Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
200 lines
7.1 KiB
200 lines
7.1 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
// |
|
// ----------------------------------------------------------------------------- |
|
// File: uniform_real_distribution.h |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// This header defines a class for representing a uniform floating-point |
|
// distribution over a half-open interval [a,b). You use this distribution in |
|
// combination with an Abseil random bit generator to produce random values |
|
// according to the rules of the distribution. |
|
// |
|
// `absl::uniform_real_distribution` is a drop-in replacement for the C++11 |
|
// `std::uniform_real_distribution` [rand.dist.uni.real] but is considerably |
|
// faster than the libstdc++ implementation. |
|
// |
|
// Note: the standard-library version may occasionally return `1.0` when |
|
// default-initialized. See https://bugs.llvm.org//show_bug.cgi?id=18767 |
|
// `absl::uniform_real_distribution` does not exhibit this behavior. |
|
|
|
#ifndef ABSL_RANDOM_UNIFORM_REAL_DISTRIBUTION_H_ |
|
#define ABSL_RANDOM_UNIFORM_REAL_DISTRIBUTION_H_ |
|
|
|
#include <cassert> |
|
#include <cmath> |
|
#include <cstdint> |
|
#include <istream> |
|
#include <limits> |
|
#include <type_traits> |
|
|
|
#include "absl/meta/type_traits.h" |
|
#include "absl/random/internal/fast_uniform_bits.h" |
|
#include "absl/random/internal/generate_real.h" |
|
#include "absl/random/internal/iostream_state_saver.h" |
|
|
|
namespace absl { |
|
|
|
// absl::uniform_real_distribution<T> |
|
// |
|
// This distribution produces random floating-point values uniformly distributed |
|
// over the half-open interval [a, b). |
|
// |
|
// Example: |
|
// |
|
// absl::BitGen gen; |
|
// |
|
// // Use the distribution to produce a value between 0.0 (inclusive) |
|
// // and 1.0 (exclusive). |
|
// double value = absl::uniform_real_distribution<double>(0, 1)(gen); |
|
// |
|
template <typename RealType = double> |
|
class uniform_real_distribution { |
|
public: |
|
using result_type = RealType; |
|
|
|
class param_type { |
|
public: |
|
using distribution_type = uniform_real_distribution; |
|
|
|
explicit param_type(result_type lo = 0, result_type hi = 1) |
|
: lo_(lo), hi_(hi), range_(hi - lo) { |
|
// [rand.dist.uni.real] preconditions 2 & 3 |
|
assert(lo <= hi); |
|
// NOTE: For integral types, we can promote the range to an unsigned type, |
|
// which gives full width of the range. However for real (fp) types, this |
|
// is not possible, so value generation cannot use the full range of the |
|
// real type. |
|
assert(range_ <= (std::numeric_limits<result_type>::max)()); |
|
assert(std::isfinite(range_)); |
|
} |
|
|
|
result_type a() const { return lo_; } |
|
result_type b() const { return hi_; } |
|
|
|
friend bool operator==(const param_type& a, const param_type& b) { |
|
return a.lo_ == b.lo_ && a.hi_ == b.hi_; |
|
} |
|
|
|
friend bool operator!=(const param_type& a, const param_type& b) { |
|
return !(a == b); |
|
} |
|
|
|
private: |
|
friend class uniform_real_distribution; |
|
result_type lo_, hi_, range_; |
|
|
|
static_assert(std::is_floating_point<RealType>::value, |
|
"Class-template absl::uniform_real_distribution<> must be " |
|
"parameterized using a floating-point type."); |
|
}; |
|
|
|
uniform_real_distribution() : uniform_real_distribution(0) {} |
|
|
|
explicit uniform_real_distribution(result_type lo, result_type hi = 1) |
|
: param_(lo, hi) {} |
|
|
|
explicit uniform_real_distribution(const param_type& param) : param_(param) {} |
|
|
|
// uniform_real_distribution<T>::reset() |
|
// |
|
// Resets the uniform real distribution. Note that this function has no effect |
|
// because the distribution already produces independent values. |
|
void reset() {} |
|
|
|
template <typename URBG> |
|
result_type operator()(URBG& gen) { // NOLINT(runtime/references) |
|
return operator()(gen, param_); |
|
} |
|
|
|
template <typename URBG> |
|
result_type operator()(URBG& gen, // NOLINT(runtime/references) |
|
const param_type& p); |
|
|
|
result_type a() const { return param_.a(); } |
|
result_type b() const { return param_.b(); } |
|
|
|
param_type param() const { return param_; } |
|
void param(const param_type& params) { param_ = params; } |
|
|
|
result_type(min)() const { return a(); } |
|
result_type(max)() const { return b(); } |
|
|
|
friend bool operator==(const uniform_real_distribution& a, |
|
const uniform_real_distribution& b) { |
|
return a.param_ == b.param_; |
|
} |
|
friend bool operator!=(const uniform_real_distribution& a, |
|
const uniform_real_distribution& b) { |
|
return a.param_ != b.param_; |
|
} |
|
|
|
private: |
|
param_type param_; |
|
random_internal::FastUniformBits<uint64_t> fast_u64_; |
|
}; |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Implementation details follow |
|
// ----------------------------------------------------------------------------- |
|
template <typename RealType> |
|
template <typename URBG> |
|
typename uniform_real_distribution<RealType>::result_type |
|
uniform_real_distribution<RealType>::operator()( |
|
URBG& gen, const param_type& p) { // NOLINT(runtime/references) |
|
using random_internal::GeneratePositiveTag; |
|
using random_internal::GenerateRealFromBits; |
|
using real_type = |
|
absl::conditional_t<std::is_same<RealType, float>::value, float, double>; |
|
|
|
while (true) { |
|
const result_type sample = |
|
GenerateRealFromBits<real_type, GeneratePositiveTag, true>( |
|
fast_u64_(gen)); |
|
const result_type res = p.a() + (sample * p.range_); |
|
if (res < p.b() || p.range_ <= 0 || !std::isfinite(p.range_)) { |
|
return res; |
|
} |
|
// else sample rejected, try again. |
|
} |
|
} |
|
|
|
template <typename CharT, typename Traits, typename RealType> |
|
std::basic_ostream<CharT, Traits>& operator<<( |
|
std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references) |
|
const uniform_real_distribution<RealType>& x) { |
|
auto saver = random_internal::make_ostream_state_saver(os); |
|
os.precision(random_internal::stream_precision_helper<RealType>::kPrecision); |
|
os << x.a() << os.fill() << x.b(); |
|
return os; |
|
} |
|
|
|
template <typename CharT, typename Traits, typename RealType> |
|
std::basic_istream<CharT, Traits>& operator>>( |
|
std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references) |
|
uniform_real_distribution<RealType>& x) { // NOLINT(runtime/references) |
|
using param_type = typename uniform_real_distribution<RealType>::param_type; |
|
using result_type = typename uniform_real_distribution<RealType>::result_type; |
|
auto saver = random_internal::make_istream_state_saver(is); |
|
auto a = random_internal::read_floating_point<result_type>(is); |
|
if (is.fail()) return is; |
|
auto b = random_internal::read_floating_point<result_type>(is); |
|
if (!is.fail()) { |
|
x.param(param_type(a, b)); |
|
} |
|
return is; |
|
} |
|
} // namespace absl |
|
|
|
#endif // ABSL_RANDOM_UNIFORM_REAL_DISTRIBUTION_H_
|
|
|