::Time deadline) |
|
EXCLUSIVE_LOCK_FUNCTION(); |
|
bool ReaderLockWhenWithDeadline(const Condition &cond, absl::Time deadline) |
|
SHARED_LOCK_FUNCTION(); |
|
bool WriterLockWhenWithDeadline(const Condition &cond, absl::Time deadline) |
|
EXCLUSIVE_LOCK_FUNCTION() { |
|
return this->LockWhenWithDeadline(cond, deadline); |
|
} |
|
|
|
// --------------------------------------------------------------------------- |
|
// Debug Support: Invariant Checking, Deadlock Detection, Logging. |
|
// --------------------------------------------------------------------------- |
|
|
|
// Mutex::EnableInvariantDebugging() |
|
// |
|
// If `invariant`!=null and if invariant debugging has been enabled globally, |
|
// cause `(*invariant)(arg)` to be called at moments when the invariant for |
|
// this `Mutex` should hold (for example: just after acquire, just before |
|
// release). |
|
// |
|
// The routine `invariant` should have no side-effects since it is not |
|
// guaranteed how many times it will be called; it should check the invariant |
|
// and crash if it does not hold. Enabling global invariant debugging may |
|
// substantially reduce `Mutex` performance; it should be set only for |
|
// non-production runs. Optimization options may also disable invariant |
|
// checks. |
|
void EnableInvariantDebugging(void (*invariant)(void *), void *arg); |
|
|
|
// Mutex::EnableDebugLog() |
|
// |
|
// Cause all subsequent uses of this `Mutex` to be logged via |
|
// `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous |
|
// call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made. |
|
// |
|
// Note: This method substantially reduces `Mutex` performance. |
|
void EnableDebugLog(const char *name); |
|
|
|
// Deadlock detection |
|
|
|
// Mutex::ForgetDeadlockInfo() |
|
// |
|
// Forget any deadlock-detection information previously gathered |
|
// about this `Mutex`. Call this method in debug mode when the lock ordering |
|
// of a `Mutex` changes. |
|
void ForgetDeadlockInfo(); |
|
|
|
// Mutex::AssertNotHeld() |
|
// |
|
// Return immediately if this thread does not hold this `Mutex` in any |
|
// mode; otherwise, may report an error (typically by crashing with a |
|
// diagnostic), or may return immediately. |
|
// |
|
// Currently this check is performed only if all of: |
|
// - in debug mode |
|
// - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort |
|
// - number of locks concurrently held by this thread is not large. |
|
// are true. |
|
void AssertNotHeld() const; |
|
|
|
// Special cases. |
|
|
|
// A `MuHow` is a constant that indicates how a lock should be acquired. |
|
// Internal implementation detail. Clients should ignore. |
|
typedef const struct MuHowS *MuHow; |
|
|
|
// Mutex::InternalAttemptToUseMutexInFatalSignalHandler() |
|
// |
|
// Causes the `Mutex` implementation to prepare itself for re-entry caused by |
|
// future use of `Mutex` within a fatal signal handler. This method is |
|
// intended for use only for last-ditch attempts to log crash information. |
|
// It does not guarantee that attempts to use Mutexes within the handler will |
|
// not deadlock; it merely makes other faults less likely. |
|
// |
|
// WARNING: This routine must be invoked from a signal handler, and the |
|
// signal handler must either loop forever or terminate the process. |
|
// Attempts to return from (or `longjmp` out of) the signal handler once this |
|
// call has been made may cause arbitrary program behaviour including |
|
// crashes and deadlocks. |
|
static void InternalAttemptToUseMutexInFatalSignalHandler(); |
|
|
|
private: |
|
#ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX |
|
friend class CondVar; |
|
|
|
synchronization_internal::MutexImpl *impl() { return impl_.get(); } |
|
|
|
synchronization_internal::SynchronizationStorage< |
|
synchronization_internal::MutexImpl> |
|
impl_; |
|
#else |
|
std::atomic<intptr_t> mu_; // The Mutex state. |
|
|
|
// Post()/Wait() versus associated PerThreadSem; in class for required |
|
// friendship with PerThreadSem. |
|
static inline void IncrementSynchSem(Mutex *mu, |
|
base_internal::PerThreadSynch *w); |
|
static inline bool DecrementSynchSem( |
|
Mutex *mu, base_internal::PerThreadSynch *w, |
|
synchronization_internal::KernelTimeout t); |
|
|
|
// slow path acquire |
|
void LockSlowLoop(SynchWaitParams *waitp, int flags); |
|
// wrappers around LockSlowLoop() |
|
bool LockSlowWithDeadline(MuHow how, const Condition *cond, |
|
synchronization_internal::KernelTimeout t, |
|
int flags); |
|
void LockSlow(MuHow how, const Condition *cond, |
|
int flags) ABSL_ATTRIBUTE_COLD; |
|
// slow path release |
|
void UnlockSlow(SynchWaitParams *waitp) ABSL_ATTRIBUTE_COLD; |
|
// Common code between Await() and AwaitWithTimeout/Deadline() |
|
bool AwaitCommon(const Condition &cond, |
|
synchronization_internal::KernelTimeout t); |
|
// Attempt to remove thread s from queue. |
|
void TryRemove(base_internal::PerThreadSynch *s); |
|
// Block a thread on mutex. |
|
void Block(base_internal::PerThreadSynch *s); |
|
// Wake a thread; return successor. |
|
base_internal::PerThreadSynch *Wakeup(base_internal::PerThreadSynch *w); |
|
|
|
friend class CondVar; // for access to Trans()/Fer(). |
|
void Trans(MuHow how); // used for CondVar->Mutex transfer |
|
void Fer( |
|
base_internal::PerThreadSynch *w); // used for CondVar->Mutex transfer |
|
#endif |
|
|
|
// Catch the error of writing Mutex when intending MutexLock. |
|
Mutex(const volatile Mutex * /*ignored*/) {} // NOLINT(runtime/explicit) |
|
|
|
Mutex(const Mutex&) = delete; |
|
Mutex& operator=(const Mutex&) = delete; |
|
}; |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Mutex RAII Wrappers |
|
// ----------------------------------------------------------------------------- |
|
|
|
// MutexLock |
|
// |
|
// `MutexLock` is a helper class, which acquires and releases a `Mutex` via |
|
// RAII. |
|
// |
|
// Example: |
|
// |
|
// Class Foo { |
|
// |
|
// Foo::Bar* Baz() { |
|
// MutexLock l(&lock_); |
|
// ... |
|
// return bar; |
|
// } |
|
// |
|
// private: |
|
// Mutex lock_; |
|
// }; |
|
class SCOPED_LOCKABLE MutexLock { |
|
public: |
|
explicit MutexLock(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) { |
|
this->mu_->Lock(); |
|
} |
|
|
|
MutexLock(const MutexLock &) = delete; // NOLINT(runtime/mutex) |
|
MutexLock(MutexLock&&) = delete; // NOLINT(runtime/mutex) |
|
MutexLock& operator=(const MutexLock&) = delete; |
|
MutexLock& operator=(MutexLock&&) = delete; |
|
|
|
~MutexLock() UNLOCK_FUNCTION() { this->mu_->Unlock(); } |
|
|
|
private: |
|
Mutex *const mu_; |
|
}; |
|
|
|
// ReaderMutexLock |
|
// |
|
// The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and |
|
// releases a shared lock on a `Mutex` via RAII. |
|
class SCOPED_LOCKABLE ReaderMutexLock { |
|
public: |
|
explicit ReaderMutexLock(Mutex *mu) SHARED_LOCK_FUNCTION(mu) |
|
: mu_(mu) { |
|
mu->ReaderLock(); |
|
} |
|
|
|
ReaderMutexLock(const ReaderMutexLock&) = delete; |
|
ReaderMutexLock(ReaderMutexLock&&) = delete; |
|
ReaderMutexLock& operator=(const ReaderMutexLock&) = delete; |
|
ReaderMutexLock& operator=(ReaderMutexLock&&) = delete; |
|
|
|
~ReaderMutexLock() UNLOCK_FUNCTION() { |
|
this->mu_->ReaderUnlock(); |
|
} |
|
|
|
private: |
|
Mutex *const mu_; |
|
}; |
|
|
|
// WriterMutexLock |
|
// |
|
// The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and |
|
// releases a write (exclusive) lock on a `Mutex` via RAII. |
|
class SCOPED_LOCKABLE WriterMutexLock { |
|
public: |
|
explicit WriterMutexLock(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu) |
|
: mu_(mu) { |
|
mu->WriterLock(); |
|
} |
|
|
|
WriterMutexLock(const WriterMutexLock&) = delete; |
|
WriterMutexLock(WriterMutexLock&&) = delete; |
|
WriterMutexLock& operator=(const WriterMutexLock&) = delete; |
|
WriterMutexLock& operator=(WriterMutexLock&&) = delete; |
|
|
|
~WriterMutexLock() UNLOCK_FUNCTION() { |
|
this->mu_->WriterUnlock(); |
|
} |
|
|
|
private: |
|
Mutex *const mu_; |
|
}; |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Condition |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// As noted above, `Mutex` contains a number of member functions which take a |
|
// `Condition` as a argument; clients can wait for conditions to become `true` |
|
// before attempting to acquire the mutex. These sections are known as |
|
// "condition critical" sections. To use a `Condition`, you simply need to |
|
// construct it, and use within an appropriate `Mutex` member function; |
|
// everything else in the `Condition` class is an implementation detail. |
|
// |
|
// A `Condition` is specified as a function pointer which returns a boolean. |
|
// `Condition` functions should be pure functions -- their results should depend |
|
// only on passed arguments, should not consult any external state (such as |
|
// clocks), and should have no side-effects, aside from debug logging. Any |
|
// objects that the function may access should be limited to those which are |
|
// constant while the mutex is blocked on the condition (e.g. a stack variable), |
|
// or objects of state protected explicitly by the mutex. |
|
// |
|
// No matter which construction is used for `Condition`, the underlying |
|
// function pointer / functor / callable must not throw any |
|
// exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in |
|
// the face of a throwing `Condition`. (When Abseil is allowed to depend |
|
// on C++17, these function pointers will be explicitly marked |
|
// `noexcept`; until then this requirement cannot be enforced in the |
|
// type system.) |
|
// |
|
// Note: to use a `Condition`, you need only construct it and pass it within the |
|
// appropriate `Mutex' member function, such as `Mutex::Await()`. |
|
// |
|
// Example: |
|
// |
|
// // assume count_ is not internal reference count |
|
// int count_ GUARDED_BY(mu_); |
|
// |
|
// mu_.LockWhen(Condition(+[](int* count) { return *count == 0; }, |
|
// &count_)); |
|
// |
|
// When multiple threads are waiting on exactly the same condition, make sure |
|
// that they are constructed with the same parameters (same pointer to function |
|
// + arg, or same pointer to object + method), so that the mutex implementation |
|
// can avoid redundantly evaluating the same condition for each thread. |
|
class Condition { |
|
public: |
|
// A Condition that returns the result of "(*func)(arg)" |
|
Condition(bool (*func)(void *), void *arg); |
|
|
|
// Templated version for people who are averse to casts. |
|
// |
|
// To use a lambda, prepend it with unary plus, which converts the lambda |
|
// into a function pointer: |
|
// Condition(+[](T* t) { return ...; }, arg). |
|
// |
|
// Note: lambdas in this case must contain no bound variables. |
|
// |
|
// See class comment for performance advice. |
|
template<typename T> |
|
Condition(bool (*func)(T *), T *arg); |
|
|
|
// Templated version for invoking a method that returns a `bool`. |
|
// |
|
// `Condition(object, &Class::Method)` constructs a `Condition` that evaluates |
|
// `object->Method()`. |
|
// |
|
// Implementation Note: `absl::internal::identity` is used to allow methods to |
|
// come from base classes. A simpler signature like |
|
// `Condition(T*, bool (T::*)())` does not suffice. |
|
template<typename T> |
|
Condition(T *object, bool (absl::internal::identity<T>::type::* method)()); |
|
|
|
// Same as above, for const members |
|
template<typename T> |
|
Condition(const T *object, |
|
bool (absl::internal::identity<T>::type::* method)() const); |
|
|
|
// A Condition that returns the value of `*cond` |
|
explicit Condition(const bool *cond); |
|
|
|
// Templated version for invoking a functor that returns a `bool`. |
|
// This approach accepts pointers to non-mutable lambdas, `std::function`, |
|
// the result of` std::bind` and user-defined functors that define |
|
// `bool F::operator()() const`. |
|
// |
|
// Example: |
|
// |
|
// auto reached = [this, current]() { |
|
// mu_.AssertReaderHeld(); // For annotalysis. |
|
// return processed_ >= current; |
|
// }; |
|
// mu_.Await(Condition(&reached)); |
|
|
|
// See class comment for performance advice. In particular, if there |
|
// might be more than one waiter for the same condition, make sure |
|
// that all waiters construct the condition with the same pointers. |
|
|
|
// Implementation note: The second template parameter ensures that this |
|
// constructor doesn't participate in overload resolution if T doesn't have |
|
// `bool operator() const`. |
|
template <typename T, typename E = decltype( |
|
static_cast<bool (T::*)() const>(&T::operator()))> |
|
explicit Condition(const T *obj) |
|
: Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {} |
|
|
|
// A Condition that always returns `true`. |
|
static const Condition kTrue; |
|
|
|
// Evaluates the condition. |
|
bool Eval() const; |
|
|
|
// Returns `true` if the two conditions are guaranteed to return the same |
|
// value if evaluated at the same time, `false` if the evaluation *may* return |
|
// different results. |
|
// |
|
// Two `Condition` values are guaranteed equal if both their `func` and `arg` |
|
// components are the same. A null pointer is equivalent to a `true` |
|
// condition. |
|
static bool GuaranteedEqual(const Condition *a, const Condition *b); |
|
|
|
private: |
|
typedef bool (*InternalFunctionType)(void * arg); |
|
typedef bool (Condition::*InternalMethodType)(); |
|
typedef bool (*InternalMethodCallerType)(void * arg, |
|
InternalMethodType internal_method); |
|
|
|
bool (*eval_)(const Condition*); // Actual evaluator |
|
InternalFunctionType function_; // function taking pointer returning bool |
|
InternalMethodType method_; // method returning bool |
|
void *arg_; // arg of function_ or object of method_ |
|
|
|
Condition(); // null constructor used only to create kTrue |
|
|
|
// Various functions eval_ can point to: |
|
static bool CallVoidPtrFunction(const Condition*); |
|
template <typename T> static bool CastAndCallFunction(const Condition* c); |
|
template <typename T> static bool CastAndCallMethod(const Condition* c); |
|
}; |
|
|
|
// ----------------------------------------------------------------------------- |
|
// CondVar |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// A condition variable, reflecting state evaluated separately outside of the |
|
// `Mutex` object, which can be signaled to wake callers. |
|
// This class is not normally needed; use `Mutex` member functions such as |
|
// `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases |
|
// with many threads and many conditions, `CondVar` may be faster. |
|
// |
|
// The implementation may deliver signals to any condition variable at |
|
// any time, even when no call to `Signal()` or `SignalAll()` is made; as a |
|
// result, upon being awoken, you must check the logical condition you have |
|
// been waiting upon. |
|
// |
|
// Examples: |
|
// |
|
// Usage for a thread waiting for some condition C protected by mutex mu: |
|
// mu.Lock(); |
|
// while (!C) { cv->Wait(&mu); } // releases and reacquires mu |
|
// // C holds; process data |
|
// mu.Unlock(); |
|
// |
|
// Usage to wake T is: |
|
// mu.Lock(); |
|
// // process data, possibly establishing C |
|
// if (C) { cv->Signal(); } |
|
// mu.Unlock(); |
|
// |
|
// If C may be useful to more than one waiter, use `SignalAll()` instead of |
|
// `Signal()`. |
|
// |
|
// With this implementation it is efficient to use `Signal()/SignalAll()` inside |
|
// the locked region; this usage can make reasoning about your program easier. |
|
// |
|
class CondVar { |
|
public: |
|
CondVar(); |
|
~CondVar(); |
|
|
|
// CondVar::Wait() |
|
// |
|
// Atomically releases a `Mutex` and blocks on this condition variable. |
|
// Waits until awakened by a call to `Signal()` or `SignalAll()` (or a |
|
// spurious wakeup), then reacquires the `Mutex` and returns. |
|
// |
|
// Requires and ensures that the current thread holds the `Mutex`. |
|
void Wait(Mutex *mu); |
|
|
|
// CondVar::WaitWithTimeout() |
|
// |
|
// Atomically releases a `Mutex` and blocks on this condition variable. |
|
// Waits until awakened by a call to `Signal()` or `SignalAll()` (or a |
|
// spurious wakeup), or until the timeout has expired, then reacquires |
|
// the `Mutex` and returns. |
|
// |
|
// Returns true if the timeout has expired without this `CondVar` |
|
// being signalled in any manner. If both the timeout has expired |
|
// and this `CondVar` has been signalled, the implementation is free |
|
// to return `true` or `false`. |
|
// |
|
// Requires and ensures that the current thread holds the `Mutex`. |
|
bool WaitWithTimeout(Mutex *mu, absl::Duration timeout); |
|
|
|
// CondVar::WaitWithDeadline() |
|
// |
|
// Atomically releases a `Mutex` and blocks on this condition variable. |
|
// Waits until awakened by a call to `Signal()` or `SignalAll()` (or a |
|
// spurious wakeup), or until the deadline has passed, then reacquires |
|
// the `Mutex` and returns. |
|
// |
|
// Deadlines in the past are equivalent to an immediate deadline. |
|
// |
|
// Returns true if the deadline has passed without this `CondVar` |
|
// being signalled in any manner. If both the deadline has passed |
|
// and this `CondVar` has been signalled, the implementation is free |
|
// to return `true` or `false`. |
|
// |
|
// Requires and ensures that the current thread holds the `Mutex`. |
|
bool WaitWithDeadline(Mutex *mu, absl::Time deadline); |
|
|
|
// CondVar::Signal() |
|
// |
|
// Signal this `CondVar`; wake at least one waiter if one exists. |
|
void Signal(); |
|
|
|
// CondVar::SignalAll() |
|
// |
|
// Signal this `CondVar`; wake all waiters. |
|
void SignalAll(); |
|
|
|
// CondVar::EnableDebugLog() |
|
// |
|
// Causes all subsequent uses of this `CondVar` to be logged via |
|
// `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`. |
|
// Note: this method substantially reduces `CondVar` performance. |
|
void EnableDebugLog(const char *name); |
|
|
|
private: |
|
#ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX |
|
synchronization_internal::CondVarImpl *impl() { return impl_.get(); } |
|
synchronization_internal::SynchronizationStorage< |
|
synchronization_internal::CondVarImpl> |
|
impl_; |
|
#else |
|
bool WaitCommon(Mutex *mutex, synchronization_internal::KernelTimeout t); |
|
void Remove(base_internal::PerThreadSynch *s); |
|
void Wakeup(base_internal::PerThreadSynch *w); |
|
std::atomic<intptr_t> cv_; // Condition variable state. |
|
#endif |
|
CondVar(const CondVar&) = delete; |
|
CondVar& operator=(const CondVar&) = delete; |
|
}; |
|
|
|
|
|
// Variants of MutexLock. |
|
// |
|
// If you find yourself using one of these, consider instead using |
|
// Mutex::Unlock() and/or if-statements for clarity. |
|
|
|
// MutexLockMaybe |
|
// |
|
// MutexLockMaybe is like MutexLock, but is a no-op when mu is null. |
|
class SCOPED_LOCKABLE MutexLockMaybe { |
|
public: |
|
explicit MutexLockMaybe(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu) |
|
: mu_(mu) { if (this->mu_ != nullptr) { this->mu_->Lock(); } } |
|
~MutexLockMaybe() UNLOCK_FUNCTION() { |
|
if (this->mu_ != nullptr) { this->mu_->Unlock(); } |
|
} |
|
private: |
|
Mutex *const mu_; |
|
MutexLockMaybe(const MutexLockMaybe&) = delete; |
|
MutexLockMaybe(MutexLockMaybe&&) = delete; |
|
MutexLockMaybe& operator=(const MutexLockMaybe&) = delete; |
|
MutexLockMaybe& operator=(MutexLockMaybe&&) = delete; |
|
}; |
|
|
|
// ReleasableMutexLock |
|
// |
|
// ReleasableMutexLock is like MutexLock, but permits `Release()` of its |
|
// mutex before destruction. `Release()` may be called at most once. |
|
class SCOPED_LOCKABLE ReleasableMutexLock { |
|
public: |
|
explicit ReleasableMutexLock(Mutex *mu) EXCLUSIVE_LOCK_FUNCTION(mu) |
|
: mu_(mu) { |
|
this->mu_->Lock(); |
|
} |
|
~ReleasableMutexLock() UNLOCK_FUNCTION() { |
|
if (this->mu_ != nullptr) { this->mu_->Unlock(); } |
|
} |
|
|
|
void Release() UNLOCK_FUNCTION(); |
|
|
|
private: |
|
Mutex *mu_; |
|
ReleasableMutexLock(const ReleasableMutexLock&) = delete; |
|
ReleasableMutexLock(ReleasableMutexLock&&) = delete; |
|
ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete; |
|
ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete; |
|
}; |
|
|
|
#ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX |
|
#else |
|
inline Mutex::Mutex() : mu_(0) { |
|
ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static); |
|
} |
|
|
|
inline CondVar::CondVar() : cv_(0) {} |
|
#endif |
|
|
|
// static |
|
template <typename T> |
|
bool Condition::CastAndCallMethod(const Condition *c) { |
|
typedef bool (T::*MemberType)(); |
|
MemberType rm = reinterpret_cast<MemberType>(c->method_); |
|
T *x = static_cast<T *>(c->arg_); |
|
return (x->*rm)(); |
|
} |
|
|
|
// static |
|
template <typename T> |
|
bool Condition::CastAndCallFunction(const Condition *c) { |
|
typedef bool (*FuncType)(T *); |
|
FuncType fn = reinterpret_cast<FuncType>(c->function_); |
|
T *x = static_cast<T *>(c->arg_); |
|
return (*fn)(x); |
|
} |
|
|
|
template <typename T> |
|
inline Condition::Condition(bool (*func)(T *), T *arg) |
|
: eval_(&CastAndCallFunction<T>), |
|
function_(reinterpret_cast<InternalFunctionType>(func)), |
|
method_(nullptr), |
|
arg_(const_cast<void *>(static_cast<const void *>(arg))) {} |
|
|
|
template <typename T> |
|
inline Condition::Condition(T *object, |
|
bool (absl::internal::identity<T>::type::*method)()) |
|
: eval_(&CastAndCallMethod<T>), |
|
function_(nullptr), |
|
method_(reinterpret_cast<InternalMethodType>(method)), |
|
arg_(object) {} |
|
|
|
template <typename T> |
|
inline Condition::Condition(const T *object, |
|
bool (absl::internal::identity<T>::type::*method)() |
|
const) |
|
: eval_(&CastAndCallMethod<T>), |
|
function_(nullptr), |
|
method_(reinterpret_cast<InternalMethodType>(method)), |
|
arg_(reinterpret_cast<void *>(const_cast<T *>(object))) {} |
|
|
|
// Register a hook for profiling support. |
|
// |
|
// The function pointer registered here will be called whenever a mutex is |
|
// contended. The callback is given the absl/base/cycleclock.h timestamp when |
|
// waiting began. |
|
// |
|
// Calls to this function do not race or block, but there is no ordering |
|
// guaranteed between calls to this function and call to the provided hook. |
|
// In particular, the previously registered hook may still be called for some |
|
// time after this function returns. |
|
void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp)); |
|
|
|
// Register a hook for Mutex tracing. |
|
// |
|
// The function pointer registered here will be called whenever a mutex is |
|
// contended. The callback is given an opaque handle to the contended mutex, |
|
// an event name, and the number of wait cycles (as measured by |
|
// //absl/base/internal/cycleclock.h, and which may not be real |
|
// "cycle" counts.) |
|
// |
|
// The only event name currently sent is "slow release". |
|
// |
|
// This has the same memory ordering concerns as RegisterMutexProfiler() above. |
|
void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj, |
|
int64_t wait_cycles)); |
|
|
|
// TODO(gfalcon): Combine RegisterMutexProfiler() and RegisterMutexTracer() |
|
// into a single interface, since they are only ever called in pairs. |
|
|
|
// Register a hook for CondVar tracing. |
|
// |
|
// The function pointer registered here will be called here on various CondVar |
|
// events. The callback is given an opaque handle to the CondVar object and |
|
// a std::string identifying the event. This is thread-safe, but only a single |
|
// tracer can be registered. |
|
// |
|
// Events that can be sent are "Wait", "Unwait", "Signal wakeup", and |
|
// "SignalAll wakeup". |
|
// |
|
// This has the same memory ordering concerns as RegisterMutexProfiler() above. |
|
void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv)); |
|
|
|
// Register a hook for symbolizing stack traces in deadlock detector reports. |
|
// |
|
// 'pc' is the program counter being symbolized, 'out' is the buffer to write |
|
// into, and 'out_size' is the size of the buffer. This function can return |
|
// false if symbolizing failed, or true if a null-terminated symbol was written |
|
// to 'out.' |
|
// |
|
// This has the same memory ordering concerns as RegisterMutexProfiler() above. |
|
// |
|
// DEPRECATED: The default symbolizer function is absl::Symbolize() and the |
|
// ability to register a different hook for symbolizing stack traces will be |
|
// removed on or after 2023-05-01. |
|
ABSL_DEPRECATED("absl::RegisterSymbolizer() is deprecated and will be removed " |
|
"on or after 2023-05-01") |
|
void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size)); |
|
|
|
// EnableMutexInvariantDebugging() |
|
// |
|
// Enable or disable global support for Mutex invariant debugging. If enabled, |
|
// then invariant predicates can be registered per-Mutex for debug checking. |
|
// See Mutex::EnableInvariantDebugging(). |
|
void EnableMutexInvariantDebugging(bool enabled); |
|
|
|
// When in debug mode, and when the feature has been enabled globally, the |
|
// implementation will keep track of lock ordering and complain (or optionally |
|
// crash) if a cycle is detected in the acquired-before graph. |
|
|
|
// Possible modes of operation for the deadlock detector in debug mode. |
|
enum class OnDeadlockCycle { |
|
kIgnore, // Neither report on nor attempt to track cycles in lock ordering |
|
kReport, // Report lock cycles to stderr when detected |
|
kAbort, // Report lock cycles to stderr when detected, then abort |
|
}; |
|
|
|
// SetMutexDeadlockDetectionMode() |
|
// |
|
// Enable or disable global support for detection of potential deadlocks |
|
// due to Mutex lock ordering inversions. When set to 'kIgnore', tracking of |
|
// lock ordering is disabled. Otherwise, in debug builds, a lock ordering graph |
|
// will be maintained internally, and detected cycles will be reported in |
|
// the manner chosen here. |
|
void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode); |
|
|
|
} // namespace absl |
|
|
|
// In some build configurations we pass --detect-odr-violations to the |
|
// gold linker. This causes it to flag weak symbol overrides as ODR |
|
// violations. Because ODR only applies to C++ and not C, |
|
// --detect-odr-violations ignores symbols not mangled with C++ names. |
|
// By changing our extension points to be extern "C", we dodge this |
|
// check. |
|
extern "C" { |
|
void AbslInternalMutexYield(); |
|
} // extern "C" |
|
#endif // ABSL_SYNCHRONIZATION_MUTEX_H_
|
|
|