Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
485 lines
14 KiB
485 lines
14 KiB
#include "absl/strings/internal/str_format/float_conversion.h" |
|
|
|
#include <string.h> |
|
#include <algorithm> |
|
#include <cassert> |
|
#include <cmath> |
|
#include <string> |
|
|
|
#include "absl/base/config.h" |
|
|
|
namespace absl { |
|
namespace str_format_internal { |
|
|
|
namespace { |
|
|
|
char *CopyStringTo(string_view v, char *out) { |
|
std::memcpy(out, v.data(), v.size()); |
|
return out + v.size(); |
|
} |
|
|
|
template <typename Float> |
|
bool FallbackToSnprintf(const Float v, const ConversionSpec &conv, |
|
FormatSinkImpl *sink) { |
|
int w = conv.width() >= 0 ? conv.width() : 0; |
|
int p = conv.precision() >= 0 ? conv.precision() : -1; |
|
char fmt[32]; |
|
{ |
|
char *fp = fmt; |
|
*fp++ = '%'; |
|
fp = CopyStringTo(conv.flags().ToString(), fp); |
|
fp = CopyStringTo("*.*", fp); |
|
if (std::is_same<long double, Float>()) { |
|
*fp++ = 'L'; |
|
} |
|
*fp++ = conv.conv().Char(); |
|
*fp = 0; |
|
assert(fp < fmt + sizeof(fmt)); |
|
} |
|
std::string space(512, '\0'); |
|
string_view result; |
|
while (true) { |
|
int n = snprintf(&space[0], space.size(), fmt, w, p, v); |
|
if (n < 0) return false; |
|
if (static_cast<size_t>(n) < space.size()) { |
|
result = string_view(space.data(), n); |
|
break; |
|
} |
|
space.resize(n + 1); |
|
} |
|
sink->Append(result); |
|
return true; |
|
} |
|
|
|
// 128-bits in decimal: ceil(128*log(2)/log(10)) |
|
// or std::numeric_limits<__uint128_t>::digits10 |
|
constexpr int kMaxFixedPrecision = 39; |
|
|
|
constexpr int kBufferLength = /*sign*/ 1 + |
|
/*integer*/ kMaxFixedPrecision + |
|
/*point*/ 1 + |
|
/*fraction*/ kMaxFixedPrecision + |
|
/*exponent e+123*/ 5; |
|
|
|
struct Buffer { |
|
void push_front(char c) { |
|
assert(begin > data); |
|
*--begin = c; |
|
} |
|
void push_back(char c) { |
|
assert(end < data + sizeof(data)); |
|
*end++ = c; |
|
} |
|
void pop_back() { |
|
assert(begin < end); |
|
--end; |
|
} |
|
|
|
char &back() { |
|
assert(begin < end); |
|
return end[-1]; |
|
} |
|
|
|
char last_digit() const { return end[-1] == '.' ? end[-2] : end[-1]; } |
|
|
|
int size() const { return static_cast<int>(end - begin); } |
|
|
|
char data[kBufferLength]; |
|
char *begin; |
|
char *end; |
|
}; |
|
|
|
enum class FormatStyle { Fixed, Precision }; |
|
|
|
// If the value is Inf or Nan, print it and return true. |
|
// Otherwise, return false. |
|
template <typename Float> |
|
bool ConvertNonNumericFloats(char sign_char, Float v, |
|
const ConversionSpec &conv, FormatSinkImpl *sink) { |
|
char text[4], *ptr = text; |
|
if (sign_char) *ptr++ = sign_char; |
|
if (std::isnan(v)) { |
|
ptr = std::copy_n(conv.conv().upper() ? "NAN" : "nan", 3, ptr); |
|
} else if (std::isinf(v)) { |
|
ptr = std::copy_n(conv.conv().upper() ? "INF" : "inf", 3, ptr); |
|
} else { |
|
return false; |
|
} |
|
|
|
return sink->PutPaddedString(string_view(text, ptr - text), conv.width(), -1, |
|
conv.flags().left); |
|
} |
|
|
|
// Round up the last digit of the value. |
|
// It will carry over and potentially overflow. 'exp' will be adjusted in that |
|
// case. |
|
template <FormatStyle mode> |
|
void RoundUp(Buffer *buffer, int *exp) { |
|
char *p = &buffer->back(); |
|
while (p >= buffer->begin && (*p == '9' || *p == '.')) { |
|
if (*p == '9') *p = '0'; |
|
--p; |
|
} |
|
|
|
if (p < buffer->begin) { |
|
*p = '1'; |
|
buffer->begin = p; |
|
if (mode == FormatStyle::Precision) { |
|
std::swap(p[1], p[2]); // move the . |
|
++*exp; |
|
buffer->pop_back(); |
|
} |
|
} else { |
|
++*p; |
|
} |
|
} |
|
|
|
void PrintExponent(int exp, char e, Buffer *out) { |
|
out->push_back(e); |
|
if (exp < 0) { |
|
out->push_back('-'); |
|
exp = -exp; |
|
} else { |
|
out->push_back('+'); |
|
} |
|
// Exponent digits. |
|
if (exp > 99) { |
|
out->push_back(exp / 100 + '0'); |
|
out->push_back(exp / 10 % 10 + '0'); |
|
out->push_back(exp % 10 + '0'); |
|
} else { |
|
out->push_back(exp / 10 + '0'); |
|
out->push_back(exp % 10 + '0'); |
|
} |
|
} |
|
|
|
template <typename Float, typename Int> |
|
constexpr bool CanFitMantissa() { |
|
return |
|
#if defined(__clang__) && !defined(__SSE3__) |
|
// Workaround for clang bug: https://bugs.llvm.org/show_bug.cgi?id=38289 |
|
// Casting from long double to uint64_t is miscompiled and drops bits. |
|
(!std::is_same<Float, long double>::value || |
|
!std::is_same<Int, uint64_t>::value) && |
|
#endif |
|
std::numeric_limits<Float>::digits <= std::numeric_limits<Int>::digits; |
|
} |
|
|
|
template <typename Float> |
|
struct Decomposed { |
|
Float mantissa; |
|
int exponent; |
|
}; |
|
|
|
// Decompose the double into an integer mantissa and an exponent. |
|
template <typename Float> |
|
Decomposed<Float> Decompose(Float v) { |
|
int exp; |
|
Float m = std::frexp(v, &exp); |
|
m = std::ldexp(m, std::numeric_limits<Float>::digits); |
|
exp -= std::numeric_limits<Float>::digits; |
|
return {m, exp}; |
|
} |
|
|
|
// Print 'digits' as decimal. |
|
// In Fixed mode, we add a '.' at the end. |
|
// In Precision mode, we add a '.' after the first digit. |
|
template <FormatStyle mode, typename Int> |
|
int PrintIntegralDigits(Int digits, Buffer *out) { |
|
int printed = 0; |
|
if (digits) { |
|
for (; digits; digits /= 10) out->push_front(digits % 10 + '0'); |
|
printed = out->size(); |
|
if (mode == FormatStyle::Precision) { |
|
out->push_front(*out->begin); |
|
out->begin[1] = '.'; |
|
} else { |
|
out->push_back('.'); |
|
} |
|
} else if (mode == FormatStyle::Fixed) { |
|
out->push_front('0'); |
|
out->push_back('.'); |
|
printed = 1; |
|
} |
|
return printed; |
|
} |
|
|
|
// Back out 'extra_digits' digits and round up if necessary. |
|
bool RemoveExtraPrecision(int extra_digits, bool has_leftover_value, |
|
Buffer *out, int *exp_out) { |
|
if (extra_digits <= 0) return false; |
|
|
|
// Back out the extra digits |
|
out->end -= extra_digits; |
|
|
|
bool needs_to_round_up = [&] { |
|
// We look at the digit just past the end. |
|
// There must be 'extra_digits' extra valid digits after end. |
|
if (*out->end > '5') return true; |
|
if (*out->end < '5') return false; |
|
if (has_leftover_value || std::any_of(out->end + 1, out->end + extra_digits, |
|
[](char c) { return c != '0'; })) |
|
return true; |
|
|
|
// Ends in ...50*, round to even. |
|
return out->last_digit() % 2 == 1; |
|
}(); |
|
|
|
if (needs_to_round_up) { |
|
RoundUp<FormatStyle::Precision>(out, exp_out); |
|
} |
|
return true; |
|
} |
|
|
|
// Print the value into the buffer. |
|
// This will not include the exponent, which will be returned in 'exp_out' for |
|
// Precision mode. |
|
template <typename Int, typename Float, FormatStyle mode> |
|
bool FloatToBufferImpl(Int int_mantissa, int exp, int precision, Buffer *out, |
|
int *exp_out) { |
|
assert((CanFitMantissa<Float, Int>())); |
|
|
|
const int int_bits = std::numeric_limits<Int>::digits; |
|
|
|
// In precision mode, we start printing one char to the right because it will |
|
// also include the '.' |
|
// In fixed mode we put the dot afterwards on the right. |
|
out->begin = out->end = |
|
out->data + 1 + kMaxFixedPrecision + (mode == FormatStyle::Precision); |
|
|
|
if (exp >= 0) { |
|
if (std::numeric_limits<Float>::digits + exp > int_bits) { |
|
// The value will overflow the Int |
|
return false; |
|
} |
|
int digits_printed = PrintIntegralDigits<mode>(int_mantissa << exp, out); |
|
int digits_to_zero_pad = precision; |
|
if (mode == FormatStyle::Precision) { |
|
*exp_out = digits_printed - 1; |
|
digits_to_zero_pad -= digits_printed - 1; |
|
if (RemoveExtraPrecision(-digits_to_zero_pad, false, out, exp_out)) { |
|
return true; |
|
} |
|
} |
|
for (; digits_to_zero_pad-- > 0;) out->push_back('0'); |
|
return true; |
|
} |
|
|
|
exp = -exp; |
|
// We need at least 4 empty bits for the next decimal digit. |
|
// We will multiply by 10. |
|
if (exp > int_bits - 4) return false; |
|
|
|
const Int mask = (Int{1} << exp) - 1; |
|
|
|
// Print the integral part first. |
|
int digits_printed = PrintIntegralDigits<mode>(int_mantissa >> exp, out); |
|
int_mantissa &= mask; |
|
|
|
int fractional_count = precision; |
|
if (mode == FormatStyle::Precision) { |
|
if (digits_printed == 0) { |
|
// Find the first non-zero digit, when in Precision mode. |
|
*exp_out = 0; |
|
if (int_mantissa) { |
|
while (int_mantissa <= mask) { |
|
int_mantissa *= 10; |
|
--*exp_out; |
|
} |
|
} |
|
out->push_front(static_cast<char>(int_mantissa >> exp) + '0'); |
|
out->push_back('.'); |
|
int_mantissa &= mask; |
|
} else { |
|
// We already have a digit, and a '.' |
|
*exp_out = digits_printed - 1; |
|
fractional_count -= *exp_out; |
|
if (RemoveExtraPrecision(-fractional_count, int_mantissa != 0, out, |
|
exp_out)) { |
|
// If we had enough digits, return right away. |
|
// The code below will try to round again otherwise. |
|
return true; |
|
} |
|
} |
|
} |
|
|
|
auto get_next_digit = [&] { |
|
int_mantissa *= 10; |
|
int digit = static_cast<int>(int_mantissa >> exp); |
|
int_mantissa &= mask; |
|
return digit; |
|
}; |
|
|
|
// Print fractional_count more digits, if available. |
|
for (; fractional_count > 0; --fractional_count) { |
|
out->push_back(get_next_digit() + '0'); |
|
} |
|
|
|
int next_digit = get_next_digit(); |
|
if (next_digit > 5 || |
|
(next_digit == 5 && (int_mantissa || out->last_digit() % 2 == 1))) { |
|
RoundUp<mode>(out, exp_out); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
template <FormatStyle mode, typename Float> |
|
bool FloatToBuffer(Decomposed<Float> decomposed, int precision, Buffer *out, |
|
int *exp) { |
|
if (precision > kMaxFixedPrecision) return false; |
|
|
|
// Try with uint64_t. |
|
if (CanFitMantissa<Float, std::uint64_t>() && |
|
FloatToBufferImpl<std::uint64_t, Float, mode>( |
|
static_cast<std::uint64_t>(decomposed.mantissa), |
|
static_cast<std::uint64_t>(decomposed.exponent), precision, out, exp)) |
|
return true; |
|
|
|
#if defined(ABSL_HAVE_INTRINSIC_INT128) |
|
// If that is not enough, try with __uint128_t. |
|
return CanFitMantissa<Float, __uint128_t>() && |
|
FloatToBufferImpl<__uint128_t, Float, mode>( |
|
static_cast<__uint128_t>(decomposed.mantissa), |
|
static_cast<__uint128_t>(decomposed.exponent), precision, out, |
|
exp); |
|
#endif |
|
return false; |
|
} |
|
|
|
void WriteBufferToSink(char sign_char, string_view str, |
|
const ConversionSpec &conv, FormatSinkImpl *sink) { |
|
int left_spaces = 0, zeros = 0, right_spaces = 0; |
|
int missing_chars = |
|
conv.width() >= 0 ? std::max(conv.width() - static_cast<int>(str.size()) - |
|
static_cast<int>(sign_char != 0), |
|
0) |
|
: 0; |
|
if (conv.flags().left) { |
|
right_spaces = missing_chars; |
|
} else if (conv.flags().zero) { |
|
zeros = missing_chars; |
|
} else { |
|
left_spaces = missing_chars; |
|
} |
|
|
|
sink->Append(left_spaces, ' '); |
|
if (sign_char) sink->Append(1, sign_char); |
|
sink->Append(zeros, '0'); |
|
sink->Append(str); |
|
sink->Append(right_spaces, ' '); |
|
} |
|
|
|
template <typename Float> |
|
bool FloatToSink(const Float v, const ConversionSpec &conv, |
|
FormatSinkImpl *sink) { |
|
// Print the sign or the sign column. |
|
Float abs_v = v; |
|
char sign_char = 0; |
|
if (std::signbit(abs_v)) { |
|
sign_char = '-'; |
|
abs_v = -abs_v; |
|
} else if (conv.flags().show_pos) { |
|
sign_char = '+'; |
|
} else if (conv.flags().sign_col) { |
|
sign_char = ' '; |
|
} |
|
|
|
// Print nan/inf. |
|
if (ConvertNonNumericFloats(sign_char, abs_v, conv, sink)) { |
|
return true; |
|
} |
|
|
|
int precision = conv.precision() < 0 ? 6 : conv.precision(); |
|
|
|
int exp = 0; |
|
|
|
auto decomposed = Decompose(abs_v); |
|
|
|
Buffer buffer; |
|
|
|
switch (conv.conv().id()) { |
|
case ConversionChar::f: |
|
case ConversionChar::F: |
|
if (!FloatToBuffer<FormatStyle::Fixed>(decomposed, precision, &buffer, |
|
nullptr)) { |
|
return FallbackToSnprintf(v, conv, sink); |
|
} |
|
if (!conv.flags().alt && buffer.back() == '.') buffer.pop_back(); |
|
break; |
|
|
|
case ConversionChar::e: |
|
case ConversionChar::E: |
|
if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer, |
|
&exp)) { |
|
return FallbackToSnprintf(v, conv, sink); |
|
} |
|
if (!conv.flags().alt && buffer.back() == '.') buffer.pop_back(); |
|
PrintExponent(exp, conv.conv().upper() ? 'E' : 'e', &buffer); |
|
break; |
|
|
|
case ConversionChar::g: |
|
case ConversionChar::G: |
|
precision = std::max(0, precision - 1); |
|
if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer, |
|
&exp)) { |
|
return FallbackToSnprintf(v, conv, sink); |
|
} |
|
if (precision + 1 > exp && exp >= -4) { |
|
if (exp < 0) { |
|
// Have 1.23456, needs 0.00123456 |
|
// Move the first digit |
|
buffer.begin[1] = *buffer.begin; |
|
// Add some zeros |
|
for (; exp < -1; ++exp) *buffer.begin-- = '0'; |
|
*buffer.begin-- = '.'; |
|
*buffer.begin = '0'; |
|
} else if (exp > 0) { |
|
// Have 1.23456, needs 1234.56 |
|
// Move the '.' exp positions to the right. |
|
std::rotate(buffer.begin + 1, buffer.begin + 2, |
|
buffer.begin + exp + 2); |
|
} |
|
exp = 0; |
|
} |
|
if (!conv.flags().alt) { |
|
while (buffer.back() == '0') buffer.pop_back(); |
|
if (buffer.back() == '.') buffer.pop_back(); |
|
} |
|
if (exp) PrintExponent(exp, conv.conv().upper() ? 'E' : 'e', &buffer); |
|
break; |
|
|
|
case ConversionChar::a: |
|
case ConversionChar::A: |
|
return FallbackToSnprintf(v, conv, sink); |
|
|
|
default: |
|
return false; |
|
} |
|
|
|
WriteBufferToSink(sign_char, |
|
string_view(buffer.begin, buffer.end - buffer.begin), conv, |
|
sink); |
|
|
|
return true; |
|
} |
|
|
|
} // namespace |
|
|
|
bool ConvertFloatImpl(long double v, const ConversionSpec &conv, |
|
FormatSinkImpl *sink) { |
|
return FloatToSink(v, conv, sink); |
|
} |
|
|
|
bool ConvertFloatImpl(float v, const ConversionSpec &conv, |
|
FormatSinkImpl *sink) { |
|
return FloatToSink(v, conv, sink); |
|
} |
|
|
|
bool ConvertFloatImpl(double v, const ConversionSpec &conv, |
|
FormatSinkImpl *sink) { |
|
return FloatToSink(v, conv, sink); |
|
} |
|
|
|
} // namespace str_format_internal |
|
} // namespace absl
|
|
|