Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2011 lines
65 KiB
2011 lines
65 KiB
// Copyright 2020 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#include "absl/strings/cord.h" |
|
|
|
#include <algorithm> |
|
#include <cstddef> |
|
#include <cstdio> |
|
#include <cstdlib> |
|
#include <iomanip> |
|
#include <limits> |
|
#include <ostream> |
|
#include <sstream> |
|
#include <type_traits> |
|
#include <unordered_set> |
|
#include <vector> |
|
|
|
#include "absl/base/casts.h" |
|
#include "absl/base/internal/raw_logging.h" |
|
#include "absl/base/port.h" |
|
#include "absl/container/fixed_array.h" |
|
#include "absl/strings/escaping.h" |
|
#include "absl/strings/internal/cord_internal.h" |
|
#include "absl/strings/internal/resize_uninitialized.h" |
|
#include "absl/strings/str_cat.h" |
|
#include "absl/strings/str_format.h" |
|
#include "absl/strings/str_join.h" |
|
#include "absl/strings/string_view.h" |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
|
|
using ::absl::cord_internal::CordRep; |
|
using ::absl::cord_internal::CordRepConcat; |
|
using ::absl::cord_internal::CordRepExternal; |
|
using ::absl::cord_internal::CordRepSubstring; |
|
|
|
// Various representations that we allow |
|
enum CordRepKind { |
|
CONCAT = 0, |
|
EXTERNAL = 1, |
|
SUBSTRING = 2, |
|
|
|
// We have different tags for different sized flat arrays, |
|
// starting with FLAT |
|
FLAT = 3, |
|
}; |
|
|
|
namespace { |
|
|
|
// Type used with std::allocator for allocating and deallocating |
|
// `CordRepExternal`. std::allocator is used because it opaquely handles the |
|
// different new / delete overloads available on a given platform. |
|
struct alignas(absl::cord_internal::ExternalRepAlignment()) ExternalAllocType { |
|
unsigned char value[absl::cord_internal::ExternalRepAlignment()]; |
|
}; |
|
|
|
// Returns the number of objects to pass in to std::allocator<ExternalAllocType> |
|
// allocate() and deallocate() to create enough room for `CordRepExternal` with |
|
// `releaser_size` bytes on the end. |
|
constexpr size_t GetExternalAllocNumObjects(size_t releaser_size) { |
|
// Be sure to round up since `releaser_size` could be smaller than |
|
// `sizeof(ExternalAllocType)`. |
|
return (sizeof(CordRepExternal) + releaser_size + sizeof(ExternalAllocType) - |
|
1) / |
|
sizeof(ExternalAllocType); |
|
} |
|
|
|
// Allocates enough memory for `CordRepExternal` and a releaser with size |
|
// `releaser_size` bytes. |
|
void* AllocateExternal(size_t releaser_size) { |
|
return std::allocator<ExternalAllocType>().allocate( |
|
GetExternalAllocNumObjects(releaser_size)); |
|
} |
|
|
|
// Deallocates the memory for a `CordRepExternal` assuming it was allocated with |
|
// a releaser of given size and alignment. |
|
void DeallocateExternal(CordRepExternal* p, size_t releaser_size) { |
|
std::allocator<ExternalAllocType>().deallocate( |
|
reinterpret_cast<ExternalAllocType*>(p), |
|
GetExternalAllocNumObjects(releaser_size)); |
|
} |
|
|
|
// Returns a pointer to the type erased releaser for the given CordRepExternal. |
|
void* GetExternalReleaser(CordRepExternal* rep) { |
|
return rep + 1; |
|
} |
|
|
|
} // namespace |
|
|
|
namespace cord_internal { |
|
|
|
inline CordRepConcat* CordRep::concat() { |
|
assert(tag == CONCAT); |
|
return static_cast<CordRepConcat*>(this); |
|
} |
|
|
|
inline const CordRepConcat* CordRep::concat() const { |
|
assert(tag == CONCAT); |
|
return static_cast<const CordRepConcat*>(this); |
|
} |
|
|
|
inline CordRepSubstring* CordRep::substring() { |
|
assert(tag == SUBSTRING); |
|
return static_cast<CordRepSubstring*>(this); |
|
} |
|
|
|
inline const CordRepSubstring* CordRep::substring() const { |
|
assert(tag == SUBSTRING); |
|
return static_cast<const CordRepSubstring*>(this); |
|
} |
|
|
|
inline CordRepExternal* CordRep::external() { |
|
assert(tag == EXTERNAL); |
|
return static_cast<CordRepExternal*>(this); |
|
} |
|
|
|
inline const CordRepExternal* CordRep::external() const { |
|
assert(tag == EXTERNAL); |
|
return static_cast<const CordRepExternal*>(this); |
|
} |
|
|
|
using CordTreeConstPath = CordTreePath<const CordRep*, MaxCordDepth()>; |
|
|
|
// This type is used to store the list of pending nodes during re-balancing. |
|
// Its maximum size is 2 * MaxCordDepth() because the tree has a maximum |
|
// possible depth of MaxCordDepth() and every concat node along a tree path |
|
// could theoretically be split during rebalancing. |
|
using RebalancingStack = CordTreePath<CordRep*, 2 * MaxCordDepth()>; |
|
|
|
} // namespace cord_internal |
|
|
|
static const size_t kFlatOverhead = offsetof(CordRep, data); |
|
|
|
// Largest and smallest flat node lengths we are willing to allocate |
|
// Flat allocation size is stored in tag, which currently can encode sizes up |
|
// to 4K, encoded as multiple of either 8 or 32 bytes. |
|
// If we allow for larger sizes, we need to change this to 8/64, 16/128, etc. |
|
static constexpr size_t kMaxFlatSize = 4096; |
|
static constexpr size_t kMaxFlatLength = kMaxFlatSize - kFlatOverhead; |
|
static constexpr size_t kMinFlatLength = 32 - kFlatOverhead; |
|
|
|
// Prefer copying blocks of at most this size, otherwise reference count. |
|
static const size_t kMaxBytesToCopy = 511; |
|
|
|
// Helper functions for rounded div, and rounding to exact sizes. |
|
static size_t DivUp(size_t n, size_t m) { return (n + m - 1) / m; } |
|
static size_t RoundUp(size_t n, size_t m) { return DivUp(n, m) * m; } |
|
|
|
// Returns the size to the nearest equal or larger value that can be |
|
// expressed exactly as a tag value. |
|
static size_t RoundUpForTag(size_t size) { |
|
return RoundUp(size, (size <= 1024) ? 8 : 32); |
|
} |
|
|
|
// Converts the allocated size to a tag, rounding down if the size |
|
// does not exactly match a 'tag expressible' size value. The result is |
|
// undefined if the size exceeds the maximum size that can be encoded in |
|
// a tag, i.e., if size is larger than TagToAllocatedSize(<max tag>). |
|
static uint8_t AllocatedSizeToTag(size_t size) { |
|
const size_t tag = (size <= 1024) ? size / 8 : 128 + size / 32 - 1024 / 32; |
|
assert(tag <= std::numeric_limits<uint8_t>::max()); |
|
return tag; |
|
} |
|
|
|
// Converts the provided tag to the corresponding allocated size |
|
static constexpr size_t TagToAllocatedSize(uint8_t tag) { |
|
return (tag <= 128) ? (tag * 8) : (1024 + (tag - 128) * 32); |
|
} |
|
|
|
// Converts the provided tag to the corresponding available data length |
|
static constexpr size_t TagToLength(uint8_t tag) { |
|
return TagToAllocatedSize(tag) - kFlatOverhead; |
|
} |
|
|
|
// Enforce that kMaxFlatSize maps to a well-known exact tag value. |
|
static_assert(TagToAllocatedSize(224) == kMaxFlatSize, "Bad tag logic"); |
|
|
|
constexpr uint64_t Fibonacci(uint8_t n, uint64_t a = 0, uint64_t b = 1) { |
|
return n == 0 ? a : n == 1 ? b : Fibonacci(n - 1, b, a + b); |
|
} |
|
|
|
static_assert(Fibonacci(63) == 6557470319842, |
|
"Fibonacci values computed incorrectly"); |
|
|
|
// Minimum length required for a given depth tree -- a tree is considered |
|
// balanced if |
|
// length(t) >= kMinLength[depth(t)] |
|
// The node depth is allowed to become larger to reduce rebalancing |
|
// for larger strings (see ShouldRebalance). |
|
constexpr uint64_t kMinLength[] = { |
|
Fibonacci(2), Fibonacci(3), Fibonacci(4), Fibonacci(5), Fibonacci(6), |
|
Fibonacci(7), Fibonacci(8), Fibonacci(9), Fibonacci(10), Fibonacci(11), |
|
Fibonacci(12), Fibonacci(13), Fibonacci(14), Fibonacci(15), Fibonacci(16), |
|
Fibonacci(17), Fibonacci(18), Fibonacci(19), Fibonacci(20), Fibonacci(21), |
|
Fibonacci(22), Fibonacci(23), Fibonacci(24), Fibonacci(25), Fibonacci(26), |
|
Fibonacci(27), Fibonacci(28), Fibonacci(29), Fibonacci(30), Fibonacci(31), |
|
Fibonacci(32), Fibonacci(33), Fibonacci(34), Fibonacci(35), Fibonacci(36), |
|
Fibonacci(37), Fibonacci(38), Fibonacci(39), Fibonacci(40), Fibonacci(41), |
|
Fibonacci(42), Fibonacci(43), Fibonacci(44), Fibonacci(45), Fibonacci(46), |
|
Fibonacci(47), Fibonacci(48), Fibonacci(49), Fibonacci(50), Fibonacci(51), |
|
Fibonacci(52), Fibonacci(53), Fibonacci(54), Fibonacci(55), Fibonacci(56), |
|
Fibonacci(57), Fibonacci(58), Fibonacci(59), Fibonacci(60), Fibonacci(61), |
|
Fibonacci(62), Fibonacci(63), Fibonacci(64), Fibonacci(65), Fibonacci(66), |
|
Fibonacci(67), Fibonacci(68), Fibonacci(69), Fibonacci(70), Fibonacci(71), |
|
Fibonacci(72), Fibonacci(73), Fibonacci(74), Fibonacci(75), Fibonacci(76), |
|
Fibonacci(77), Fibonacci(78), Fibonacci(79), Fibonacci(80), Fibonacci(81), |
|
Fibonacci(82), Fibonacci(83), Fibonacci(84), Fibonacci(85), Fibonacci(86), |
|
Fibonacci(87), Fibonacci(88), Fibonacci(89), Fibonacci(90), Fibonacci(91), |
|
Fibonacci(92), Fibonacci(93)}; |
|
|
|
static_assert(sizeof(kMinLength) / sizeof(uint64_t) == |
|
(cord_internal::MaxCordDepth() + 1), |
|
"Not enough elements in kMinLength array to cover all the " |
|
"supported Cord depth(s)"); |
|
|
|
inline bool ShouldRebalance(const CordRep* node) { |
|
if (node->tag != CONCAT) return false; |
|
|
|
size_t node_depth = node->concat()->depth(); |
|
|
|
if (node_depth <= 15) return false; |
|
|
|
// Rebalancing Cords is expensive, so we reduce how often rebalancing occurs |
|
// by allowing shallow Cords to have twice the depth that the Fibonacci rule |
|
// would otherwise imply. Deep Cords need to follow the rule more closely, |
|
// however to ensure algorithm correctness. We implement this with linear |
|
// interpolation. Cords of depth 16 are treated as though they have a depth |
|
// of 16 * 1/2, and Cords of depth MaxCordDepth() interpolate to |
|
// MaxCordDepth() * 1. |
|
return node->length < |
|
kMinLength[(node_depth * (cord_internal::MaxCordDepth() - 16)) / |
|
(2 * cord_internal::MaxCordDepth() - 16 - node_depth)]; |
|
} |
|
|
|
// Unlike root balancing condition this one is part of the re-balancing |
|
// algorithm and has to be always matching against right depth for |
|
// algorithm to be correct. |
|
inline bool IsNodeBalanced(const CordRep* node) { |
|
if (node->tag != CONCAT) return true; |
|
|
|
size_t node_depth = node->concat()->depth(); |
|
|
|
return node->length >= kMinLength[node_depth]; |
|
} |
|
|
|
static CordRep* Rebalance(CordRep* node); |
|
static void DumpNode(const CordRep* rep, bool include_data, std::ostream* os); |
|
static bool VerifyNode(const CordRep* root, const CordRep* start_node, |
|
bool full_validation); |
|
|
|
static inline CordRep* VerifyTree(CordRep* node) { |
|
// Verification is expensive, so only do it in debug mode. |
|
// Even in debug mode we normally do only light validation. |
|
// If you are debugging Cord itself, you should define the |
|
// macro EXTRA_CORD_VALIDATION, e.g. by adding |
|
// --copt=-DEXTRA_CORD_VALIDATION to the blaze line. |
|
#ifdef EXTRA_CORD_VALIDATION |
|
assert(node == nullptr || VerifyNode(node, node, /*full_validation=*/true)); |
|
#else // EXTRA_CORD_VALIDATION |
|
assert(node == nullptr || VerifyNode(node, node, /*full_validation=*/false)); |
|
#endif // EXTRA_CORD_VALIDATION |
|
static_cast<void>(&VerifyNode); |
|
|
|
return node; |
|
} |
|
|
|
// -------------------------------------------------------------------- |
|
// Memory management |
|
|
|
inline CordRep* Ref(CordRep* rep) { |
|
if (rep != nullptr) { |
|
rep->refcount.Increment(); |
|
} |
|
return rep; |
|
} |
|
|
|
// This internal routine is called from the cold path of Unref below. Keeping it |
|
// in a separate routine allows good inlining of Unref into many profitable call |
|
// sites. However, the call to this function can be highly disruptive to the |
|
// register pressure in those callers. To minimize the cost to callers, we use |
|
// a special LLVM calling convention that preserves most registers. This allows |
|
// the call to this routine in cold paths to not disrupt the caller's register |
|
// pressure. This calling convention is not available on all platforms; we |
|
// intentionally allow LLVM to ignore the attribute rather than attempting to |
|
// hardcode the list of supported platforms. |
|
#if defined(__clang__) && !defined(__i386__) |
|
#pragma clang diagnostic push |
|
#pragma clang diagnostic ignored "-Wattributes" |
|
__attribute__((preserve_most)) |
|
#pragma clang diagnostic pop |
|
#endif |
|
static void UnrefInternal(CordRep* rep) { |
|
assert(rep != nullptr); |
|
|
|
cord_internal::RebalancingStack pending; |
|
|
|
while (true) { |
|
if (rep->tag == CONCAT) { |
|
CordRepConcat* rep_concat = rep->concat(); |
|
CordRep* right = rep_concat->right; |
|
if (!right->refcount.Decrement()) { |
|
pending.push_back(right); |
|
} |
|
CordRep* left = rep_concat->left; |
|
delete rep_concat; |
|
rep = nullptr; |
|
if (!left->refcount.Decrement()) { |
|
rep = left; |
|
continue; |
|
} |
|
} else if (rep->tag == EXTERNAL) { |
|
CordRepExternal* rep_external = rep->external(); |
|
absl::string_view data(rep_external->base, rep->length); |
|
void* releaser = GetExternalReleaser(rep_external); |
|
size_t releaser_size = rep_external->releaser_invoker(releaser, data); |
|
rep_external->~CordRepExternal(); |
|
DeallocateExternal(rep_external, releaser_size); |
|
rep = nullptr; |
|
} else if (rep->tag == SUBSTRING) { |
|
CordRepSubstring* rep_substring = rep->substring(); |
|
CordRep* child = rep_substring->child; |
|
delete rep_substring; |
|
rep = nullptr; |
|
if (!child->refcount.Decrement()) { |
|
rep = child; |
|
continue; |
|
} |
|
} else { |
|
// Flat CordReps are allocated and constructed with raw ::operator new |
|
// and placement new, and must be destructed and deallocated |
|
// accordingly. |
|
#if defined(__cpp_sized_deallocation) |
|
size_t size = TagToAllocatedSize(rep->tag); |
|
rep->~CordRep(); |
|
::operator delete(rep, size); |
|
#else |
|
rep->~CordRep(); |
|
::operator delete(rep); |
|
#endif |
|
rep = nullptr; |
|
} |
|
|
|
if (!pending.empty()) { |
|
rep = pending.back(); |
|
pending.pop_back(); |
|
} else { |
|
break; |
|
} |
|
} |
|
} |
|
|
|
inline void Unref(CordRep* rep) { |
|
// Fast-path for two common, hot cases: a null rep and a shared root. |
|
if (ABSL_PREDICT_TRUE(rep == nullptr || |
|
rep->refcount.DecrementExpectHighRefcount())) { |
|
return; |
|
} |
|
|
|
UnrefInternal(rep); |
|
} |
|
|
|
// Return the depth of a node |
|
static int Depth(const CordRep* rep) { |
|
if (rep->tag == CONCAT) { |
|
return rep->concat()->depth(); |
|
} else { |
|
return 0; |
|
} |
|
} |
|
|
|
static void SetConcatChildren(CordRepConcat* concat, CordRep* left, |
|
CordRep* right) { |
|
concat->left = left; |
|
concat->right = right; |
|
|
|
concat->length = left->length + right->length; |
|
concat->set_depth(1 + std::max(Depth(left), Depth(right))); |
|
|
|
ABSL_INTERNAL_CHECK(concat->depth() <= cord_internal::MaxCordDepth(), |
|
"Cord depth exceeds max"); |
|
ABSL_INTERNAL_CHECK(concat->length >= left->length, "Cord is too long"); |
|
ABSL_INTERNAL_CHECK(concat->length >= right->length, "Cord is too long"); |
|
} |
|
|
|
// Create a concatenation of the specified nodes. |
|
// Does not change the refcounts of "left" and "right". |
|
// The returned node has a refcount of 1. |
|
static CordRep* RawConcat(CordRep* left, CordRep* right) { |
|
// Avoid making degenerate concat nodes (one child is empty) |
|
if (left == nullptr || left->length == 0) { |
|
Unref(left); |
|
return right; |
|
} |
|
if (right == nullptr || right->length == 0) { |
|
Unref(right); |
|
return left; |
|
} |
|
|
|
CordRepConcat* rep = new CordRepConcat(); |
|
rep->tag = CONCAT; |
|
SetConcatChildren(rep, left, right); |
|
|
|
return rep; |
|
} |
|
|
|
static CordRep* Concat(CordRep* left, CordRep* right) { |
|
CordRep* rep = RawConcat(left, right); |
|
if (rep != nullptr && ShouldRebalance(rep)) { |
|
rep = Rebalance(rep); |
|
} |
|
return VerifyTree(rep); |
|
} |
|
|
|
// Make a balanced tree out of an array of leaf nodes. |
|
static CordRep* MakeBalancedTree(CordRep** reps, size_t n) { |
|
// Make repeated passes over the array, merging adjacent pairs |
|
// until we are left with just a single node. |
|
while (n > 1) { |
|
size_t dst = 0; |
|
for (size_t src = 0; src < n; src += 2) { |
|
if (src + 1 < n) { |
|
reps[dst] = Concat(reps[src], reps[src + 1]); |
|
} else { |
|
reps[dst] = reps[src]; |
|
} |
|
dst++; |
|
} |
|
n = dst; |
|
} |
|
|
|
return reps[0]; |
|
} |
|
|
|
// Create a new flat node. |
|
static CordRep* NewFlat(size_t length_hint) { |
|
if (length_hint <= kMinFlatLength) { |
|
length_hint = kMinFlatLength; |
|
} else if (length_hint > kMaxFlatLength) { |
|
length_hint = kMaxFlatLength; |
|
} |
|
|
|
// Round size up so it matches a size we can exactly express in a tag. |
|
const size_t size = RoundUpForTag(length_hint + kFlatOverhead); |
|
void* const raw_rep = ::operator new(size); |
|
CordRep* rep = new (raw_rep) CordRep(); |
|
rep->tag = AllocatedSizeToTag(size); |
|
return VerifyTree(rep); |
|
} |
|
|
|
// Create a new tree out of the specified array. |
|
// The returned node has a refcount of 1. |
|
static CordRep* NewTree(const char* data, |
|
size_t length, |
|
size_t alloc_hint) { |
|
if (length == 0) return nullptr; |
|
absl::FixedArray<CordRep*> reps((length - 1) / kMaxFlatLength + 1); |
|
size_t n = 0; |
|
do { |
|
const size_t len = std::min(length, kMaxFlatLength); |
|
CordRep* rep = NewFlat(len + alloc_hint); |
|
rep->length = len; |
|
memcpy(rep->data, data, len); |
|
reps[n++] = VerifyTree(rep); |
|
data += len; |
|
length -= len; |
|
} while (length != 0); |
|
return MakeBalancedTree(reps.data(), n); |
|
} |
|
|
|
namespace cord_internal { |
|
|
|
ExternalRepReleaserPair NewExternalWithUninitializedReleaser( |
|
absl::string_view data, ExternalReleaserInvoker invoker, |
|
size_t releaser_size) { |
|
assert(!data.empty()); |
|
|
|
void* raw_rep = AllocateExternal(releaser_size); |
|
auto* rep = new (raw_rep) CordRepExternal(); |
|
rep->length = data.size(); |
|
rep->tag = EXTERNAL; |
|
rep->base = data.data(); |
|
rep->releaser_invoker = invoker; |
|
return {VerifyTree(rep), GetExternalReleaser(rep)}; |
|
} |
|
|
|
} // namespace cord_internal |
|
|
|
static CordRep* NewSubstring(CordRep* child, size_t offset, size_t length) { |
|
// Never create empty substring nodes |
|
if (length == 0) { |
|
Unref(child); |
|
return nullptr; |
|
} else { |
|
CordRepSubstring* rep = new CordRepSubstring(); |
|
assert((offset + length) <= child->length); |
|
rep->length = length; |
|
rep->tag = SUBSTRING; |
|
rep->start = offset; |
|
rep->child = child; |
|
return VerifyTree(rep); |
|
} |
|
} |
|
|
|
// -------------------------------------------------------------------- |
|
// Cord::InlineRep functions |
|
|
|
// This will trigger LNK2005 in MSVC. |
|
#ifndef COMPILER_MSVC |
|
const unsigned char Cord::InlineRep::kMaxInline; |
|
#endif // COMPILER_MSVC |
|
|
|
inline void Cord::InlineRep::set_data(const char* data, size_t n, |
|
bool nullify_tail) { |
|
static_assert(kMaxInline == 15, "set_data is hard-coded for a length of 15"); |
|
|
|
cord_internal::SmallMemmove(data_, data, n, nullify_tail); |
|
data_[kMaxInline] = static_cast<char>(n); |
|
} |
|
|
|
inline char* Cord::InlineRep::set_data(size_t n) { |
|
assert(n <= kMaxInline); |
|
memset(data_, 0, sizeof(data_)); |
|
data_[kMaxInline] = static_cast<char>(n); |
|
return data_; |
|
} |
|
|
|
inline CordRep* Cord::InlineRep::force_tree(size_t extra_hint) { |
|
size_t len = data_[kMaxInline]; |
|
CordRep* result; |
|
if (len > kMaxInline) { |
|
memcpy(&result, data_, sizeof(result)); |
|
} else { |
|
result = NewFlat(len + extra_hint); |
|
result->length = len; |
|
memcpy(result->data, data_, len); |
|
set_tree(result); |
|
} |
|
return result; |
|
} |
|
|
|
inline void Cord::InlineRep::reduce_size(size_t n) { |
|
size_t tag = data_[kMaxInline]; |
|
assert(tag <= kMaxInline); |
|
assert(tag >= n); |
|
tag -= n; |
|
memset(data_ + tag, 0, n); |
|
data_[kMaxInline] = static_cast<char>(tag); |
|
} |
|
|
|
inline void Cord::InlineRep::remove_prefix(size_t n) { |
|
cord_internal::SmallMemmove(data_, data_ + n, data_[kMaxInline] - n); |
|
reduce_size(n); |
|
} |
|
|
|
void Cord::InlineRep::AppendTree(CordRep* tree) { |
|
if (tree == nullptr) return; |
|
size_t len = data_[kMaxInline]; |
|
if (len == 0) { |
|
set_tree(tree); |
|
} else { |
|
set_tree(Concat(force_tree(0), tree)); |
|
} |
|
} |
|
|
|
void Cord::InlineRep::PrependTree(CordRep* tree) { |
|
if (tree == nullptr) return; |
|
size_t len = data_[kMaxInline]; |
|
if (len == 0) { |
|
set_tree(tree); |
|
} else { |
|
set_tree(Concat(tree, force_tree(0))); |
|
} |
|
} |
|
|
|
// Searches for a non-full flat node at the rightmost leaf of the tree. If a |
|
// suitable leaf is found, the function will update the length field for all |
|
// nodes to account for the size increase. The append region address will be |
|
// written to region and the actual size increase will be written to size. |
|
static inline bool PrepareAppendRegion(CordRep* root, char** region, |
|
size_t* size, size_t max_length) { |
|
// Search down the right-hand path for a non-full FLAT node. |
|
CordRep* dst = root; |
|
while (dst->tag == CONCAT && dst->refcount.IsOne()) { |
|
dst = dst->concat()->right; |
|
} |
|
|
|
if (dst->tag < FLAT || !dst->refcount.IsOne()) { |
|
*region = nullptr; |
|
*size = 0; |
|
return false; |
|
} |
|
|
|
const size_t in_use = dst->length; |
|
const size_t capacity = TagToLength(dst->tag); |
|
if (in_use == capacity) { |
|
*region = nullptr; |
|
*size = 0; |
|
return false; |
|
} |
|
|
|
size_t size_increase = std::min(capacity - in_use, max_length); |
|
|
|
// We need to update the length fields for all nodes, including the leaf node. |
|
for (CordRep* rep = root; rep != dst; rep = rep->concat()->right) { |
|
rep->length += size_increase; |
|
} |
|
dst->length += size_increase; |
|
|
|
*region = dst->data + in_use; |
|
*size = size_increase; |
|
return true; |
|
} |
|
|
|
void Cord::InlineRep::GetAppendRegion(char** region, size_t* size, |
|
size_t max_length) { |
|
if (max_length == 0) { |
|
*region = nullptr; |
|
*size = 0; |
|
return; |
|
} |
|
|
|
// Try to fit in the inline buffer if possible. |
|
size_t inline_length = data_[kMaxInline]; |
|
if (inline_length < kMaxInline && max_length <= kMaxInline - inline_length) { |
|
*region = data_ + inline_length; |
|
*size = max_length; |
|
data_[kMaxInline] = static_cast<char>(inline_length + max_length); |
|
return; |
|
} |
|
|
|
CordRep* root = force_tree(max_length); |
|
|
|
if (PrepareAppendRegion(root, region, size, max_length)) { |
|
return; |
|
} |
|
|
|
// Allocate new node. |
|
CordRep* new_node = |
|
NewFlat(std::max(static_cast<size_t>(root->length), max_length)); |
|
new_node->length = |
|
std::min(static_cast<size_t>(TagToLength(new_node->tag)), max_length); |
|
*region = new_node->data; |
|
*size = new_node->length; |
|
replace_tree(Concat(root, new_node)); |
|
} |
|
|
|
void Cord::InlineRep::GetAppendRegion(char** region, size_t* size) { |
|
const size_t max_length = std::numeric_limits<size_t>::max(); |
|
|
|
// Try to fit in the inline buffer if possible. |
|
size_t inline_length = data_[kMaxInline]; |
|
if (inline_length < kMaxInline) { |
|
*region = data_ + inline_length; |
|
*size = kMaxInline - inline_length; |
|
data_[kMaxInline] = kMaxInline; |
|
return; |
|
} |
|
|
|
CordRep* root = force_tree(max_length); |
|
|
|
if (PrepareAppendRegion(root, region, size, max_length)) { |
|
return; |
|
} |
|
|
|
// Allocate new node. |
|
CordRep* new_node = NewFlat(root->length); |
|
new_node->length = TagToLength(new_node->tag); |
|
*region = new_node->data; |
|
*size = new_node->length; |
|
replace_tree(Concat(root, new_node)); |
|
} |
|
|
|
// If the rep is a leaf, this will increment the value at total_mem_usage and |
|
// will return true. |
|
static bool RepMemoryUsageLeaf(const CordRep* rep, size_t* total_mem_usage) { |
|
if (rep->tag >= FLAT) { |
|
*total_mem_usage += TagToAllocatedSize(rep->tag); |
|
return true; |
|
} |
|
if (rep->tag == EXTERNAL) { |
|
*total_mem_usage += sizeof(CordRepConcat) + rep->length; |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
void Cord::InlineRep::AssignSlow(const Cord::InlineRep& src) { |
|
ClearSlow(); |
|
|
|
memcpy(data_, src.data_, sizeof(data_)); |
|
if (is_tree()) { |
|
Ref(tree()); |
|
} |
|
} |
|
|
|
void Cord::InlineRep::ClearSlow() { |
|
if (is_tree()) { |
|
Unref(tree()); |
|
} |
|
memset(data_, 0, sizeof(data_)); |
|
} |
|
|
|
// -------------------------------------------------------------------- |
|
// Constructors and destructors |
|
|
|
Cord::Cord(const Cord& src) : contents_(src.contents_) { |
|
Ref(contents_.tree()); // Does nothing if contents_ has embedded data |
|
} |
|
|
|
Cord::Cord(absl::string_view src) { |
|
const size_t n = src.size(); |
|
if (n <= InlineRep::kMaxInline) { |
|
contents_.set_data(src.data(), n, false); |
|
} else { |
|
contents_.set_tree(NewTree(src.data(), n, 0)); |
|
} |
|
} |
|
|
|
// The destruction code is separate so that the compiler can determine |
|
// that it does not need to call the destructor on a moved-from Cord. |
|
void Cord::DestroyCordSlow() { |
|
Unref(VerifyTree(contents_.tree())); |
|
} |
|
|
|
// -------------------------------------------------------------------- |
|
// Mutators |
|
|
|
void Cord::Clear() { |
|
Unref(contents_.clear()); |
|
} |
|
|
|
Cord& Cord::operator=(absl::string_view src) { |
|
|
|
const char* data = src.data(); |
|
size_t length = src.size(); |
|
CordRep* tree = contents_.tree(); |
|
if (length <= InlineRep::kMaxInline) { |
|
// Embed into this->contents_ |
|
contents_.set_data(data, length, true); |
|
Unref(tree); |
|
return *this; |
|
} |
|
if (tree != nullptr && tree->tag >= FLAT && |
|
TagToLength(tree->tag) >= length && tree->refcount.IsOne()) { |
|
// Copy in place if the existing FLAT node is reusable. |
|
memmove(tree->data, data, length); |
|
tree->length = length; |
|
VerifyTree(tree); |
|
return *this; |
|
} |
|
contents_.set_tree(NewTree(data, length, 0)); |
|
Unref(tree); |
|
return *this; |
|
} |
|
|
|
// TODO(sanjay): Move to Cord::InlineRep section of file. For now, |
|
// we keep it here to make diffs easier. |
|
void Cord::InlineRep::AppendArray(const char* src_data, size_t src_size) { |
|
if (src_size == 0) return; // memcpy(_, nullptr, 0) is undefined. |
|
// Try to fit in the inline buffer if possible. |
|
size_t inline_length = data_[kMaxInline]; |
|
if (inline_length < kMaxInline && src_size <= kMaxInline - inline_length) { |
|
// Append new data to embedded array |
|
data_[kMaxInline] = static_cast<char>(inline_length + src_size); |
|
memcpy(data_ + inline_length, src_data, src_size); |
|
return; |
|
} |
|
|
|
CordRep* root = tree(); |
|
|
|
size_t appended = 0; |
|
if (root) { |
|
char* region; |
|
if (PrepareAppendRegion(root, ®ion, &appended, src_size)) { |
|
memcpy(region, src_data, appended); |
|
} |
|
} else { |
|
// It is possible that src_data == data_, but when we transition from an |
|
// InlineRep to a tree we need to assign data_ = root via set_tree. To |
|
// avoid corrupting the source data before we copy it, delay calling |
|
// set_tree until after we've copied data. |
|
// We are going from an inline size to beyond inline size. Make the new size |
|
// either double the inlined size, or the added size + 10%. |
|
const size_t size1 = inline_length * 2 + src_size; |
|
const size_t size2 = inline_length + src_size / 10; |
|
root = NewFlat(std::max<size_t>(size1, size2)); |
|
appended = std::min(src_size, TagToLength(root->tag) - inline_length); |
|
memcpy(root->data, data_, inline_length); |
|
memcpy(root->data + inline_length, src_data, appended); |
|
root->length = inline_length + appended; |
|
set_tree(root); |
|
} |
|
|
|
src_data += appended; |
|
src_size -= appended; |
|
if (src_size == 0) { |
|
return; |
|
} |
|
|
|
// Use new block(s) for any remaining bytes that were not handled above. |
|
// Alloc extra memory only if the right child of the root of the new tree is |
|
// going to be a FLAT node, which will permit further inplace appends. |
|
size_t length = src_size; |
|
if (src_size < kMaxFlatLength) { |
|
// The new length is either |
|
// - old size + 10% |
|
// - old_size + src_size |
|
// This will cause a reasonable conservative step-up in size that is still |
|
// large enough to avoid excessive amounts of small fragments being added. |
|
length = std::max<size_t>(root->length / 10, src_size); |
|
} |
|
set_tree(Concat(root, NewTree(src_data, src_size, length - src_size))); |
|
} |
|
|
|
inline CordRep* Cord::TakeRep() const& { |
|
return Ref(contents_.tree()); |
|
} |
|
|
|
inline CordRep* Cord::TakeRep() && { |
|
CordRep* rep = contents_.tree(); |
|
contents_.clear(); |
|
return rep; |
|
} |
|
|
|
template <typename C> |
|
inline void Cord::AppendImpl(C&& src) { |
|
if (empty()) { |
|
// In case of an empty destination avoid allocating a new node, do not copy |
|
// data. |
|
*this = std::forward<C>(src); |
|
return; |
|
} |
|
|
|
// For short cords, it is faster to copy data if there is room in dst. |
|
const size_t src_size = src.contents_.size(); |
|
if (src_size <= kMaxBytesToCopy) { |
|
CordRep* src_tree = src.contents_.tree(); |
|
if (src_tree == nullptr) { |
|
// src has embedded data. |
|
contents_.AppendArray(src.contents_.data(), src_size); |
|
return; |
|
} |
|
if (src_tree->tag >= FLAT) { |
|
// src tree just has one flat node. |
|
contents_.AppendArray(src_tree->data, src_size); |
|
return; |
|
} |
|
if (&src == this) { |
|
// ChunkIterator below assumes that src is not modified during traversal. |
|
Append(Cord(src)); |
|
return; |
|
} |
|
// TODO(mec): Should we only do this if "dst" has space? |
|
for (absl::string_view chunk : src.Chunks()) { |
|
Append(chunk); |
|
} |
|
return; |
|
} |
|
|
|
contents_.AppendTree(std::forward<C>(src).TakeRep()); |
|
} |
|
|
|
void Cord::Append(const Cord& src) { AppendImpl(src); } |
|
|
|
void Cord::Append(Cord&& src) { AppendImpl(std::move(src)); } |
|
|
|
void Cord::Prepend(const Cord& src) { |
|
CordRep* src_tree = src.contents_.tree(); |
|
if (src_tree != nullptr) { |
|
Ref(src_tree); |
|
contents_.PrependTree(src_tree); |
|
return; |
|
} |
|
|
|
// `src` cord is inlined. |
|
absl::string_view src_contents(src.contents_.data(), src.contents_.size()); |
|
return Prepend(src_contents); |
|
} |
|
|
|
void Cord::Prepend(absl::string_view src) { |
|
if (src.empty()) return; // memcpy(_, nullptr, 0) is undefined. |
|
size_t cur_size = contents_.size(); |
|
if (!contents_.is_tree() && cur_size + src.size() <= InlineRep::kMaxInline) { |
|
// Use embedded storage. |
|
char data[InlineRep::kMaxInline + 1] = {0}; |
|
data[InlineRep::kMaxInline] = cur_size + src.size(); // set size |
|
memcpy(data, src.data(), src.size()); |
|
memcpy(data + src.size(), contents_.data(), cur_size); |
|
memcpy(reinterpret_cast<void*>(&contents_), data, |
|
InlineRep::kMaxInline + 1); |
|
} else { |
|
contents_.PrependTree(NewTree(src.data(), src.size(), 0)); |
|
} |
|
} |
|
|
|
static CordRep* RemovePrefixFrom(CordRep* node, size_t n) { |
|
if (n >= node->length) return nullptr; |
|
if (n == 0) return Ref(node); |
|
cord_internal::CordTreeMutablePath rhs_stack; |
|
|
|
while (node->tag == CONCAT) { |
|
assert(n <= node->length); |
|
if (n < node->concat()->left->length) { |
|
// Push right to stack, descend left. |
|
rhs_stack.push_back(node->concat()->right); |
|
node = node->concat()->left; |
|
} else { |
|
// Drop left, descend right. |
|
n -= node->concat()->left->length; |
|
node = node->concat()->right; |
|
} |
|
} |
|
assert(n <= node->length); |
|
|
|
if (n == 0) { |
|
Ref(node); |
|
} else { |
|
size_t start = n; |
|
size_t len = node->length - n; |
|
if (node->tag == SUBSTRING) { |
|
// Consider in-place update of node, similar to in RemoveSuffixFrom(). |
|
start += node->substring()->start; |
|
node = node->substring()->child; |
|
} |
|
node = NewSubstring(Ref(node), start, len); |
|
} |
|
while (!rhs_stack.empty()) { |
|
node = Concat(node, Ref(rhs_stack.back())); |
|
rhs_stack.pop_back(); |
|
} |
|
return node; |
|
} |
|
|
|
// RemoveSuffixFrom() is very similar to RemovePrefixFrom(), with the |
|
// exception that removing a suffix has an optimization where a node may be |
|
// edited in place iff that node and all its ancestors have a refcount of 1. |
|
static CordRep* RemoveSuffixFrom(CordRep* node, size_t n) { |
|
if (n >= node->length) return nullptr; |
|
if (n == 0) return Ref(node); |
|
absl::cord_internal::CordTreeMutablePath lhs_stack; |
|
bool inplace_ok = node->refcount.IsOne(); |
|
|
|
while (node->tag == CONCAT) { |
|
assert(n <= node->length); |
|
if (n < node->concat()->right->length) { |
|
// Push left to stack, descend right. |
|
lhs_stack.push_back(node->concat()->left); |
|
node = node->concat()->right; |
|
} else { |
|
// Drop right, descend left. |
|
n -= node->concat()->right->length; |
|
node = node->concat()->left; |
|
} |
|
inplace_ok = inplace_ok && node->refcount.IsOne(); |
|
} |
|
assert(n <= node->length); |
|
|
|
if (n == 0) { |
|
Ref(node); |
|
} else if (inplace_ok && node->tag != EXTERNAL) { |
|
// Consider making a new buffer if the current node capacity is much |
|
// larger than the new length. |
|
Ref(node); |
|
node->length -= n; |
|
} else { |
|
size_t start = 0; |
|
size_t len = node->length - n; |
|
if (node->tag == SUBSTRING) { |
|
start = node->substring()->start; |
|
node = node->substring()->child; |
|
} |
|
node = NewSubstring(Ref(node), start, len); |
|
} |
|
while (!lhs_stack.empty()) { |
|
node = Concat(Ref(lhs_stack.back()), node); |
|
lhs_stack.pop_back(); |
|
} |
|
return node; |
|
} |
|
|
|
void Cord::RemovePrefix(size_t n) { |
|
ABSL_INTERNAL_CHECK(n <= size(), |
|
absl::StrCat("Requested prefix size ", n, |
|
" exceeds Cord's size ", size())); |
|
CordRep* tree = contents_.tree(); |
|
if (tree == nullptr) { |
|
contents_.remove_prefix(n); |
|
} else { |
|
CordRep* newrep = RemovePrefixFrom(tree, n); |
|
Unref(tree); |
|
contents_.replace_tree(VerifyTree(newrep)); |
|
} |
|
} |
|
|
|
void Cord::RemoveSuffix(size_t n) { |
|
ABSL_INTERNAL_CHECK(n <= size(), |
|
absl::StrCat("Requested suffix size ", n, |
|
" exceeds Cord's size ", size())); |
|
CordRep* tree = contents_.tree(); |
|
if (tree == nullptr) { |
|
contents_.reduce_size(n); |
|
} else { |
|
CordRep* newrep = RemoveSuffixFrom(tree, n); |
|
Unref(tree); |
|
contents_.replace_tree(VerifyTree(newrep)); |
|
} |
|
} |
|
|
|
// Work item for NewSubRange(). |
|
struct SubRange { |
|
SubRange() = default; |
|
SubRange(CordRep* a_node, size_t a_pos, size_t a_n) |
|
: node(a_node), pos(a_pos), n(a_n) {} |
|
CordRep* node; // nullptr means concat last 2 results. |
|
size_t pos; |
|
size_t n; |
|
}; |
|
|
|
static CordRep* NewSubRange(CordRep* node, size_t pos, size_t n) { |
|
cord_internal::CordTreeMutablePath results; |
|
// The algorithm below in worst case scenario adds up to 3 nodes to the `todo` |
|
// list, but we also pop one out on every cycle. If original tree has depth d |
|
// todo list can grew up to 2*d in size. |
|
cord_internal::CordTreePath<SubRange, 2 * cord_internal::MaxCordDepth()> todo; |
|
todo.push_back(SubRange(node, pos, n)); |
|
do { |
|
const SubRange& sr = todo.back(); |
|
node = sr.node; |
|
pos = sr.pos; |
|
n = sr.n; |
|
todo.pop_back(); |
|
|
|
if (node == nullptr) { |
|
assert(results.size() >= 2); |
|
CordRep* right = results.back(); |
|
results.pop_back(); |
|
CordRep* left = results.back(); |
|
results.pop_back(); |
|
results.push_back(Concat(left, right)); |
|
} else if (pos == 0 && n == node->length) { |
|
results.push_back(Ref(node)); |
|
} else if (node->tag != CONCAT) { |
|
if (node->tag == SUBSTRING) { |
|
pos += node->substring()->start; |
|
node = node->substring()->child; |
|
} |
|
results.push_back(NewSubstring(Ref(node), pos, n)); |
|
} else if (pos + n <= node->concat()->left->length) { |
|
todo.push_back(SubRange(node->concat()->left, pos, n)); |
|
} else if (pos >= node->concat()->left->length) { |
|
pos -= node->concat()->left->length; |
|
todo.push_back(SubRange(node->concat()->right, pos, n)); |
|
} else { |
|
size_t left_n = node->concat()->left->length - pos; |
|
todo.push_back(SubRange(nullptr, 0, 0)); // Concat() |
|
todo.push_back(SubRange(node->concat()->right, 0, n - left_n)); |
|
todo.push_back(SubRange(node->concat()->left, pos, left_n)); |
|
} |
|
} while (!todo.empty()); |
|
assert(results.size() == 1); |
|
return results.back(); |
|
} |
|
|
|
Cord Cord::Subcord(size_t pos, size_t new_size) const { |
|
Cord sub_cord; |
|
size_t length = size(); |
|
if (pos > length) pos = length; |
|
if (new_size > length - pos) new_size = length - pos; |
|
CordRep* tree = contents_.tree(); |
|
if (tree == nullptr) { |
|
// sub_cord is newly constructed, no need to re-zero-out the tail of |
|
// contents_ memory. |
|
sub_cord.contents_.set_data(contents_.data() + pos, new_size, false); |
|
} else if (new_size == 0) { |
|
// We want to return empty subcord, so nothing to do. |
|
} else if (new_size <= InlineRep::kMaxInline) { |
|
Cord::ChunkIterator it = chunk_begin(); |
|
it.AdvanceBytes(pos); |
|
char* dest = sub_cord.contents_.data_; |
|
size_t remaining_size = new_size; |
|
while (remaining_size > it->size()) { |
|
cord_internal::SmallMemmove(dest, it->data(), it->size()); |
|
remaining_size -= it->size(); |
|
dest += it->size(); |
|
++it; |
|
} |
|
cord_internal::SmallMemmove(dest, it->data(), remaining_size); |
|
sub_cord.contents_.data_[InlineRep::kMaxInline] = new_size; |
|
} else { |
|
sub_cord.contents_.set_tree(NewSubRange(tree, pos, new_size)); |
|
} |
|
return sub_cord; |
|
} |
|
|
|
// -------------------------------------------------------------------- |
|
// Balancing |
|
|
|
class CordForest { |
|
public: |
|
explicit CordForest(size_t length) : root_length_(length), trees_({}) {} |
|
|
|
void Build(CordRep* cord_root) { |
|
// We are adding up to two nodes to the `pending` list, but we also popping |
|
// one, so the size of `pending` will never exceed `MaxCordDepth()`. |
|
cord_internal::CordTreeMutablePath pending(cord_root); |
|
|
|
while (!pending.empty()) { |
|
CordRep* node = pending.back(); |
|
pending.pop_back(); |
|
CheckNode(node); |
|
if (ABSL_PREDICT_FALSE(node->tag != CONCAT)) { |
|
AddNode(node); |
|
continue; |
|
} |
|
|
|
CordRepConcat* concat_node = node->concat(); |
|
if (IsNodeBalanced(concat_node)) { |
|
AddNode(node); |
|
continue; |
|
} |
|
pending.push_back(concat_node->right); |
|
pending.push_back(concat_node->left); |
|
|
|
if (concat_node->refcount.IsOne()) { |
|
concat_node->left = concat_freelist_; |
|
concat_freelist_ = concat_node; |
|
} else { |
|
Ref(concat_node->right); |
|
Ref(concat_node->left); |
|
Unref(concat_node); |
|
} |
|
} |
|
} |
|
|
|
CordRep* ConcatNodes() { |
|
CordRep* sum = nullptr; |
|
for (auto* node : trees_) { |
|
if (node == nullptr) continue; |
|
|
|
sum = PrependNode(node, sum); |
|
root_length_ -= node->length; |
|
if (root_length_ == 0) break; |
|
} |
|
ABSL_INTERNAL_CHECK(sum != nullptr, "Failed to locate sum node"); |
|
return VerifyTree(sum); |
|
} |
|
|
|
private: |
|
CordRep* AppendNode(CordRep* node, CordRep* sum) { |
|
return (sum == nullptr) ? node : MakeConcat(sum, node); |
|
} |
|
|
|
CordRep* PrependNode(CordRep* node, CordRep* sum) { |
|
return (sum == nullptr) ? node : MakeConcat(node, sum); |
|
} |
|
|
|
void AddNode(CordRep* node) { |
|
CordRep* sum = nullptr; |
|
|
|
// Collect together everything with which we will merge node |
|
int i = 0; |
|
for (; node->length > kMinLength[i + 1]; ++i) { |
|
auto& tree_at_i = trees_[i]; |
|
|
|
if (tree_at_i == nullptr) continue; |
|
sum = PrependNode(tree_at_i, sum); |
|
tree_at_i = nullptr; |
|
} |
|
|
|
sum = AppendNode(node, sum); |
|
|
|
// Insert sum into appropriate place in the forest |
|
for (; sum->length >= kMinLength[i]; ++i) { |
|
auto& tree_at_i = trees_[i]; |
|
if (tree_at_i == nullptr) continue; |
|
|
|
sum = MakeConcat(tree_at_i, sum); |
|
tree_at_i = nullptr; |
|
} |
|
|
|
// kMinLength[0] == 1, which means sum->length >= kMinLength[0] |
|
assert(i > 0); |
|
trees_[i - 1] = sum; |
|
} |
|
|
|
// Make concat node trying to resue existing CordRepConcat nodes we |
|
// already collected in the concat_freelist_. |
|
CordRep* MakeConcat(CordRep* left, CordRep* right) { |
|
if (concat_freelist_ == nullptr) return RawConcat(left, right); |
|
|
|
CordRepConcat* rep = concat_freelist_; |
|
if (concat_freelist_->left == nullptr) { |
|
concat_freelist_ = nullptr; |
|
} else { |
|
concat_freelist_ = concat_freelist_->left->concat(); |
|
} |
|
SetConcatChildren(rep, left, right); |
|
|
|
return rep; |
|
} |
|
|
|
static void CheckNode(CordRep* node) { |
|
ABSL_INTERNAL_CHECK(node->length != 0u, ""); |
|
if (node->tag == CONCAT) { |
|
ABSL_INTERNAL_CHECK(node->concat()->left != nullptr, ""); |
|
ABSL_INTERNAL_CHECK(node->concat()->right != nullptr, ""); |
|
ABSL_INTERNAL_CHECK(node->length == (node->concat()->left->length + |
|
node->concat()->right->length), |
|
""); |
|
} |
|
} |
|
|
|
size_t root_length_; |
|
std::array<cord_internal::CordRep*, cord_internal::MaxCordDepth()> trees_; |
|
|
|
// List of concat nodes we can re-use for Cord balancing. |
|
CordRepConcat* concat_freelist_ = nullptr; |
|
}; |
|
|
|
static CordRep* Rebalance(CordRep* node) { |
|
VerifyTree(node); |
|
assert(node->tag == CONCAT); |
|
|
|
if (node->length == 0) { |
|
return nullptr; |
|
} |
|
|
|
CordForest forest(node->length); |
|
forest.Build(node); |
|
return forest.ConcatNodes(); |
|
} |
|
|
|
// -------------------------------------------------------------------- |
|
// Comparators |
|
|
|
namespace { |
|
|
|
int ClampResult(int memcmp_res) { |
|
return static_cast<int>(memcmp_res > 0) - static_cast<int>(memcmp_res < 0); |
|
} |
|
|
|
int CompareChunks(absl::string_view* lhs, absl::string_view* rhs, |
|
size_t* size_to_compare) { |
|
size_t compared_size = std::min(lhs->size(), rhs->size()); |
|
assert(*size_to_compare >= compared_size); |
|
*size_to_compare -= compared_size; |
|
|
|
int memcmp_res = ::memcmp(lhs->data(), rhs->data(), compared_size); |
|
if (memcmp_res != 0) return memcmp_res; |
|
|
|
lhs->remove_prefix(compared_size); |
|
rhs->remove_prefix(compared_size); |
|
|
|
return 0; |
|
} |
|
|
|
// This overload set computes comparison results from memcmp result. This |
|
// interface is used inside GenericCompare below. Differet implementations |
|
// are specialized for int and bool. For int we clamp result to {-1, 0, 1} |
|
// set. For bool we just interested in "value == 0". |
|
template <typename ResultType> |
|
ResultType ComputeCompareResult(int memcmp_res) { |
|
return ClampResult(memcmp_res); |
|
} |
|
template <> |
|
bool ComputeCompareResult<bool>(int memcmp_res) { |
|
return memcmp_res == 0; |
|
} |
|
|
|
} // namespace |
|
|
|
// Helper routine. Locates the first flat chunk of the Cord without |
|
// initializing the iterator. |
|
inline absl::string_view Cord::InlineRep::FindFlatStartPiece() const { |
|
size_t n = data_[kMaxInline]; |
|
if (n <= kMaxInline) { |
|
return absl::string_view(data_, n); |
|
} |
|
|
|
CordRep* node = tree(); |
|
if (node->tag >= FLAT) { |
|
return absl::string_view(node->data, node->length); |
|
} |
|
|
|
if (node->tag == EXTERNAL) { |
|
return absl::string_view(node->external()->base, node->length); |
|
} |
|
|
|
// Walk down the left branches until we hit a non-CONCAT node. |
|
while (node->tag == CONCAT) { |
|
node = node->concat()->left; |
|
} |
|
|
|
// Get the child node if we encounter a SUBSTRING. |
|
size_t offset = 0; |
|
size_t length = node->length; |
|
assert(length != 0); |
|
|
|
if (node->tag == SUBSTRING) { |
|
offset = node->substring()->start; |
|
node = node->substring()->child; |
|
} |
|
|
|
if (node->tag >= FLAT) { |
|
return absl::string_view(node->data + offset, length); |
|
} |
|
|
|
assert((node->tag == EXTERNAL) && "Expect FLAT or EXTERNAL node here"); |
|
|
|
return absl::string_view(node->external()->base + offset, length); |
|
} |
|
|
|
inline int Cord::CompareSlowPath(absl::string_view rhs, size_t compared_size, |
|
size_t size_to_compare) const { |
|
auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) { |
|
if (!chunk->empty()) return true; |
|
++*it; |
|
if (it->bytes_remaining_ == 0) return false; |
|
*chunk = **it; |
|
return true; |
|
}; |
|
|
|
Cord::ChunkIterator lhs_it = chunk_begin(); |
|
|
|
// compared_size is inside first chunk. |
|
absl::string_view lhs_chunk = |
|
(lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view(); |
|
assert(compared_size <= lhs_chunk.size()); |
|
assert(compared_size <= rhs.size()); |
|
lhs_chunk.remove_prefix(compared_size); |
|
rhs.remove_prefix(compared_size); |
|
size_to_compare -= compared_size; // skip already compared size. |
|
|
|
while (advance(&lhs_it, &lhs_chunk) && !rhs.empty()) { |
|
int comparison_result = CompareChunks(&lhs_chunk, &rhs, &size_to_compare); |
|
if (comparison_result != 0) return comparison_result; |
|
if (size_to_compare == 0) return 0; |
|
} |
|
|
|
return static_cast<int>(rhs.empty()) - static_cast<int>(lhs_chunk.empty()); |
|
} |
|
|
|
inline int Cord::CompareSlowPath(const Cord& rhs, size_t compared_size, |
|
size_t size_to_compare) const { |
|
auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) { |
|
if (!chunk->empty()) return true; |
|
++*it; |
|
if (it->bytes_remaining_ == 0) return false; |
|
*chunk = **it; |
|
return true; |
|
}; |
|
|
|
Cord::ChunkIterator lhs_it = chunk_begin(); |
|
Cord::ChunkIterator rhs_it = rhs.chunk_begin(); |
|
|
|
// compared_size is inside both first chunks. |
|
absl::string_view lhs_chunk = |
|
(lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view(); |
|
absl::string_view rhs_chunk = |
|
(rhs_it.bytes_remaining_ != 0) ? *rhs_it : absl::string_view(); |
|
assert(compared_size <= lhs_chunk.size()); |
|
assert(compared_size <= rhs_chunk.size()); |
|
lhs_chunk.remove_prefix(compared_size); |
|
rhs_chunk.remove_prefix(compared_size); |
|
size_to_compare -= compared_size; // skip already compared size. |
|
|
|
while (advance(&lhs_it, &lhs_chunk) && advance(&rhs_it, &rhs_chunk)) { |
|
int memcmp_res = CompareChunks(&lhs_chunk, &rhs_chunk, &size_to_compare); |
|
if (memcmp_res != 0) return memcmp_res; |
|
if (size_to_compare == 0) return 0; |
|
} |
|
|
|
return static_cast<int>(rhs_chunk.empty()) - |
|
static_cast<int>(lhs_chunk.empty()); |
|
} |
|
|
|
inline absl::string_view Cord::GetFirstChunk(const Cord& c) { |
|
return c.contents_.FindFlatStartPiece(); |
|
} |
|
inline absl::string_view Cord::GetFirstChunk(absl::string_view sv) { |
|
return sv; |
|
} |
|
|
|
// Compares up to 'size_to_compare' bytes of 'lhs' with 'rhs'. It is assumed |
|
// that 'size_to_compare' is greater that size of smallest of first chunks. |
|
template <typename ResultType, typename RHS> |
|
ResultType GenericCompare(const Cord& lhs, const RHS& rhs, |
|
size_t size_to_compare) { |
|
absl::string_view lhs_chunk = Cord::GetFirstChunk(lhs); |
|
absl::string_view rhs_chunk = Cord::GetFirstChunk(rhs); |
|
|
|
size_t compared_size = std::min(lhs_chunk.size(), rhs_chunk.size()); |
|
assert(size_to_compare >= compared_size); |
|
int memcmp_res = ::memcmp(lhs_chunk.data(), rhs_chunk.data(), compared_size); |
|
if (compared_size == size_to_compare || memcmp_res != 0) { |
|
return ComputeCompareResult<ResultType>(memcmp_res); |
|
} |
|
|
|
return ComputeCompareResult<ResultType>( |
|
lhs.CompareSlowPath(rhs, compared_size, size_to_compare)); |
|
} |
|
|
|
bool Cord::EqualsImpl(absl::string_view rhs, size_t size_to_compare) const { |
|
return GenericCompare<bool>(*this, rhs, size_to_compare); |
|
} |
|
|
|
bool Cord::EqualsImpl(const Cord& rhs, size_t size_to_compare) const { |
|
return GenericCompare<bool>(*this, rhs, size_to_compare); |
|
} |
|
|
|
template <typename RHS> |
|
inline int SharedCompareImpl(const Cord& lhs, const RHS& rhs) { |
|
size_t lhs_size = lhs.size(); |
|
size_t rhs_size = rhs.size(); |
|
if (lhs_size == rhs_size) { |
|
return GenericCompare<int>(lhs, rhs, lhs_size); |
|
} |
|
if (lhs_size < rhs_size) { |
|
auto data_comp_res = GenericCompare<int>(lhs, rhs, lhs_size); |
|
return data_comp_res == 0 ? -1 : data_comp_res; |
|
} |
|
|
|
auto data_comp_res = GenericCompare<int>(lhs, rhs, rhs_size); |
|
return data_comp_res == 0 ? +1 : data_comp_res; |
|
} |
|
|
|
int Cord::Compare(absl::string_view rhs) const { |
|
return SharedCompareImpl(*this, rhs); |
|
} |
|
|
|
int Cord::CompareImpl(const Cord& rhs) const { |
|
return SharedCompareImpl(*this, rhs); |
|
} |
|
|
|
bool Cord::EndsWith(absl::string_view rhs) const { |
|
size_t my_size = size(); |
|
size_t rhs_size = rhs.size(); |
|
|
|
if (my_size < rhs_size) return false; |
|
|
|
Cord tmp(*this); |
|
tmp.RemovePrefix(my_size - rhs_size); |
|
return tmp.EqualsImpl(rhs, rhs_size); |
|
} |
|
|
|
bool Cord::EndsWith(const Cord& rhs) const { |
|
size_t my_size = size(); |
|
size_t rhs_size = rhs.size(); |
|
|
|
if (my_size < rhs_size) return false; |
|
|
|
Cord tmp(*this); |
|
tmp.RemovePrefix(my_size - rhs_size); |
|
return tmp.EqualsImpl(rhs, rhs_size); |
|
} |
|
|
|
// -------------------------------------------------------------------- |
|
// Misc. |
|
|
|
Cord::operator std::string() const { |
|
std::string s; |
|
absl::CopyCordToString(*this, &s); |
|
return s; |
|
} |
|
|
|
void CopyCordToString(const Cord& src, std::string* dst) { |
|
if (!src.contents_.is_tree()) { |
|
src.contents_.CopyTo(dst); |
|
} else { |
|
absl::strings_internal::STLStringResizeUninitialized(dst, src.size()); |
|
src.CopyToArraySlowPath(&(*dst)[0]); |
|
} |
|
} |
|
|
|
void Cord::CopyToArraySlowPath(char* dst) const { |
|
assert(contents_.is_tree()); |
|
absl::string_view fragment; |
|
if (GetFlatAux(contents_.tree(), &fragment)) { |
|
memcpy(dst, fragment.data(), fragment.size()); |
|
return; |
|
} |
|
for (absl::string_view chunk : Chunks()) { |
|
memcpy(dst, chunk.data(), chunk.size()); |
|
dst += chunk.size(); |
|
} |
|
} |
|
|
|
Cord::ChunkIterator& Cord::ChunkIterator::operator++() { |
|
assert(bytes_remaining_ > 0 && "Attempted to iterate past `end()`"); |
|
assert(bytes_remaining_ >= current_chunk_.size()); |
|
bytes_remaining_ -= current_chunk_.size(); |
|
|
|
if (stack_of_right_children_.empty()) { |
|
assert(!current_chunk_.empty()); // Called on invalid iterator. |
|
// We have reached the end of the Cord. |
|
return *this; |
|
} |
|
|
|
// Process the next node on the stack. |
|
CordRep* node = stack_of_right_children_.back(); |
|
stack_of_right_children_.pop_back(); |
|
|
|
// Walk down the left branches until we hit a non-CONCAT node. Save the |
|
// right children to the stack for subsequent traversal. |
|
while (node->tag == CONCAT) { |
|
stack_of_right_children_.push_back(node->concat()->right); |
|
node = node->concat()->left; |
|
} |
|
|
|
// Get the child node if we encounter a SUBSTRING. |
|
size_t offset = 0; |
|
size_t length = node->length; |
|
if (node->tag == SUBSTRING) { |
|
offset = node->substring()->start; |
|
node = node->substring()->child; |
|
} |
|
|
|
assert(node->tag == EXTERNAL || node->tag >= FLAT); |
|
assert(length != 0); |
|
const char* data = |
|
node->tag == EXTERNAL ? node->external()->base : node->data; |
|
current_chunk_ = absl::string_view(data + offset, length); |
|
current_leaf_ = node; |
|
return *this; |
|
} |
|
|
|
Cord Cord::ChunkIterator::AdvanceAndReadBytes(size_t n) { |
|
assert(bytes_remaining_ >= n && "Attempted to iterate past `end()`"); |
|
Cord subcord; |
|
|
|
if (n <= InlineRep::kMaxInline) { |
|
// Range to read fits in inline data. Flatten it. |
|
char* data = subcord.contents_.set_data(n); |
|
while (n > current_chunk_.size()) { |
|
memcpy(data, current_chunk_.data(), current_chunk_.size()); |
|
data += current_chunk_.size(); |
|
n -= current_chunk_.size(); |
|
++*this; |
|
} |
|
memcpy(data, current_chunk_.data(), n); |
|
if (n < current_chunk_.size()) { |
|
RemoveChunkPrefix(n); |
|
} else if (n > 0) { |
|
++*this; |
|
} |
|
return subcord; |
|
} |
|
if (n < current_chunk_.size()) { |
|
// Range to read is a proper subrange of the current chunk. |
|
assert(current_leaf_ != nullptr); |
|
CordRep* subnode = Ref(current_leaf_); |
|
const char* data = |
|
subnode->tag == EXTERNAL ? subnode->external()->base : subnode->data; |
|
subnode = NewSubstring(subnode, current_chunk_.data() - data, n); |
|
subcord.contents_.set_tree(VerifyTree(subnode)); |
|
RemoveChunkPrefix(n); |
|
return subcord; |
|
} |
|
|
|
// Range to read begins with a proper subrange of the current chunk. |
|
assert(!current_chunk_.empty()); |
|
assert(current_leaf_ != nullptr); |
|
CordRep* subnode = Ref(current_leaf_); |
|
if (current_chunk_.size() < subnode->length) { |
|
const char* data = |
|
subnode->tag == EXTERNAL ? subnode->external()->base : subnode->data; |
|
subnode = NewSubstring(subnode, current_chunk_.data() - data, |
|
current_chunk_.size()); |
|
} |
|
n -= current_chunk_.size(); |
|
bytes_remaining_ -= current_chunk_.size(); |
|
|
|
// Process the next node(s) on the stack, reading whole subtrees depending on |
|
// their length and how many bytes we are advancing. |
|
CordRep* node = nullptr; |
|
while (!stack_of_right_children_.empty()) { |
|
node = stack_of_right_children_.back(); |
|
stack_of_right_children_.pop_back(); |
|
if (node->length > n) break; |
|
// TODO(qrczak): This might unnecessarily recreate existing concat nodes. |
|
// Avoiding that would need pretty complicated logic (instead of |
|
// current_leaf_, keep current_subtree_ which points to the highest node |
|
// such that the current leaf can be found on the path of left children |
|
// starting from current_subtree_; delay creating subnode while node is |
|
// below current_subtree_; find the proper node along the path of left |
|
// children starting from current_subtree_ if this loop exits while staying |
|
// below current_subtree_; etc.; alternatively, push parents instead of |
|
// right children on the stack). |
|
subnode = Concat(subnode, Ref(node)); |
|
n -= node->length; |
|
bytes_remaining_ -= node->length; |
|
node = nullptr; |
|
} |
|
|
|
if (node == nullptr) { |
|
// We have reached the end of the Cord. |
|
assert(bytes_remaining_ == 0); |
|
subcord.contents_.set_tree(VerifyTree(subnode)); |
|
return subcord; |
|
} |
|
|
|
// Walk down the appropriate branches until we hit a non-CONCAT node. Save the |
|
// right children to the stack for subsequent traversal. |
|
while (node->tag == CONCAT) { |
|
if (node->concat()->left->length > n) { |
|
// Push right, descend left. |
|
stack_of_right_children_.push_back(node->concat()->right); |
|
node = node->concat()->left; |
|
} else { |
|
// Read left, descend right. |
|
subnode = Concat(subnode, Ref(node->concat()->left)); |
|
n -= node->concat()->left->length; |
|
bytes_remaining_ -= node->concat()->left->length; |
|
node = node->concat()->right; |
|
} |
|
} |
|
|
|
// Get the child node if we encounter a SUBSTRING. |
|
size_t offset = 0; |
|
size_t length = node->length; |
|
if (node->tag == SUBSTRING) { |
|
offset = node->substring()->start; |
|
node = node->substring()->child; |
|
} |
|
|
|
// Range to read ends with a proper (possibly empty) subrange of the current |
|
// chunk. |
|
assert(node->tag == EXTERNAL || node->tag >= FLAT); |
|
assert(length > n); |
|
if (n > 0) subnode = Concat(subnode, NewSubstring(Ref(node), offset, n)); |
|
const char* data = |
|
node->tag == EXTERNAL ? node->external()->base : node->data; |
|
current_chunk_ = absl::string_view(data + offset + n, length - n); |
|
current_leaf_ = node; |
|
bytes_remaining_ -= n; |
|
subcord.contents_.set_tree(VerifyTree(subnode)); |
|
return subcord; |
|
} |
|
|
|
void Cord::ChunkIterator::AdvanceBytesSlowPath(size_t n) { |
|
assert(bytes_remaining_ >= n && "Attempted to iterate past `end()`"); |
|
assert(n >= current_chunk_.size()); // This should only be called when |
|
// iterating to a new node. |
|
|
|
n -= current_chunk_.size(); |
|
bytes_remaining_ -= current_chunk_.size(); |
|
|
|
// Process the next node(s) on the stack, skipping whole subtrees depending on |
|
// their length and how many bytes we are advancing. |
|
CordRep* node = nullptr; |
|
while (!stack_of_right_children_.empty()) { |
|
node = stack_of_right_children_.back(); |
|
stack_of_right_children_.pop_back(); |
|
if (node->length > n) break; |
|
n -= node->length; |
|
bytes_remaining_ -= node->length; |
|
node = nullptr; |
|
} |
|
|
|
if (node == nullptr) { |
|
// We have reached the end of the Cord. |
|
assert(bytes_remaining_ == 0); |
|
return; |
|
} |
|
|
|
// Walk down the appropriate branches until we hit a non-CONCAT node. Save the |
|
// right children to the stack for subsequent traversal. |
|
while (node->tag == CONCAT) { |
|
if (node->concat()->left->length > n) { |
|
// Push right, descend left. |
|
stack_of_right_children_.push_back(node->concat()->right); |
|
node = node->concat()->left; |
|
} else { |
|
// Skip left, descend right. |
|
n -= node->concat()->left->length; |
|
bytes_remaining_ -= node->concat()->left->length; |
|
node = node->concat()->right; |
|
} |
|
} |
|
|
|
// Get the child node if we encounter a SUBSTRING. |
|
size_t offset = 0; |
|
size_t length = node->length; |
|
if (node->tag == SUBSTRING) { |
|
offset = node->substring()->start; |
|
node = node->substring()->child; |
|
} |
|
|
|
assert(node->tag == EXTERNAL || node->tag >= FLAT); |
|
assert(length > n); |
|
const char* data = |
|
node->tag == EXTERNAL ? node->external()->base : node->data; |
|
current_chunk_ = absl::string_view(data + offset + n, length - n); |
|
current_leaf_ = node; |
|
bytes_remaining_ -= n; |
|
} |
|
|
|
char Cord::operator[](size_t i) const { |
|
assert(i < size()); |
|
size_t offset = i; |
|
const CordRep* rep = contents_.tree(); |
|
if (rep == nullptr) { |
|
return contents_.data()[i]; |
|
} |
|
while (true) { |
|
assert(rep != nullptr); |
|
assert(offset < rep->length); |
|
if (rep->tag >= FLAT) { |
|
// Get the "i"th character directly from the flat array. |
|
return rep->data[offset]; |
|
} else if (rep->tag == EXTERNAL) { |
|
// Get the "i"th character from the external array. |
|
return rep->external()->base[offset]; |
|
} else if (rep->tag == CONCAT) { |
|
// Recursively branch to the side of the concatenation that the "i"th |
|
// character is on. |
|
size_t left_length = rep->concat()->left->length; |
|
if (offset < left_length) { |
|
rep = rep->concat()->left; |
|
} else { |
|
offset -= left_length; |
|
rep = rep->concat()->right; |
|
} |
|
} else { |
|
// This must be a substring a node, so bypass it to get to the child. |
|
assert(rep->tag == SUBSTRING); |
|
offset += rep->substring()->start; |
|
rep = rep->substring()->child; |
|
} |
|
} |
|
} |
|
|
|
absl::string_view Cord::FlattenSlowPath() { |
|
size_t total_size = size(); |
|
CordRep* new_rep; |
|
char* new_buffer; |
|
|
|
// Try to put the contents into a new flat rep. If they won't fit in the |
|
// biggest possible flat node, use an external rep instead. |
|
if (total_size <= kMaxFlatLength) { |
|
new_rep = NewFlat(total_size); |
|
new_rep->length = total_size; |
|
new_buffer = new_rep->data; |
|
CopyToArraySlowPath(new_buffer); |
|
} else { |
|
new_buffer = std::allocator<char>().allocate(total_size); |
|
CopyToArraySlowPath(new_buffer); |
|
new_rep = absl::cord_internal::NewExternalRep( |
|
absl::string_view(new_buffer, total_size), [](absl::string_view s) { |
|
std::allocator<char>().deallocate(const_cast<char*>(s.data()), |
|
s.size()); |
|
}); |
|
} |
|
Unref(contents_.tree()); |
|
contents_.set_tree(new_rep); |
|
return absl::string_view(new_buffer, total_size); |
|
} |
|
|
|
/* static */ bool Cord::GetFlatAux(CordRep* rep, absl::string_view* fragment) { |
|
assert(rep != nullptr); |
|
if (rep->tag >= FLAT) { |
|
*fragment = absl::string_view(rep->data, rep->length); |
|
return true; |
|
} else if (rep->tag == EXTERNAL) { |
|
*fragment = absl::string_view(rep->external()->base, rep->length); |
|
return true; |
|
} else if (rep->tag == SUBSTRING) { |
|
CordRep* child = rep->substring()->child; |
|
if (child->tag >= FLAT) { |
|
*fragment = |
|
absl::string_view(child->data + rep->substring()->start, rep->length); |
|
return true; |
|
} else if (child->tag == EXTERNAL) { |
|
*fragment = absl::string_view( |
|
child->external()->base + rep->substring()->start, rep->length); |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
/* static */ void Cord::ForEachChunkAux( |
|
absl::cord_internal::CordRep* rep, |
|
absl::FunctionRef<void(absl::string_view)> callback) { |
|
assert(rep != nullptr); |
|
int stack_pos = 0; |
|
constexpr int stack_max = 128; |
|
// Stack of right branches for tree traversal |
|
absl::cord_internal::CordRep* stack[stack_max]; |
|
absl::cord_internal::CordRep* current_node = rep; |
|
while (true) { |
|
if (current_node->tag == CONCAT) { |
|
if (stack_pos == stack_max) { |
|
// There's no more room on our stack array to add another right branch, |
|
// and the idea is to avoid allocations, so call this function |
|
// recursively to navigate this subtree further. (This is not something |
|
// we expect to happen in practice). |
|
ForEachChunkAux(current_node, callback); |
|
|
|
// Pop the next right branch and iterate. |
|
current_node = stack[--stack_pos]; |
|
continue; |
|
} else { |
|
// Save the right branch for later traversal and continue down the left |
|
// branch. |
|
stack[stack_pos++] = current_node->concat()->right; |
|
current_node = current_node->concat()->left; |
|
continue; |
|
} |
|
} |
|
// This is a leaf node, so invoke our callback. |
|
absl::string_view chunk; |
|
bool success = GetFlatAux(current_node, &chunk); |
|
assert(success); |
|
if (success) { |
|
callback(chunk); |
|
} |
|
if (stack_pos == 0) { |
|
// end of traversal |
|
return; |
|
} |
|
current_node = stack[--stack_pos]; |
|
} |
|
} |
|
|
|
static void DumpNode(const CordRep* rep, bool include_data, std::ostream* os) { |
|
const int kIndentStep = 1; |
|
int indent = 0; |
|
cord_internal::CordTreeConstPath stack; |
|
cord_internal::CordTreePath<int, cord_internal::MaxCordDepth()> indents; |
|
for (;;) { |
|
*os << std::setw(3) << rep->refcount.Get(); |
|
*os << " " << std::setw(7) << rep->length; |
|
*os << " ["; |
|
if (include_data) *os << static_cast<const void*>(rep); |
|
*os << "]"; |
|
*os << " " << (IsNodeBalanced(rep) ? 'b' : 'u'); |
|
*os << " " << std::setw(indent) << ""; |
|
if (rep->tag == CONCAT) { |
|
*os << "CONCAT depth=" << Depth(rep) << "\n"; |
|
indent += kIndentStep; |
|
indents.push_back(indent); |
|
stack.push_back(rep->concat()->right); |
|
rep = rep->concat()->left; |
|
} else if (rep->tag == SUBSTRING) { |
|
*os << "SUBSTRING @ " << rep->substring()->start << "\n"; |
|
indent += kIndentStep; |
|
rep = rep->substring()->child; |
|
} else { // Leaf |
|
if (rep->tag == EXTERNAL) { |
|
*os << "EXTERNAL ["; |
|
if (include_data) |
|
*os << absl::CEscape(std::string(rep->external()->base, rep->length)); |
|
*os << "]\n"; |
|
} else { |
|
*os << "FLAT cap=" << TagToLength(rep->tag) << " ["; |
|
if (include_data) |
|
*os << absl::CEscape(absl::string_view(rep->data, rep->length)); |
|
*os << "]\n"; |
|
} |
|
if (stack.empty()) break; |
|
rep = stack.back(); |
|
stack.pop_back(); |
|
indent = indents.back(); |
|
indents.pop_back(); |
|
} |
|
} |
|
ABSL_INTERNAL_CHECK(indents.empty(), ""); |
|
} |
|
|
|
static std::string ReportError(const CordRep* root, const CordRep* node) { |
|
std::ostringstream buf; |
|
buf << "Error at node " << node << " in:"; |
|
DumpNode(root, true, &buf); |
|
return buf.str(); |
|
} |
|
|
|
static bool VerifyNode(const CordRep* root, const CordRep* start_node, |
|
bool full_validation) { |
|
cord_internal::CordTreeConstPath worklist; |
|
worklist.push_back(start_node); |
|
do { |
|
const CordRep* node = worklist.back(); |
|
worklist.pop_back(); |
|
|
|
ABSL_INTERNAL_CHECK(node != nullptr, ReportError(root, node)); |
|
if (node != root) { |
|
ABSL_INTERNAL_CHECK(node->length != 0, ReportError(root, node)); |
|
} |
|
|
|
if (node->tag == CONCAT) { |
|
ABSL_INTERNAL_CHECK(node->concat()->left != nullptr, |
|
ReportError(root, node)); |
|
ABSL_INTERNAL_CHECK(node->concat()->right != nullptr, |
|
ReportError(root, node)); |
|
ABSL_INTERNAL_CHECK((node->length == node->concat()->left->length + |
|
node->concat()->right->length), |
|
ReportError(root, node)); |
|
if (full_validation) { |
|
worklist.push_back(node->concat()->right); |
|
worklist.push_back(node->concat()->left); |
|
} |
|
} else if (node->tag >= FLAT) { |
|
ABSL_INTERNAL_CHECK(node->length <= TagToLength(node->tag), |
|
ReportError(root, node)); |
|
} else if (node->tag == EXTERNAL) { |
|
ABSL_INTERNAL_CHECK(node->external()->base != nullptr, |
|
ReportError(root, node)); |
|
} else if (node->tag == SUBSTRING) { |
|
ABSL_INTERNAL_CHECK( |
|
node->substring()->start < node->substring()->child->length, |
|
ReportError(root, node)); |
|
ABSL_INTERNAL_CHECK(node->substring()->start + node->length <= |
|
node->substring()->child->length, |
|
ReportError(root, node)); |
|
} |
|
} while (!worklist.empty()); |
|
return true; |
|
} |
|
|
|
// Traverses the tree and computes the total memory allocated. |
|
/* static */ size_t Cord::MemoryUsageAux(const CordRep* rep) { |
|
size_t total_mem_usage = 0; |
|
|
|
// Allow a quick exit for the common case that the root is a leaf. |
|
if (RepMemoryUsageLeaf(rep, &total_mem_usage)) { |
|
return total_mem_usage; |
|
} |
|
|
|
// Iterate over the tree. cur_node is never a leaf node and leaf nodes will |
|
// never be appended to tree_stack. This reduces overhead from manipulating |
|
// tree_stack. |
|
cord_internal::CordTreeConstPath tree_stack; |
|
const CordRep* cur_node = rep; |
|
while (true) { |
|
const CordRep* next_node = nullptr; |
|
|
|
if (cur_node->tag == CONCAT) { |
|
total_mem_usage += sizeof(CordRepConcat); |
|
const CordRep* left = cur_node->concat()->left; |
|
if (!RepMemoryUsageLeaf(left, &total_mem_usage)) { |
|
next_node = left; |
|
} |
|
|
|
const CordRep* right = cur_node->concat()->right; |
|
if (!RepMemoryUsageLeaf(right, &total_mem_usage)) { |
|
if (next_node) { |
|
tree_stack.push_back(next_node); |
|
} |
|
next_node = right; |
|
} |
|
} else { |
|
// Since cur_node is not a leaf or a concat node it must be a substring. |
|
assert(cur_node->tag == SUBSTRING); |
|
total_mem_usage += sizeof(CordRepSubstring); |
|
next_node = cur_node->substring()->child; |
|
if (RepMemoryUsageLeaf(next_node, &total_mem_usage)) { |
|
next_node = nullptr; |
|
} |
|
} |
|
|
|
if (!next_node) { |
|
if (tree_stack.empty()) { |
|
return total_mem_usage; |
|
} |
|
next_node = tree_stack.back(); |
|
tree_stack.pop_back(); |
|
} |
|
cur_node = next_node; |
|
} |
|
} |
|
|
|
std::ostream& operator<<(std::ostream& out, const Cord& cord) { |
|
for (absl::string_view chunk : cord.Chunks()) { |
|
out.write(chunk.data(), chunk.size()); |
|
} |
|
return out; |
|
} |
|
|
|
namespace strings_internal { |
|
size_t CordTestAccess::FlatOverhead() { return kFlatOverhead; } |
|
size_t CordTestAccess::MaxFlatLength() { return kMaxFlatLength; } |
|
size_t CordTestAccess::FlatTagToLength(uint8_t tag) { |
|
return TagToLength(tag); |
|
} |
|
uint8_t CordTestAccess::LengthToTag(size_t s) { |
|
ABSL_INTERNAL_CHECK(s <= kMaxFlatLength, absl::StrCat("Invalid length ", s)); |
|
return AllocatedSizeToTag(s + kFlatOverhead); |
|
} |
|
size_t CordTestAccess::SizeofCordRepConcat() { return sizeof(CordRepConcat); } |
|
size_t CordTestAccess::SizeofCordRepExternal() { |
|
return sizeof(CordRepExternal); |
|
} |
|
size_t CordTestAccess::SizeofCordRepSubstring() { |
|
return sizeof(CordRepSubstring); |
|
} |
|
} // namespace strings_internal |
|
ABSL_NAMESPACE_END |
|
} // namespace absl
|
|
|