Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
914 lines
30 KiB
914 lines
30 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
// This file contains string processing functions related to |
|
// numeric values. |
|
|
|
#include "absl/strings/numbers.h" |
|
|
|
#include <algorithm> |
|
#include <cassert> |
|
#include <cfloat> // for DBL_DIG and FLT_DIG |
|
#include <cmath> // for HUGE_VAL |
|
#include <cstdint> |
|
#include <cstdio> |
|
#include <cstdlib> |
|
#include <cstring> |
|
#include <iterator> |
|
#include <limits> |
|
#include <memory> |
|
#include <utility> |
|
|
|
#include "absl/base/internal/bits.h" |
|
#include "absl/base/internal/raw_logging.h" |
|
#include "absl/strings/ascii.h" |
|
#include "absl/strings/charconv.h" |
|
#include "absl/strings/escaping.h" |
|
#include "absl/strings/internal/memutil.h" |
|
#include "absl/strings/match.h" |
|
#include "absl/strings/str_cat.h" |
|
|
|
namespace absl { |
|
|
|
bool SimpleAtof(absl::string_view str, float* out) { |
|
*out = 0.0; |
|
str = StripAsciiWhitespace(str); |
|
if (!str.empty() && str[0] == '+') { |
|
str.remove_prefix(1); |
|
} |
|
auto result = absl::from_chars(str.data(), str.data() + str.size(), *out); |
|
if (result.ec == std::errc::invalid_argument) { |
|
return false; |
|
} |
|
if (result.ptr != str.data() + str.size()) { |
|
// not all non-whitespace characters consumed |
|
return false; |
|
} |
|
// from_chars() with DR 3081's current wording will return max() on |
|
// overflow. SimpleAtof returns infinity instead. |
|
if (result.ec == std::errc::result_out_of_range) { |
|
if (*out > 1.0) { |
|
*out = std::numeric_limits<float>::infinity(); |
|
} else if (*out < -1.0) { |
|
*out = -std::numeric_limits<float>::infinity(); |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
bool SimpleAtod(absl::string_view str, double* out) { |
|
*out = 0.0; |
|
str = StripAsciiWhitespace(str); |
|
if (!str.empty() && str[0] == '+') { |
|
str.remove_prefix(1); |
|
} |
|
auto result = absl::from_chars(str.data(), str.data() + str.size(), *out); |
|
if (result.ec == std::errc::invalid_argument) { |
|
return false; |
|
} |
|
if (result.ptr != str.data() + str.size()) { |
|
// not all non-whitespace characters consumed |
|
return false; |
|
} |
|
// from_chars() with DR 3081's current wording will return max() on |
|
// overflow. SimpleAtod returns infinity instead. |
|
if (result.ec == std::errc::result_out_of_range) { |
|
if (*out > 1.0) { |
|
*out = std::numeric_limits<double>::infinity(); |
|
} else if (*out < -1.0) { |
|
*out = -std::numeric_limits<double>::infinity(); |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
bool SimpleAtob(absl::string_view str, bool* out) { |
|
ABSL_RAW_CHECK(out != nullptr, "Output pointer must not be nullptr."); |
|
if (EqualsIgnoreCase(str, "true") || EqualsIgnoreCase(str, "t") || |
|
EqualsIgnoreCase(str, "yes") || EqualsIgnoreCase(str, "y") || |
|
EqualsIgnoreCase(str, "1")) { |
|
*out = true; |
|
return true; |
|
} |
|
if (EqualsIgnoreCase(str, "false") || EqualsIgnoreCase(str, "f") || |
|
EqualsIgnoreCase(str, "no") || EqualsIgnoreCase(str, "n") || |
|
EqualsIgnoreCase(str, "0")) { |
|
*out = false; |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
// ---------------------------------------------------------------------- |
|
// FastIntToBuffer() overloads |
|
// |
|
// Like the Fast*ToBuffer() functions above, these are intended for speed. |
|
// Unlike the Fast*ToBuffer() functions, however, these functions write |
|
// their output to the beginning of the buffer. The caller is responsible |
|
// for ensuring that the buffer has enough space to hold the output. |
|
// |
|
// Returns a pointer to the end of the string (i.e. the null character |
|
// terminating the string). |
|
// ---------------------------------------------------------------------- |
|
|
|
namespace { |
|
|
|
// Used to optimize printing a decimal number's final digit. |
|
const char one_ASCII_final_digits[10][2] { |
|
{'0', 0}, {'1', 0}, {'2', 0}, {'3', 0}, {'4', 0}, |
|
{'5', 0}, {'6', 0}, {'7', 0}, {'8', 0}, {'9', 0}, |
|
}; |
|
|
|
} // namespace |
|
|
|
char* numbers_internal::FastIntToBuffer(uint32_t i, char* buffer) { |
|
uint32_t digits; |
|
// The idea of this implementation is to trim the number of divides to as few |
|
// as possible, and also reducing memory stores and branches, by going in |
|
// steps of two digits at a time rather than one whenever possible. |
|
// The huge-number case is first, in the hopes that the compiler will output |
|
// that case in one branch-free block of code, and only output conditional |
|
// branches into it from below. |
|
if (i >= 1000000000) { // >= 1,000,000,000 |
|
digits = i / 100000000; // 100,000,000 |
|
i -= digits * 100000000; |
|
PutTwoDigits(digits, buffer); |
|
buffer += 2; |
|
lt100_000_000: |
|
digits = i / 1000000; // 1,000,000 |
|
i -= digits * 1000000; |
|
PutTwoDigits(digits, buffer); |
|
buffer += 2; |
|
lt1_000_000: |
|
digits = i / 10000; // 10,000 |
|
i -= digits * 10000; |
|
PutTwoDigits(digits, buffer); |
|
buffer += 2; |
|
lt10_000: |
|
digits = i / 100; |
|
i -= digits * 100; |
|
PutTwoDigits(digits, buffer); |
|
buffer += 2; |
|
lt100: |
|
digits = i; |
|
PutTwoDigits(digits, buffer); |
|
buffer += 2; |
|
*buffer = 0; |
|
return buffer; |
|
} |
|
|
|
if (i < 100) { |
|
digits = i; |
|
if (i >= 10) goto lt100; |
|
memcpy(buffer, one_ASCII_final_digits[i], 2); |
|
return buffer + 1; |
|
} |
|
if (i < 10000) { // 10,000 |
|
if (i >= 1000) goto lt10_000; |
|
digits = i / 100; |
|
i -= digits * 100; |
|
*buffer++ = '0' + digits; |
|
goto lt100; |
|
} |
|
if (i < 1000000) { // 1,000,000 |
|
if (i >= 100000) goto lt1_000_000; |
|
digits = i / 10000; // 10,000 |
|
i -= digits * 10000; |
|
*buffer++ = '0' + digits; |
|
goto lt10_000; |
|
} |
|
if (i < 100000000) { // 100,000,000 |
|
if (i >= 10000000) goto lt100_000_000; |
|
digits = i / 1000000; // 1,000,000 |
|
i -= digits * 1000000; |
|
*buffer++ = '0' + digits; |
|
goto lt1_000_000; |
|
} |
|
// we already know that i < 1,000,000,000 |
|
digits = i / 100000000; // 100,000,000 |
|
i -= digits * 100000000; |
|
*buffer++ = '0' + digits; |
|
goto lt100_000_000; |
|
} |
|
|
|
char* numbers_internal::FastIntToBuffer(int32_t i, char* buffer) { |
|
uint32_t u = i; |
|
if (i < 0) { |
|
*buffer++ = '-'; |
|
// We need to do the negation in modular (i.e., "unsigned") |
|
// arithmetic; MSVC++ apprently warns for plain "-u", so |
|
// we write the equivalent expression "0 - u" instead. |
|
u = 0 - u; |
|
} |
|
return numbers_internal::FastIntToBuffer(u, buffer); |
|
} |
|
|
|
char* numbers_internal::FastIntToBuffer(uint64_t i, char* buffer) { |
|
uint32_t u32 = static_cast<uint32_t>(i); |
|
if (u32 == i) return numbers_internal::FastIntToBuffer(u32, buffer); |
|
|
|
// Here we know i has at least 10 decimal digits. |
|
uint64_t top_1to11 = i / 1000000000; |
|
u32 = static_cast<uint32_t>(i - top_1to11 * 1000000000); |
|
uint32_t top_1to11_32 = static_cast<uint32_t>(top_1to11); |
|
|
|
if (top_1to11_32 == top_1to11) { |
|
buffer = numbers_internal::FastIntToBuffer(top_1to11_32, buffer); |
|
} else { |
|
// top_1to11 has more than 32 bits too; print it in two steps. |
|
uint32_t top_8to9 = static_cast<uint32_t>(top_1to11 / 100); |
|
uint32_t mid_2 = static_cast<uint32_t>(top_1to11 - top_8to9 * 100); |
|
buffer = numbers_internal::FastIntToBuffer(top_8to9, buffer); |
|
PutTwoDigits(mid_2, buffer); |
|
buffer += 2; |
|
} |
|
|
|
// We have only 9 digits now, again the maximum uint32_t can handle fully. |
|
uint32_t digits = u32 / 10000000; // 10,000,000 |
|
u32 -= digits * 10000000; |
|
PutTwoDigits(digits, buffer); |
|
buffer += 2; |
|
digits = u32 / 100000; // 100,000 |
|
u32 -= digits * 100000; |
|
PutTwoDigits(digits, buffer); |
|
buffer += 2; |
|
digits = u32 / 1000; // 1,000 |
|
u32 -= digits * 1000; |
|
PutTwoDigits(digits, buffer); |
|
buffer += 2; |
|
digits = u32 / 10; |
|
u32 -= digits * 10; |
|
PutTwoDigits(digits, buffer); |
|
buffer += 2; |
|
memcpy(buffer, one_ASCII_final_digits[u32], 2); |
|
return buffer + 1; |
|
} |
|
|
|
char* numbers_internal::FastIntToBuffer(int64_t i, char* buffer) { |
|
uint64_t u = i; |
|
if (i < 0) { |
|
*buffer++ = '-'; |
|
u = 0 - u; |
|
} |
|
return numbers_internal::FastIntToBuffer(u, buffer); |
|
} |
|
|
|
// Given a 128-bit number expressed as a pair of uint64_t, high half first, |
|
// return that number multiplied by the given 32-bit value. If the result is |
|
// too large to fit in a 128-bit number, divide it by 2 until it fits. |
|
static std::pair<uint64_t, uint64_t> Mul32(std::pair<uint64_t, uint64_t> num, |
|
uint32_t mul) { |
|
uint64_t bits0_31 = num.second & 0xFFFFFFFF; |
|
uint64_t bits32_63 = num.second >> 32; |
|
uint64_t bits64_95 = num.first & 0xFFFFFFFF; |
|
uint64_t bits96_127 = num.first >> 32; |
|
|
|
// The picture so far: each of these 64-bit values has only the lower 32 bits |
|
// filled in. |
|
// bits96_127: [ 00000000 xxxxxxxx ] |
|
// bits64_95: [ 00000000 xxxxxxxx ] |
|
// bits32_63: [ 00000000 xxxxxxxx ] |
|
// bits0_31: [ 00000000 xxxxxxxx ] |
|
|
|
bits0_31 *= mul; |
|
bits32_63 *= mul; |
|
bits64_95 *= mul; |
|
bits96_127 *= mul; |
|
|
|
// Now the top halves may also have value, though all 64 of their bits will |
|
// never be set at the same time, since they are a result of a 32x32 bit |
|
// multiply. This makes the carry calculation slightly easier. |
|
// bits96_127: [ mmmmmmmm | mmmmmmmm ] |
|
// bits64_95: [ | mmmmmmmm mmmmmmmm | ] |
|
// bits32_63: | [ mmmmmmmm | mmmmmmmm ] |
|
// bits0_31: | [ | mmmmmmmm mmmmmmmm ] |
|
// eventually: [ bits128_up | ...bits64_127.... | ..bits0_63... ] |
|
|
|
uint64_t bits0_63 = bits0_31 + (bits32_63 << 32); |
|
uint64_t bits64_127 = bits64_95 + (bits96_127 << 32) + (bits32_63 >> 32) + |
|
(bits0_63 < bits0_31); |
|
uint64_t bits128_up = (bits96_127 >> 32) + (bits64_127 < bits64_95); |
|
if (bits128_up == 0) return {bits64_127, bits0_63}; |
|
|
|
int shift = 64 - base_internal::CountLeadingZeros64(bits128_up); |
|
uint64_t lo = (bits0_63 >> shift) + (bits64_127 << (64 - shift)); |
|
uint64_t hi = (bits64_127 >> shift) + (bits128_up << (64 - shift)); |
|
return {hi, lo}; |
|
} |
|
|
|
// Compute num * 5 ^ expfive, and return the first 128 bits of the result, |
|
// where the first bit is always a one. So PowFive(1, 0) starts 0b100000, |
|
// PowFive(1, 1) starts 0b101000, PowFive(1, 2) starts 0b110010, etc. |
|
static std::pair<uint64_t, uint64_t> PowFive(uint64_t num, int expfive) { |
|
std::pair<uint64_t, uint64_t> result = {num, 0}; |
|
while (expfive >= 13) { |
|
// 5^13 is the highest power of five that will fit in a 32-bit integer. |
|
result = Mul32(result, 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5); |
|
expfive -= 13; |
|
} |
|
constexpr int powers_of_five[13] = { |
|
1, |
|
5, |
|
5 * 5, |
|
5 * 5 * 5, |
|
5 * 5 * 5 * 5, |
|
5 * 5 * 5 * 5 * 5, |
|
5 * 5 * 5 * 5 * 5 * 5, |
|
5 * 5 * 5 * 5 * 5 * 5 * 5, |
|
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, |
|
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, |
|
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, |
|
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, |
|
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5}; |
|
result = Mul32(result, powers_of_five[expfive & 15]); |
|
int shift = base_internal::CountLeadingZeros64(result.first); |
|
if (shift != 0) { |
|
result.first = (result.first << shift) + (result.second >> (64 - shift)); |
|
result.second = (result.second << shift); |
|
} |
|
return result; |
|
} |
|
|
|
struct ExpDigits { |
|
int32_t exponent; |
|
char digits[6]; |
|
}; |
|
|
|
// SplitToSix converts value, a positive double-precision floating-point number, |
|
// into a base-10 exponent and 6 ASCII digits, where the first digit is never |
|
// zero. For example, SplitToSix(1) returns an exponent of zero and a digits |
|
// array of {'1', '0', '0', '0', '0', '0'}. If value is exactly halfway between |
|
// two possible representations, e.g. value = 100000.5, then "round to even" is |
|
// performed. |
|
static ExpDigits SplitToSix(const double value) { |
|
ExpDigits exp_dig; |
|
int exp = 5; |
|
double d = value; |
|
// First step: calculate a close approximation of the output, where the |
|
// value d will be between 100,000 and 999,999, representing the digits |
|
// in the output ASCII array, and exp is the base-10 exponent. It would be |
|
// faster to use a table here, and to look up the base-2 exponent of value, |
|
// however value is an IEEE-754 64-bit number, so the table would have 2,000 |
|
// entries, which is not cache-friendly. |
|
if (d >= 999999.5) { |
|
if (d >= 1e+261) exp += 256, d *= 1e-256; |
|
if (d >= 1e+133) exp += 128, d *= 1e-128; |
|
if (d >= 1e+69) exp += 64, d *= 1e-64; |
|
if (d >= 1e+37) exp += 32, d *= 1e-32; |
|
if (d >= 1e+21) exp += 16, d *= 1e-16; |
|
if (d >= 1e+13) exp += 8, d *= 1e-8; |
|
if (d >= 1e+9) exp += 4, d *= 1e-4; |
|
if (d >= 1e+7) exp += 2, d *= 1e-2; |
|
if (d >= 1e+6) exp += 1, d *= 1e-1; |
|
} else { |
|
if (d < 1e-250) exp -= 256, d *= 1e256; |
|
if (d < 1e-122) exp -= 128, d *= 1e128; |
|
if (d < 1e-58) exp -= 64, d *= 1e64; |
|
if (d < 1e-26) exp -= 32, d *= 1e32; |
|
if (d < 1e-10) exp -= 16, d *= 1e16; |
|
if (d < 1e-2) exp -= 8, d *= 1e8; |
|
if (d < 1e+2) exp -= 4, d *= 1e4; |
|
if (d < 1e+4) exp -= 2, d *= 1e2; |
|
if (d < 1e+5) exp -= 1, d *= 1e1; |
|
} |
|
// At this point, d is in the range [99999.5..999999.5) and exp is in the |
|
// range [-324..308]. Since we need to round d up, we want to add a half |
|
// and truncate. |
|
// However, the technique above may have lost some precision, due to its |
|
// repeated multiplication by constants that each may be off by half a bit |
|
// of precision. This only matters if we're close to the edge though. |
|
// Since we'd like to know if the fractional part of d is close to a half, |
|
// we multiply it by 65536 and see if the fractional part is close to 32768. |
|
// (The number doesn't have to be a power of two,but powers of two are faster) |
|
uint64_t d64k = d * 65536; |
|
int dddddd; // A 6-digit decimal integer. |
|
if ((d64k % 65536) == 32767 || (d64k % 65536) == 32768) { |
|
// OK, it's fairly likely that precision was lost above, which is |
|
// not a surprise given only 52 mantissa bits are available. Therefore |
|
// redo the calculation using 128-bit numbers. (64 bits are not enough). |
|
|
|
// Start out with digits rounded down; maybe add one below. |
|
dddddd = static_cast<int>(d64k / 65536); |
|
|
|
// mantissa is a 64-bit integer representing M.mmm... * 2^63. The actual |
|
// value we're representing, of course, is M.mmm... * 2^exp2. |
|
int exp2; |
|
double m = std::frexp(value, &exp2); |
|
uint64_t mantissa = m * (32768.0 * 65536.0 * 65536.0 * 65536.0); |
|
// std::frexp returns an m value in the range [0.5, 1.0), however we |
|
// can't multiply it by 2^64 and convert to an integer because some FPUs |
|
// throw an exception when converting an number higher than 2^63 into an |
|
// integer - even an unsigned 64-bit integer! Fortunately it doesn't matter |
|
// since m only has 52 significant bits anyway. |
|
mantissa <<= 1; |
|
exp2 -= 64; // not needed, but nice for debugging |
|
|
|
// OK, we are here to compare: |
|
// (dddddd + 0.5) * 10^(exp-5) vs. mantissa * 2^exp2 |
|
// so we can round up dddddd if appropriate. Those values span the full |
|
// range of 600 orders of magnitude of IEE 64-bit floating-point. |
|
// Fortunately, we already know they are very close, so we don't need to |
|
// track the base-2 exponent of both sides. This greatly simplifies the |
|
// the math since the 2^exp2 calculation is unnecessary and the power-of-10 |
|
// calculation can become a power-of-5 instead. |
|
|
|
std::pair<uint64_t, uint64_t> edge, val; |
|
if (exp >= 6) { |
|
// Compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa |
|
// Since we're tossing powers of two, 2 * dddddd + 1 is the |
|
// same as dddddd + 0.5 |
|
edge = PowFive(2 * dddddd + 1, exp - 5); |
|
|
|
val.first = mantissa; |
|
val.second = 0; |
|
} else { |
|
// We can't compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa as we did |
|
// above because (exp - 5) is negative. So we compare (dddddd + 0.5) to |
|
// mantissa * 5 ^ (5 - exp) |
|
edge = PowFive(2 * dddddd + 1, 0); |
|
|
|
val = PowFive(mantissa, 5 - exp); |
|
} |
|
// printf("exp=%d %016lx %016lx vs %016lx %016lx\n", exp, val.first, |
|
// val.second, edge.first, edge.second); |
|
if (val > edge) { |
|
dddddd++; |
|
} else if (val == edge) { |
|
dddddd += (dddddd & 1); |
|
} |
|
} else { |
|
// Here, we are not close to the edge. |
|
dddddd = static_cast<int>((d64k + 32768) / 65536); |
|
} |
|
if (dddddd == 1000000) { |
|
dddddd = 100000; |
|
exp += 1; |
|
} |
|
exp_dig.exponent = exp; |
|
|
|
int two_digits = dddddd / 10000; |
|
dddddd -= two_digits * 10000; |
|
numbers_internal::PutTwoDigits(two_digits, &exp_dig.digits[0]); |
|
|
|
two_digits = dddddd / 100; |
|
dddddd -= two_digits * 100; |
|
numbers_internal::PutTwoDigits(two_digits, &exp_dig.digits[2]); |
|
|
|
numbers_internal::PutTwoDigits(dddddd, &exp_dig.digits[4]); |
|
return exp_dig; |
|
} |
|
|
|
// Helper function for fast formatting of floating-point. |
|
// The result is the same as "%g", a.k.a. "%.6g". |
|
size_t numbers_internal::SixDigitsToBuffer(double d, char* const buffer) { |
|
static_assert(std::numeric_limits<float>::is_iec559, |
|
"IEEE-754/IEC-559 support only"); |
|
|
|
char* out = buffer; // we write data to out, incrementing as we go, but |
|
// FloatToBuffer always returns the address of the buffer |
|
// passed in. |
|
|
|
if (std::isnan(d)) { |
|
strcpy(out, "nan"); // NOLINT(runtime/printf) |
|
return 3; |
|
} |
|
if (d == 0) { // +0 and -0 are handled here |
|
if (std::signbit(d)) *out++ = '-'; |
|
*out++ = '0'; |
|
*out = 0; |
|
return out - buffer; |
|
} |
|
if (d < 0) { |
|
*out++ = '-'; |
|
d = -d; |
|
} |
|
if (std::isinf(d)) { |
|
strcpy(out, "inf"); // NOLINT(runtime/printf) |
|
return out + 3 - buffer; |
|
} |
|
|
|
auto exp_dig = SplitToSix(d); |
|
int exp = exp_dig.exponent; |
|
const char* digits = exp_dig.digits; |
|
out[0] = '0'; |
|
out[1] = '.'; |
|
switch (exp) { |
|
case 5: |
|
memcpy(out, &digits[0], 6), out += 6; |
|
*out = 0; |
|
return out - buffer; |
|
case 4: |
|
memcpy(out, &digits[0], 5), out += 5; |
|
if (digits[5] != '0') { |
|
*out++ = '.'; |
|
*out++ = digits[5]; |
|
} |
|
*out = 0; |
|
return out - buffer; |
|
case 3: |
|
memcpy(out, &digits[0], 4), out += 4; |
|
if ((digits[5] | digits[4]) != '0') { |
|
*out++ = '.'; |
|
*out++ = digits[4]; |
|
if (digits[5] != '0') *out++ = digits[5]; |
|
} |
|
*out = 0; |
|
return out - buffer; |
|
case 2: |
|
memcpy(out, &digits[0], 3), out += 3; |
|
*out++ = '.'; |
|
memcpy(out, &digits[3], 3); |
|
out += 3; |
|
while (out[-1] == '0') --out; |
|
if (out[-1] == '.') --out; |
|
*out = 0; |
|
return out - buffer; |
|
case 1: |
|
memcpy(out, &digits[0], 2), out += 2; |
|
*out++ = '.'; |
|
memcpy(out, &digits[2], 4); |
|
out += 4; |
|
while (out[-1] == '0') --out; |
|
if (out[-1] == '.') --out; |
|
*out = 0; |
|
return out - buffer; |
|
case 0: |
|
memcpy(out, &digits[0], 1), out += 1; |
|
*out++ = '.'; |
|
memcpy(out, &digits[1], 5); |
|
out += 5; |
|
while (out[-1] == '0') --out; |
|
if (out[-1] == '.') --out; |
|
*out = 0; |
|
return out - buffer; |
|
case -4: |
|
out[2] = '0'; |
|
++out; |
|
ABSL_FALLTHROUGH_INTENDED; |
|
case -3: |
|
out[2] = '0'; |
|
++out; |
|
ABSL_FALLTHROUGH_INTENDED; |
|
case -2: |
|
out[2] = '0'; |
|
++out; |
|
ABSL_FALLTHROUGH_INTENDED; |
|
case -1: |
|
out += 2; |
|
memcpy(out, &digits[0], 6); |
|
out += 6; |
|
while (out[-1] == '0') --out; |
|
*out = 0; |
|
return out - buffer; |
|
} |
|
assert(exp < -4 || exp >= 6); |
|
out[0] = digits[0]; |
|
assert(out[1] == '.'); |
|
out += 2; |
|
memcpy(out, &digits[1], 5), out += 5; |
|
while (out[-1] == '0') --out; |
|
if (out[-1] == '.') --out; |
|
*out++ = 'e'; |
|
if (exp > 0) { |
|
*out++ = '+'; |
|
} else { |
|
*out++ = '-'; |
|
exp = -exp; |
|
} |
|
if (exp > 99) { |
|
int dig1 = exp / 100; |
|
exp -= dig1 * 100; |
|
*out++ = '0' + dig1; |
|
} |
|
PutTwoDigits(exp, out); |
|
out += 2; |
|
*out = 0; |
|
return out - buffer; |
|
} |
|
|
|
namespace { |
|
// Represents integer values of digits. |
|
// Uses 36 to indicate an invalid character since we support |
|
// bases up to 36. |
|
static const int8_t kAsciiToInt[256] = { |
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // 16 36s. |
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 0, 1, 2, 3, 4, 5, |
|
6, 7, 8, 9, 36, 36, 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, |
|
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, |
|
36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, |
|
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36, |
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36}; |
|
|
|
// Parse the sign and optional hex or oct prefix in text. |
|
inline bool safe_parse_sign_and_base(absl::string_view* text /*inout*/, |
|
int* base_ptr /*inout*/, |
|
bool* negative_ptr /*output*/) { |
|
if (text->data() == nullptr) { |
|
return false; |
|
} |
|
|
|
const char* start = text->data(); |
|
const char* end = start + text->size(); |
|
int base = *base_ptr; |
|
|
|
// Consume whitespace. |
|
while (start < end && absl::ascii_isspace(start[0])) { |
|
++start; |
|
} |
|
while (start < end && absl::ascii_isspace(end[-1])) { |
|
--end; |
|
} |
|
if (start >= end) { |
|
return false; |
|
} |
|
|
|
// Consume sign. |
|
*negative_ptr = (start[0] == '-'); |
|
if (*negative_ptr || start[0] == '+') { |
|
++start; |
|
if (start >= end) { |
|
return false; |
|
} |
|
} |
|
|
|
// Consume base-dependent prefix. |
|
// base 0: "0x" -> base 16, "0" -> base 8, default -> base 10 |
|
// base 16: "0x" -> base 16 |
|
// Also validate the base. |
|
if (base == 0) { |
|
if (end - start >= 2 && start[0] == '0' && |
|
(start[1] == 'x' || start[1] == 'X')) { |
|
base = 16; |
|
start += 2; |
|
if (start >= end) { |
|
// "0x" with no digits after is invalid. |
|
return false; |
|
} |
|
} else if (end - start >= 1 && start[0] == '0') { |
|
base = 8; |
|
start += 1; |
|
} else { |
|
base = 10; |
|
} |
|
} else if (base == 16) { |
|
if (end - start >= 2 && start[0] == '0' && |
|
(start[1] == 'x' || start[1] == 'X')) { |
|
start += 2; |
|
if (start >= end) { |
|
// "0x" with no digits after is invalid. |
|
return false; |
|
} |
|
} |
|
} else if (base >= 2 && base <= 36) { |
|
// okay |
|
} else { |
|
return false; |
|
} |
|
*text = absl::string_view(start, end - start); |
|
*base_ptr = base; |
|
return true; |
|
} |
|
|
|
// Consume digits. |
|
// |
|
// The classic loop: |
|
// |
|
// for each digit |
|
// value = value * base + digit |
|
// value *= sign |
|
// |
|
// The classic loop needs overflow checking. It also fails on the most |
|
// negative integer, -2147483648 in 32-bit two's complement representation. |
|
// |
|
// My improved loop: |
|
// |
|
// if (!negative) |
|
// for each digit |
|
// value = value * base |
|
// value = value + digit |
|
// else |
|
// for each digit |
|
// value = value * base |
|
// value = value - digit |
|
// |
|
// Overflow checking becomes simple. |
|
|
|
// Lookup tables per IntType: |
|
// vmax/base and vmin/base are precomputed because division costs at least 8ns. |
|
// TODO(junyer): Doing this per base instead (i.e. an array of structs, not a |
|
// struct of arrays) would probably be better in terms of d-cache for the most |
|
// commonly used bases. |
|
template <typename IntType> |
|
struct LookupTables { |
|
static const IntType kVmaxOverBase[]; |
|
static const IntType kVminOverBase[]; |
|
}; |
|
|
|
// An array initializer macro for X/base where base in [0, 36]. |
|
// However, note that lookups for base in [0, 1] should never happen because |
|
// base has been validated to be in [2, 36] by safe_parse_sign_and_base(). |
|
#define X_OVER_BASE_INITIALIZER(X) \ |
|
{ \ |
|
0, 0, X / 2, X / 3, X / 4, X / 5, X / 6, X / 7, X / 8, X / 9, X / 10, \ |
|
X / 11, X / 12, X / 13, X / 14, X / 15, X / 16, X / 17, X / 18, \ |
|
X / 19, X / 20, X / 21, X / 22, X / 23, X / 24, X / 25, X / 26, \ |
|
X / 27, X / 28, X / 29, X / 30, X / 31, X / 32, X / 33, X / 34, \ |
|
X / 35, X / 36, \ |
|
} |
|
|
|
template <typename IntType> |
|
const IntType LookupTables<IntType>::kVmaxOverBase[] = |
|
X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::max()); |
|
|
|
template <typename IntType> |
|
const IntType LookupTables<IntType>::kVminOverBase[] = |
|
X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::min()); |
|
|
|
#undef X_OVER_BASE_INITIALIZER |
|
|
|
template <typename IntType> |
|
inline bool safe_parse_positive_int(absl::string_view text, int base, |
|
IntType* value_p) { |
|
IntType value = 0; |
|
const IntType vmax = std::numeric_limits<IntType>::max(); |
|
assert(vmax > 0); |
|
assert(base >= 0); |
|
assert(vmax >= static_cast<IntType>(base)); |
|
const IntType vmax_over_base = LookupTables<IntType>::kVmaxOverBase[base]; |
|
const char* start = text.data(); |
|
const char* end = start + text.size(); |
|
// loop over digits |
|
for (; start < end; ++start) { |
|
unsigned char c = static_cast<unsigned char>(start[0]); |
|
int digit = kAsciiToInt[c]; |
|
if (digit >= base) { |
|
*value_p = value; |
|
return false; |
|
} |
|
if (value > vmax_over_base) { |
|
*value_p = vmax; |
|
return false; |
|
} |
|
value *= base; |
|
if (value > vmax - digit) { |
|
*value_p = vmax; |
|
return false; |
|
} |
|
value += digit; |
|
} |
|
*value_p = value; |
|
return true; |
|
} |
|
|
|
template <typename IntType> |
|
inline bool safe_parse_negative_int(absl::string_view text, int base, |
|
IntType* value_p) { |
|
IntType value = 0; |
|
const IntType vmin = std::numeric_limits<IntType>::min(); |
|
assert(vmin < 0); |
|
assert(vmin <= 0 - base); |
|
IntType vmin_over_base = LookupTables<IntType>::kVminOverBase[base]; |
|
// 2003 c++ standard [expr.mul] |
|
// "... the sign of the remainder is implementation-defined." |
|
// Although (vmin/base)*base + vmin%base is always vmin. |
|
// 2011 c++ standard tightens the spec but we cannot rely on it. |
|
// TODO(junyer): Handle this in the lookup table generation. |
|
if (vmin % base > 0) { |
|
vmin_over_base += 1; |
|
} |
|
const char* start = text.data(); |
|
const char* end = start + text.size(); |
|
// loop over digits |
|
for (; start < end; ++start) { |
|
unsigned char c = static_cast<unsigned char>(start[0]); |
|
int digit = kAsciiToInt[c]; |
|
if (digit >= base) { |
|
*value_p = value; |
|
return false; |
|
} |
|
if (value < vmin_over_base) { |
|
*value_p = vmin; |
|
return false; |
|
} |
|
value *= base; |
|
if (value < vmin + digit) { |
|
*value_p = vmin; |
|
return false; |
|
} |
|
value -= digit; |
|
} |
|
*value_p = value; |
|
return true; |
|
} |
|
|
|
// Input format based on POSIX.1-2008 strtol |
|
// http://pubs.opengroup.org/onlinepubs/9699919799/functions/strtol.html |
|
template <typename IntType> |
|
inline bool safe_int_internal(absl::string_view text, IntType* value_p, |
|
int base) { |
|
*value_p = 0; |
|
bool negative; |
|
if (!safe_parse_sign_and_base(&text, &base, &negative)) { |
|
return false; |
|
} |
|
if (!negative) { |
|
return safe_parse_positive_int(text, base, value_p); |
|
} else { |
|
return safe_parse_negative_int(text, base, value_p); |
|
} |
|
} |
|
|
|
template <typename IntType> |
|
inline bool safe_uint_internal(absl::string_view text, IntType* value_p, |
|
int base) { |
|
*value_p = 0; |
|
bool negative; |
|
if (!safe_parse_sign_and_base(&text, &base, &negative) || negative) { |
|
return false; |
|
} |
|
return safe_parse_positive_int(text, base, value_p); |
|
} |
|
} // anonymous namespace |
|
|
|
namespace numbers_internal { |
|
|
|
// Digit conversion. |
|
ABSL_CONST_INIT const char kHexChar[] = "0123456789abcdef"; |
|
|
|
ABSL_CONST_INIT const char kHexTable[513] = |
|
"000102030405060708090a0b0c0d0e0f" |
|
"101112131415161718191a1b1c1d1e1f" |
|
"202122232425262728292a2b2c2d2e2f" |
|
"303132333435363738393a3b3c3d3e3f" |
|
"404142434445464748494a4b4c4d4e4f" |
|
"505152535455565758595a5b5c5d5e5f" |
|
"606162636465666768696a6b6c6d6e6f" |
|
"707172737475767778797a7b7c7d7e7f" |
|
"808182838485868788898a8b8c8d8e8f" |
|
"909192939495969798999a9b9c9d9e9f" |
|
"a0a1a2a3a4a5a6a7a8a9aaabacadaeaf" |
|
"b0b1b2b3b4b5b6b7b8b9babbbcbdbebf" |
|
"c0c1c2c3c4c5c6c7c8c9cacbcccdcecf" |
|
"d0d1d2d3d4d5d6d7d8d9dadbdcdddedf" |
|
"e0e1e2e3e4e5e6e7e8e9eaebecedeeef" |
|
"f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff"; |
|
|
|
ABSL_CONST_INIT const char two_ASCII_digits[100][2] = { |
|
{'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, {'0', '5'}, |
|
{'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, {'1', '0'}, {'1', '1'}, |
|
{'1', '2'}, {'1', '3'}, {'1', '4'}, {'1', '5'}, {'1', '6'}, {'1', '7'}, |
|
{'1', '8'}, {'1', '9'}, {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'}, |
|
{'2', '4'}, {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'}, |
|
{'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, {'3', '5'}, |
|
{'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, {'4', '0'}, {'4', '1'}, |
|
{'4', '2'}, {'4', '3'}, {'4', '4'}, {'4', '5'}, {'4', '6'}, {'4', '7'}, |
|
{'4', '8'}, {'4', '9'}, {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'}, |
|
{'5', '4'}, {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'}, |
|
{'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, {'6', '5'}, |
|
{'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, {'7', '0'}, {'7', '1'}, |
|
{'7', '2'}, {'7', '3'}, {'7', '4'}, {'7', '5'}, {'7', '6'}, {'7', '7'}, |
|
{'7', '8'}, {'7', '9'}, {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'}, |
|
{'8', '4'}, {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'}, |
|
{'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, {'9', '5'}, |
|
{'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}}; |
|
|
|
bool safe_strto32_base(absl::string_view text, int32_t* value, int base) { |
|
return safe_int_internal<int32_t>(text, value, base); |
|
} |
|
|
|
bool safe_strto64_base(absl::string_view text, int64_t* value, int base) { |
|
return safe_int_internal<int64_t>(text, value, base); |
|
} |
|
|
|
bool safe_strtou32_base(absl::string_view text, uint32_t* value, int base) { |
|
return safe_uint_internal<uint32_t>(text, value, base); |
|
} |
|
|
|
bool safe_strtou64_base(absl::string_view text, uint64_t* value, int base) { |
|
return safe_uint_internal<uint64_t>(text, value, base); |
|
} |
|
|
|
bool safe_strtou128_base(absl::string_view text, uint128* value, int base) { |
|
return safe_uint_internal<absl::uint128>(text, value, base); |
|
} |
|
|
|
} // namespace numbers_internal |
|
} // namespace absl
|
|
|