Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
954 lines
31 KiB
954 lines
31 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
// The implementation of the absl::Duration class, which is declared in |
|
// //absl/time.h. This class behaves like a numeric type; it has no public |
|
// methods and is used only through the operators defined here. |
|
// |
|
// Implementation notes: |
|
// |
|
// An absl::Duration is represented as |
|
// |
|
// rep_hi_ : (int64_t) Whole seconds |
|
// rep_lo_ : (uint32_t) Fractions of a second |
|
// |
|
// The seconds value (rep_hi_) may be positive or negative as appropriate. |
|
// The fractional seconds (rep_lo_) is always a positive offset from rep_hi_. |
|
// The API for Duration guarantees at least nanosecond resolution, which |
|
// means rep_lo_ could have a max value of 1B - 1 if it stored nanoseconds. |
|
// However, to utilize more of the available 32 bits of space in rep_lo_, |
|
// we instead store quarters of a nanosecond in rep_lo_ resulting in a max |
|
// value of 4B - 1. This allows us to correctly handle calculations like |
|
// 0.5 nanos + 0.5 nanos = 1 nano. The following example shows the actual |
|
// Duration rep using quarters of a nanosecond. |
|
// |
|
// 2.5 sec = {rep_hi_=2, rep_lo_=2000000000} // lo = 4 * 500000000 |
|
// -2.5 sec = {rep_hi_=-3, rep_lo_=2000000000} |
|
// |
|
// Infinite durations are represented as Durations with the rep_lo_ field set |
|
// to all 1s. |
|
// |
|
// +InfiniteDuration: |
|
// rep_hi_ : kint64max |
|
// rep_lo_ : ~0U |
|
// |
|
// -InfiniteDuration: |
|
// rep_hi_ : kint64min |
|
// rep_lo_ : ~0U |
|
// |
|
// Arithmetic overflows/underflows to +/- infinity and saturates. |
|
|
|
#if defined(_MSC_VER) |
|
#include <winsock2.h> // for timeval |
|
#endif |
|
|
|
#include <algorithm> |
|
#include <cassert> |
|
#include <cctype> |
|
#include <cerrno> |
|
#include <cmath> |
|
#include <cstdint> |
|
#include <cstdlib> |
|
#include <cstring> |
|
#include <ctime> |
|
#include <functional> |
|
#include <limits> |
|
#include <string> |
|
|
|
#include "absl/base/casts.h" |
|
#include "absl/base/macros.h" |
|
#include "absl/numeric/int128.h" |
|
#include "absl/strings/string_view.h" |
|
#include "absl/strings/strip.h" |
|
#include "absl/time/time.h" |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
|
|
namespace { |
|
|
|
using time_internal::kTicksPerNanosecond; |
|
using time_internal::kTicksPerSecond; |
|
|
|
constexpr int64_t kint64max = std::numeric_limits<int64_t>::max(); |
|
constexpr int64_t kint64min = std::numeric_limits<int64_t>::min(); |
|
|
|
// Can't use std::isinfinite() because it doesn't exist on windows. |
|
inline bool IsFinite(double d) { |
|
if (std::isnan(d)) return false; |
|
return d != std::numeric_limits<double>::infinity() && |
|
d != -std::numeric_limits<double>::infinity(); |
|
} |
|
|
|
inline bool IsValidDivisor(double d) { |
|
if (std::isnan(d)) return false; |
|
return d != 0.0; |
|
} |
|
|
|
// Can't use std::round() because it is only available in C++11. |
|
// Note that we ignore the possibility of floating-point over/underflow. |
|
template <typename Double> |
|
inline double Round(Double d) { |
|
return d < 0 ? std::ceil(d - 0.5) : std::floor(d + 0.5); |
|
} |
|
|
|
// *sec may be positive or negative. *ticks must be in the range |
|
// -kTicksPerSecond < *ticks < kTicksPerSecond. If *ticks is negative it |
|
// will be normalized to a positive value by adjusting *sec accordingly. |
|
inline void NormalizeTicks(int64_t* sec, int64_t* ticks) { |
|
if (*ticks < 0) { |
|
--*sec; |
|
*ticks += kTicksPerSecond; |
|
} |
|
} |
|
|
|
// Makes a uint128 from the absolute value of the given scalar. |
|
inline uint128 MakeU128(int64_t a) { |
|
uint128 u128 = 0; |
|
if (a < 0) { |
|
++u128; |
|
++a; // Makes it safe to negate 'a' |
|
a = -a; |
|
} |
|
u128 += static_cast<uint64_t>(a); |
|
return u128; |
|
} |
|
|
|
// Makes a uint128 count of ticks out of the absolute value of the Duration. |
|
inline uint128 MakeU128Ticks(Duration d) { |
|
int64_t rep_hi = time_internal::GetRepHi(d); |
|
uint32_t rep_lo = time_internal::GetRepLo(d); |
|
if (rep_hi < 0) { |
|
++rep_hi; |
|
rep_hi = -rep_hi; |
|
rep_lo = kTicksPerSecond - rep_lo; |
|
} |
|
uint128 u128 = static_cast<uint64_t>(rep_hi); |
|
u128 *= static_cast<uint64_t>(kTicksPerSecond); |
|
u128 += rep_lo; |
|
return u128; |
|
} |
|
|
|
// Breaks a uint128 of ticks into a Duration. |
|
inline Duration MakeDurationFromU128(uint128 u128, bool is_neg) { |
|
int64_t rep_hi; |
|
uint32_t rep_lo; |
|
const uint64_t h64 = Uint128High64(u128); |
|
const uint64_t l64 = Uint128Low64(u128); |
|
if (h64 == 0) { // fastpath |
|
const uint64_t hi = l64 / kTicksPerSecond; |
|
rep_hi = static_cast<int64_t>(hi); |
|
rep_lo = static_cast<uint32_t>(l64 - hi * kTicksPerSecond); |
|
} else { |
|
// kMaxRepHi64 is the high 64 bits of (2^63 * kTicksPerSecond). |
|
// Any positive tick count whose high 64 bits are >= kMaxRepHi64 |
|
// is not representable as a Duration. A negative tick count can |
|
// have its high 64 bits == kMaxRepHi64 but only when the low 64 |
|
// bits are all zero, otherwise it is not representable either. |
|
const uint64_t kMaxRepHi64 = 0x77359400UL; |
|
if (h64 >= kMaxRepHi64) { |
|
if (is_neg && h64 == kMaxRepHi64 && l64 == 0) { |
|
// Avoid trying to represent -kint64min below. |
|
return time_internal::MakeDuration(kint64min); |
|
} |
|
return is_neg ? -InfiniteDuration() : InfiniteDuration(); |
|
} |
|
const uint128 kTicksPerSecond128 = static_cast<uint64_t>(kTicksPerSecond); |
|
const uint128 hi = u128 / kTicksPerSecond128; |
|
rep_hi = static_cast<int64_t>(Uint128Low64(hi)); |
|
rep_lo = |
|
static_cast<uint32_t>(Uint128Low64(u128 - hi * kTicksPerSecond128)); |
|
} |
|
if (is_neg) { |
|
rep_hi = -rep_hi; |
|
if (rep_lo != 0) { |
|
--rep_hi; |
|
rep_lo = kTicksPerSecond - rep_lo; |
|
} |
|
} |
|
return time_internal::MakeDuration(rep_hi, rep_lo); |
|
} |
|
|
|
// Convert between int64_t and uint64_t, preserving representation. This |
|
// allows us to do arithmetic in the unsigned domain, where overflow has |
|
// well-defined behavior. See operator+=() and operator-=(). |
|
// |
|
// C99 7.20.1.1.1, as referenced by C++11 18.4.1.2, says, "The typedef |
|
// name intN_t designates a signed integer type with width N, no padding |
|
// bits, and a two's complement representation." So, we can convert to |
|
// and from the corresponding uint64_t value using a bit cast. |
|
inline uint64_t EncodeTwosComp(int64_t v) { |
|
return absl::bit_cast<uint64_t>(v); |
|
} |
|
inline int64_t DecodeTwosComp(uint64_t v) { return absl::bit_cast<int64_t>(v); } |
|
|
|
// Note: The overflow detection in this function is done using greater/less *or |
|
// equal* because kint64max/min is too large to be represented exactly in a |
|
// double (which only has 53 bits of precision). In order to avoid assigning to |
|
// rep->hi a double value that is too large for an int64_t (and therefore is |
|
// undefined), we must consider computations that equal kint64max/min as a |
|
// double as overflow cases. |
|
inline bool SafeAddRepHi(double a_hi, double b_hi, Duration* d) { |
|
double c = a_hi + b_hi; |
|
if (c >= static_cast<double>(kint64max)) { |
|
*d = InfiniteDuration(); |
|
return false; |
|
} |
|
if (c <= static_cast<double>(kint64min)) { |
|
*d = -InfiniteDuration(); |
|
return false; |
|
} |
|
*d = time_internal::MakeDuration(c, time_internal::GetRepLo(*d)); |
|
return true; |
|
} |
|
|
|
// A functor that's similar to std::multiplies<T>, except this returns the max |
|
// T value instead of overflowing. This is only defined for uint128. |
|
template <typename Ignored> |
|
struct SafeMultiply { |
|
uint128 operator()(uint128 a, uint128 b) const { |
|
// b hi is always zero because it originated as an int64_t. |
|
assert(Uint128High64(b) == 0); |
|
// Fastpath to avoid the expensive overflow check with division. |
|
if (Uint128High64(a) == 0) { |
|
return (((Uint128Low64(a) | Uint128Low64(b)) >> 32) == 0) |
|
? static_cast<uint128>(Uint128Low64(a) * Uint128Low64(b)) |
|
: a * b; |
|
} |
|
return b == 0 ? b : (a > kuint128max / b) ? kuint128max : a * b; |
|
} |
|
}; |
|
|
|
// Scales (i.e., multiplies or divides, depending on the Operation template) |
|
// the Duration d by the int64_t r. |
|
template <template <typename> class Operation> |
|
inline Duration ScaleFixed(Duration d, int64_t r) { |
|
const uint128 a = MakeU128Ticks(d); |
|
const uint128 b = MakeU128(r); |
|
const uint128 q = Operation<uint128>()(a, b); |
|
const bool is_neg = (time_internal::GetRepHi(d) < 0) != (r < 0); |
|
return MakeDurationFromU128(q, is_neg); |
|
} |
|
|
|
// Scales (i.e., multiplies or divides, depending on the Operation template) |
|
// the Duration d by the double r. |
|
template <template <typename> class Operation> |
|
inline Duration ScaleDouble(Duration d, double r) { |
|
Operation<double> op; |
|
double hi_doub = op(time_internal::GetRepHi(d), r); |
|
double lo_doub = op(time_internal::GetRepLo(d), r); |
|
|
|
double hi_int = 0; |
|
double hi_frac = std::modf(hi_doub, &hi_int); |
|
|
|
// Moves hi's fractional bits to lo. |
|
lo_doub /= kTicksPerSecond; |
|
lo_doub += hi_frac; |
|
|
|
double lo_int = 0; |
|
double lo_frac = std::modf(lo_doub, &lo_int); |
|
|
|
// Rolls lo into hi if necessary. |
|
int64_t lo64 = Round(lo_frac * kTicksPerSecond); |
|
|
|
Duration ans; |
|
if (!SafeAddRepHi(hi_int, lo_int, &ans)) return ans; |
|
int64_t hi64 = time_internal::GetRepHi(ans); |
|
if (!SafeAddRepHi(hi64, lo64 / kTicksPerSecond, &ans)) return ans; |
|
hi64 = time_internal::GetRepHi(ans); |
|
lo64 %= kTicksPerSecond; |
|
NormalizeTicks(&hi64, &lo64); |
|
return time_internal::MakeDuration(hi64, lo64); |
|
} |
|
|
|
// Tries to divide num by den as fast as possible by looking for common, easy |
|
// cases. If the division was done, the quotient is in *q and the remainder is |
|
// in *rem and true will be returned. |
|
inline bool IDivFastPath(const Duration num, const Duration den, int64_t* q, |
|
Duration* rem) { |
|
// Bail if num or den is an infinity. |
|
if (time_internal::IsInfiniteDuration(num) || |
|
time_internal::IsInfiniteDuration(den)) |
|
return false; |
|
|
|
int64_t num_hi = time_internal::GetRepHi(num); |
|
uint32_t num_lo = time_internal::GetRepLo(num); |
|
int64_t den_hi = time_internal::GetRepHi(den); |
|
uint32_t den_lo = time_internal::GetRepLo(den); |
|
|
|
if (den_hi == 0 && den_lo == kTicksPerNanosecond) { |
|
// Dividing by 1ns |
|
if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000000) { |
|
*q = num_hi * 1000000000 + num_lo / kTicksPerNanosecond; |
|
*rem = time_internal::MakeDuration(0, num_lo % den_lo); |
|
return true; |
|
} |
|
} else if (den_hi == 0 && den_lo == 100 * kTicksPerNanosecond) { |
|
// Dividing by 100ns (common when converting to Universal time) |
|
if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 10000000) { |
|
*q = num_hi * 10000000 + num_lo / (100 * kTicksPerNanosecond); |
|
*rem = time_internal::MakeDuration(0, num_lo % den_lo); |
|
return true; |
|
} |
|
} else if (den_hi == 0 && den_lo == 1000 * kTicksPerNanosecond) { |
|
// Dividing by 1us |
|
if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000) { |
|
*q = num_hi * 1000000 + num_lo / (1000 * kTicksPerNanosecond); |
|
*rem = time_internal::MakeDuration(0, num_lo % den_lo); |
|
return true; |
|
} |
|
} else if (den_hi == 0 && den_lo == 1000000 * kTicksPerNanosecond) { |
|
// Dividing by 1ms |
|
if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000) { |
|
*q = num_hi * 1000 + num_lo / (1000000 * kTicksPerNanosecond); |
|
*rem = time_internal::MakeDuration(0, num_lo % den_lo); |
|
return true; |
|
} |
|
} else if (den_hi > 0 && den_lo == 0) { |
|
// Dividing by positive multiple of 1s |
|
if (num_hi >= 0) { |
|
if (den_hi == 1) { |
|
*q = num_hi; |
|
*rem = time_internal::MakeDuration(0, num_lo); |
|
return true; |
|
} |
|
*q = num_hi / den_hi; |
|
*rem = time_internal::MakeDuration(num_hi % den_hi, num_lo); |
|
return true; |
|
} |
|
if (num_lo != 0) { |
|
num_hi += 1; |
|
} |
|
int64_t quotient = num_hi / den_hi; |
|
int64_t rem_sec = num_hi % den_hi; |
|
if (rem_sec > 0) { |
|
rem_sec -= den_hi; |
|
quotient += 1; |
|
} |
|
if (num_lo != 0) { |
|
rem_sec -= 1; |
|
} |
|
*q = quotient; |
|
*rem = time_internal::MakeDuration(rem_sec, num_lo); |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
} // namespace |
|
|
|
namespace time_internal { |
|
|
|
// The 'satq' argument indicates whether the quotient should saturate at the |
|
// bounds of int64_t. If it does saturate, the difference will spill over to |
|
// the remainder. If it does not saturate, the remainder remain accurate, |
|
// but the returned quotient will over/underflow int64_t and should not be used. |
|
int64_t IDivDuration(bool satq, const Duration num, const Duration den, |
|
Duration* rem) { |
|
int64_t q = 0; |
|
if (IDivFastPath(num, den, &q, rem)) { |
|
return q; |
|
} |
|
|
|
const bool num_neg = num < ZeroDuration(); |
|
const bool den_neg = den < ZeroDuration(); |
|
const bool quotient_neg = num_neg != den_neg; |
|
|
|
if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) { |
|
*rem = num_neg ? -InfiniteDuration() : InfiniteDuration(); |
|
return quotient_neg ? kint64min : kint64max; |
|
} |
|
if (time_internal::IsInfiniteDuration(den)) { |
|
*rem = num; |
|
return 0; |
|
} |
|
|
|
const uint128 a = MakeU128Ticks(num); |
|
const uint128 b = MakeU128Ticks(den); |
|
uint128 quotient128 = a / b; |
|
|
|
if (satq) { |
|
// Limits the quotient to the range of int64_t. |
|
if (quotient128 > uint128(static_cast<uint64_t>(kint64max))) { |
|
quotient128 = quotient_neg ? uint128(static_cast<uint64_t>(kint64min)) |
|
: uint128(static_cast<uint64_t>(kint64max)); |
|
} |
|
} |
|
|
|
const uint128 remainder128 = a - quotient128 * b; |
|
*rem = MakeDurationFromU128(remainder128, num_neg); |
|
|
|
if (!quotient_neg || quotient128 == 0) { |
|
return Uint128Low64(quotient128) & kint64max; |
|
} |
|
// The quotient needs to be negated, but we need to carefully handle |
|
// quotient128s with the top bit on. |
|
return -static_cast<int64_t>(Uint128Low64(quotient128 - 1) & kint64max) - 1; |
|
} |
|
|
|
} // namespace time_internal |
|
|
|
// |
|
// Additive operators. |
|
// |
|
|
|
Duration& Duration::operator+=(Duration rhs) { |
|
if (time_internal::IsInfiniteDuration(*this)) return *this; |
|
if (time_internal::IsInfiniteDuration(rhs)) return *this = rhs; |
|
const int64_t orig_rep_hi = rep_hi_; |
|
rep_hi_ = |
|
DecodeTwosComp(EncodeTwosComp(rep_hi_) + EncodeTwosComp(rhs.rep_hi_)); |
|
if (rep_lo_ >= kTicksPerSecond - rhs.rep_lo_) { |
|
rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) + 1); |
|
rep_lo_ -= kTicksPerSecond; |
|
} |
|
rep_lo_ += rhs.rep_lo_; |
|
if (rhs.rep_hi_ < 0 ? rep_hi_ > orig_rep_hi : rep_hi_ < orig_rep_hi) { |
|
return *this = rhs.rep_hi_ < 0 ? -InfiniteDuration() : InfiniteDuration(); |
|
} |
|
return *this; |
|
} |
|
|
|
Duration& Duration::operator-=(Duration rhs) { |
|
if (time_internal::IsInfiniteDuration(*this)) return *this; |
|
if (time_internal::IsInfiniteDuration(rhs)) { |
|
return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration(); |
|
} |
|
const int64_t orig_rep_hi = rep_hi_; |
|
rep_hi_ = |
|
DecodeTwosComp(EncodeTwosComp(rep_hi_) - EncodeTwosComp(rhs.rep_hi_)); |
|
if (rep_lo_ < rhs.rep_lo_) { |
|
rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) - 1); |
|
rep_lo_ += kTicksPerSecond; |
|
} |
|
rep_lo_ -= rhs.rep_lo_; |
|
if (rhs.rep_hi_ < 0 ? rep_hi_ < orig_rep_hi : rep_hi_ > orig_rep_hi) { |
|
return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration(); |
|
} |
|
return *this; |
|
} |
|
|
|
// |
|
// Multiplicative operators. |
|
// |
|
|
|
Duration& Duration::operator*=(int64_t r) { |
|
if (time_internal::IsInfiniteDuration(*this)) { |
|
const bool is_neg = (r < 0) != (rep_hi_ < 0); |
|
return *this = is_neg ? -InfiniteDuration() : InfiniteDuration(); |
|
} |
|
return *this = ScaleFixed<SafeMultiply>(*this, r); |
|
} |
|
|
|
Duration& Duration::operator*=(double r) { |
|
if (time_internal::IsInfiniteDuration(*this) || !IsFinite(r)) { |
|
const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0); |
|
return *this = is_neg ? -InfiniteDuration() : InfiniteDuration(); |
|
} |
|
return *this = ScaleDouble<std::multiplies>(*this, r); |
|
} |
|
|
|
Duration& Duration::operator/=(int64_t r) { |
|
if (time_internal::IsInfiniteDuration(*this) || r == 0) { |
|
const bool is_neg = (r < 0) != (rep_hi_ < 0); |
|
return *this = is_neg ? -InfiniteDuration() : InfiniteDuration(); |
|
} |
|
return *this = ScaleFixed<std::divides>(*this, r); |
|
} |
|
|
|
Duration& Duration::operator/=(double r) { |
|
if (time_internal::IsInfiniteDuration(*this) || !IsValidDivisor(r)) { |
|
const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0); |
|
return *this = is_neg ? -InfiniteDuration() : InfiniteDuration(); |
|
} |
|
return *this = ScaleDouble<std::divides>(*this, r); |
|
} |
|
|
|
Duration& Duration::operator%=(Duration rhs) { |
|
time_internal::IDivDuration(false, *this, rhs, this); |
|
return *this; |
|
} |
|
|
|
double FDivDuration(Duration num, Duration den) { |
|
// Arithmetic with infinity is sticky. |
|
if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) { |
|
return (num < ZeroDuration()) == (den < ZeroDuration()) |
|
? std::numeric_limits<double>::infinity() |
|
: -std::numeric_limits<double>::infinity(); |
|
} |
|
if (time_internal::IsInfiniteDuration(den)) return 0.0; |
|
|
|
double a = |
|
static_cast<double>(time_internal::GetRepHi(num)) * kTicksPerSecond + |
|
time_internal::GetRepLo(num); |
|
double b = |
|
static_cast<double>(time_internal::GetRepHi(den)) * kTicksPerSecond + |
|
time_internal::GetRepLo(den); |
|
return a / b; |
|
} |
|
|
|
// |
|
// Trunc/Floor/Ceil. |
|
// |
|
|
|
Duration Trunc(Duration d, Duration unit) { |
|
return d - (d % unit); |
|
} |
|
|
|
Duration Floor(const Duration d, const Duration unit) { |
|
const absl::Duration td = Trunc(d, unit); |
|
return td <= d ? td : td - AbsDuration(unit); |
|
} |
|
|
|
Duration Ceil(const Duration d, const Duration unit) { |
|
const absl::Duration td = Trunc(d, unit); |
|
return td >= d ? td : td + AbsDuration(unit); |
|
} |
|
|
|
// |
|
// Factory functions. |
|
// |
|
|
|
Duration DurationFromTimespec(timespec ts) { |
|
if (static_cast<uint64_t>(ts.tv_nsec) < 1000 * 1000 * 1000) { |
|
int64_t ticks = ts.tv_nsec * kTicksPerNanosecond; |
|
return time_internal::MakeDuration(ts.tv_sec, ticks); |
|
} |
|
return Seconds(ts.tv_sec) + Nanoseconds(ts.tv_nsec); |
|
} |
|
|
|
Duration DurationFromTimeval(timeval tv) { |
|
if (static_cast<uint64_t>(tv.tv_usec) < 1000 * 1000) { |
|
int64_t ticks = tv.tv_usec * 1000 * kTicksPerNanosecond; |
|
return time_internal::MakeDuration(tv.tv_sec, ticks); |
|
} |
|
return Seconds(tv.tv_sec) + Microseconds(tv.tv_usec); |
|
} |
|
|
|
// |
|
// Conversion to other duration types. |
|
// |
|
|
|
int64_t ToInt64Nanoseconds(Duration d) { |
|
if (time_internal::GetRepHi(d) >= 0 && |
|
time_internal::GetRepHi(d) >> 33 == 0) { |
|
return (time_internal::GetRepHi(d) * 1000 * 1000 * 1000) + |
|
(time_internal::GetRepLo(d) / kTicksPerNanosecond); |
|
} |
|
return d / Nanoseconds(1); |
|
} |
|
int64_t ToInt64Microseconds(Duration d) { |
|
if (time_internal::GetRepHi(d) >= 0 && |
|
time_internal::GetRepHi(d) >> 43 == 0) { |
|
return (time_internal::GetRepHi(d) * 1000 * 1000) + |
|
(time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000)); |
|
} |
|
return d / Microseconds(1); |
|
} |
|
int64_t ToInt64Milliseconds(Duration d) { |
|
if (time_internal::GetRepHi(d) >= 0 && |
|
time_internal::GetRepHi(d) >> 53 == 0) { |
|
return (time_internal::GetRepHi(d) * 1000) + |
|
(time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000 * 1000)); |
|
} |
|
return d / Milliseconds(1); |
|
} |
|
int64_t ToInt64Seconds(Duration d) { |
|
int64_t hi = time_internal::GetRepHi(d); |
|
if (time_internal::IsInfiniteDuration(d)) return hi; |
|
if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi; |
|
return hi; |
|
} |
|
int64_t ToInt64Minutes(Duration d) { |
|
int64_t hi = time_internal::GetRepHi(d); |
|
if (time_internal::IsInfiniteDuration(d)) return hi; |
|
if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi; |
|
return hi / 60; |
|
} |
|
int64_t ToInt64Hours(Duration d) { |
|
int64_t hi = time_internal::GetRepHi(d); |
|
if (time_internal::IsInfiniteDuration(d)) return hi; |
|
if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi; |
|
return hi / (60 * 60); |
|
} |
|
|
|
double ToDoubleNanoseconds(Duration d) { |
|
return FDivDuration(d, Nanoseconds(1)); |
|
} |
|
double ToDoubleMicroseconds(Duration d) { |
|
return FDivDuration(d, Microseconds(1)); |
|
} |
|
double ToDoubleMilliseconds(Duration d) { |
|
return FDivDuration(d, Milliseconds(1)); |
|
} |
|
double ToDoubleSeconds(Duration d) { |
|
return FDivDuration(d, Seconds(1)); |
|
} |
|
double ToDoubleMinutes(Duration d) { |
|
return FDivDuration(d, Minutes(1)); |
|
} |
|
double ToDoubleHours(Duration d) { |
|
return FDivDuration(d, Hours(1)); |
|
} |
|
|
|
timespec ToTimespec(Duration d) { |
|
timespec ts; |
|
if (!time_internal::IsInfiniteDuration(d)) { |
|
int64_t rep_hi = time_internal::GetRepHi(d); |
|
uint32_t rep_lo = time_internal::GetRepLo(d); |
|
if (rep_hi < 0) { |
|
// Tweak the fields so that unsigned division of rep_lo |
|
// maps to truncation (towards zero) for the timespec. |
|
rep_lo += kTicksPerNanosecond - 1; |
|
if (rep_lo >= kTicksPerSecond) { |
|
rep_hi += 1; |
|
rep_lo -= kTicksPerSecond; |
|
} |
|
} |
|
ts.tv_sec = rep_hi; |
|
if (ts.tv_sec == rep_hi) { // no time_t narrowing |
|
ts.tv_nsec = rep_lo / kTicksPerNanosecond; |
|
return ts; |
|
} |
|
} |
|
if (d >= ZeroDuration()) { |
|
ts.tv_sec = std::numeric_limits<time_t>::max(); |
|
ts.tv_nsec = 1000 * 1000 * 1000 - 1; |
|
} else { |
|
ts.tv_sec = std::numeric_limits<time_t>::min(); |
|
ts.tv_nsec = 0; |
|
} |
|
return ts; |
|
} |
|
|
|
timeval ToTimeval(Duration d) { |
|
timeval tv; |
|
timespec ts = ToTimespec(d); |
|
if (ts.tv_sec < 0) { |
|
// Tweak the fields so that positive division of tv_nsec |
|
// maps to truncation (towards zero) for the timeval. |
|
ts.tv_nsec += 1000 - 1; |
|
if (ts.tv_nsec >= 1000 * 1000 * 1000) { |
|
ts.tv_sec += 1; |
|
ts.tv_nsec -= 1000 * 1000 * 1000; |
|
} |
|
} |
|
tv.tv_sec = ts.tv_sec; |
|
if (tv.tv_sec != ts.tv_sec) { // narrowing |
|
if (ts.tv_sec < 0) { |
|
tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::min(); |
|
tv.tv_usec = 0; |
|
} else { |
|
tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::max(); |
|
tv.tv_usec = 1000 * 1000 - 1; |
|
} |
|
return tv; |
|
} |
|
tv.tv_usec = static_cast<int>(ts.tv_nsec / 1000); // suseconds_t |
|
return tv; |
|
} |
|
|
|
std::chrono::nanoseconds ToChronoNanoseconds(Duration d) { |
|
return time_internal::ToChronoDuration<std::chrono::nanoseconds>(d); |
|
} |
|
std::chrono::microseconds ToChronoMicroseconds(Duration d) { |
|
return time_internal::ToChronoDuration<std::chrono::microseconds>(d); |
|
} |
|
std::chrono::milliseconds ToChronoMilliseconds(Duration d) { |
|
return time_internal::ToChronoDuration<std::chrono::milliseconds>(d); |
|
} |
|
std::chrono::seconds ToChronoSeconds(Duration d) { |
|
return time_internal::ToChronoDuration<std::chrono::seconds>(d); |
|
} |
|
std::chrono::minutes ToChronoMinutes(Duration d) { |
|
return time_internal::ToChronoDuration<std::chrono::minutes>(d); |
|
} |
|
std::chrono::hours ToChronoHours(Duration d) { |
|
return time_internal::ToChronoDuration<std::chrono::hours>(d); |
|
} |
|
|
|
// |
|
// To/From string formatting. |
|
// |
|
|
|
namespace { |
|
|
|
// Formats a positive 64-bit integer in the given field width. Note that |
|
// it is up to the caller of Format64() to ensure that there is sufficient |
|
// space before ep to hold the conversion. |
|
char* Format64(char* ep, int width, int64_t v) { |
|
do { |
|
--width; |
|
*--ep = '0' + (v % 10); // contiguous digits |
|
} while (v /= 10); |
|
while (--width >= 0) *--ep = '0'; // zero pad |
|
return ep; |
|
} |
|
|
|
// Helpers for FormatDuration() that format 'n' and append it to 'out' |
|
// followed by the given 'unit'. If 'n' formats to "0", nothing is |
|
// appended (not even the unit). |
|
|
|
// A type that encapsulates how to display a value of a particular unit. For |
|
// values that are displayed with fractional parts, the precision indicates |
|
// where to round the value. The precision varies with the display unit because |
|
// a Duration can hold only quarters of a nanosecond, so displaying information |
|
// beyond that is just noise. |
|
// |
|
// For example, a microsecond value of 42.00025xxxxx should not display beyond 5 |
|
// fractional digits, because it is in the noise of what a Duration can |
|
// represent. |
|
struct DisplayUnit { |
|
absl::string_view abbr; |
|
int prec; |
|
double pow10; |
|
}; |
|
ABSL_CONST_INIT const DisplayUnit kDisplayNano = {"ns", 2, 1e2}; |
|
ABSL_CONST_INIT const DisplayUnit kDisplayMicro = {"us", 5, 1e5}; |
|
ABSL_CONST_INIT const DisplayUnit kDisplayMilli = {"ms", 8, 1e8}; |
|
ABSL_CONST_INIT const DisplayUnit kDisplaySec = {"s", 11, 1e11}; |
|
ABSL_CONST_INIT const DisplayUnit kDisplayMin = {"m", -1, 0.0}; // prec ignored |
|
ABSL_CONST_INIT const DisplayUnit kDisplayHour = {"h", -1, |
|
0.0}; // prec ignored |
|
|
|
void AppendNumberUnit(std::string* out, int64_t n, DisplayUnit unit) { |
|
char buf[sizeof("2562047788015216")]; // hours in max duration |
|
char* const ep = buf + sizeof(buf); |
|
char* bp = Format64(ep, 0, n); |
|
if (*bp != '0' || bp + 1 != ep) { |
|
out->append(bp, ep - bp); |
|
out->append(unit.abbr.data(), unit.abbr.size()); |
|
} |
|
} |
|
|
|
// Note: unit.prec is limited to double's digits10 value (typically 15) so it |
|
// always fits in buf[]. |
|
void AppendNumberUnit(std::string* out, double n, DisplayUnit unit) { |
|
constexpr int kBufferSize = std::numeric_limits<double>::digits10; |
|
const int prec = std::min(kBufferSize, unit.prec); |
|
char buf[kBufferSize]; // also large enough to hold integer part |
|
char* ep = buf + sizeof(buf); |
|
double d = 0; |
|
int64_t frac_part = Round(std::modf(n, &d) * unit.pow10); |
|
int64_t int_part = d; |
|
if (int_part != 0 || frac_part != 0) { |
|
char* bp = Format64(ep, 0, int_part); // always < 1000 |
|
out->append(bp, ep - bp); |
|
if (frac_part != 0) { |
|
out->push_back('.'); |
|
bp = Format64(ep, prec, frac_part); |
|
while (ep[-1] == '0') --ep; |
|
out->append(bp, ep - bp); |
|
} |
|
out->append(unit.abbr.data(), unit.abbr.size()); |
|
} |
|
} |
|
|
|
} // namespace |
|
|
|
// From Go's doc at https://golang.org/pkg/time/#Duration.String |
|
// [FormatDuration] returns a string representing the duration in the |
|
// form "72h3m0.5s". Leading zero units are omitted. As a special |
|
// case, durations less than one second format use a smaller unit |
|
// (milli-, micro-, or nanoseconds) to ensure that the leading digit |
|
// is non-zero. |
|
// Unlike Go, we format the zero duration as 0, with no unit. |
|
std::string FormatDuration(Duration d) { |
|
const Duration min_duration = Seconds(kint64min); |
|
if (d == min_duration) { |
|
// Avoid needing to negate kint64min by directly returning what the |
|
// following code should produce in that case. |
|
return "-2562047788015215h30m8s"; |
|
} |
|
std::string s; |
|
if (d < ZeroDuration()) { |
|
s.append("-"); |
|
d = -d; |
|
} |
|
if (d == InfiniteDuration()) { |
|
s.append("inf"); |
|
} else if (d < Seconds(1)) { |
|
// Special case for durations with a magnitude < 1 second. The duration |
|
// is printed as a fraction of a single unit, e.g., "1.2ms". |
|
if (d < Microseconds(1)) { |
|
AppendNumberUnit(&s, FDivDuration(d, Nanoseconds(1)), kDisplayNano); |
|
} else if (d < Milliseconds(1)) { |
|
AppendNumberUnit(&s, FDivDuration(d, Microseconds(1)), kDisplayMicro); |
|
} else { |
|
AppendNumberUnit(&s, FDivDuration(d, Milliseconds(1)), kDisplayMilli); |
|
} |
|
} else { |
|
AppendNumberUnit(&s, IDivDuration(d, Hours(1), &d), kDisplayHour); |
|
AppendNumberUnit(&s, IDivDuration(d, Minutes(1), &d), kDisplayMin); |
|
AppendNumberUnit(&s, FDivDuration(d, Seconds(1)), kDisplaySec); |
|
} |
|
if (s.empty() || s == "-") { |
|
s = "0"; |
|
} |
|
return s; |
|
} |
|
|
|
namespace { |
|
|
|
// A helper for ParseDuration() that parses a leading number from the given |
|
// string and stores the result in *int_part/*frac_part/*frac_scale. The |
|
// given string pointer is modified to point to the first unconsumed char. |
|
bool ConsumeDurationNumber(const char** dpp, const char* ep, int64_t* int_part, |
|
int64_t* frac_part, int64_t* frac_scale) { |
|
*int_part = 0; |
|
*frac_part = 0; |
|
*frac_scale = 1; // invariant: *frac_part < *frac_scale |
|
const char* start = *dpp; |
|
for (; *dpp != ep; *dpp += 1) { |
|
const int d = **dpp - '0'; // contiguous digits |
|
if (d < 0 || 10 <= d) break; |
|
|
|
if (*int_part > kint64max / 10) return false; |
|
*int_part *= 10; |
|
if (*int_part > kint64max - d) return false; |
|
*int_part += d; |
|
} |
|
const bool int_part_empty = (*dpp == start); |
|
if (*dpp == ep || **dpp != '.') return !int_part_empty; |
|
|
|
for (*dpp += 1; *dpp != ep; *dpp += 1) { |
|
const int d = **dpp - '0'; // contiguous digits |
|
if (d < 0 || 10 <= d) break; |
|
if (*frac_scale <= kint64max / 10) { |
|
*frac_part *= 10; |
|
*frac_part += d; |
|
*frac_scale *= 10; |
|
} |
|
} |
|
return !int_part_empty || *frac_scale != 1; |
|
} |
|
|
|
// A helper for ParseDuration() that parses a leading unit designator (e.g., |
|
// ns, us, ms, s, m, h) from the given string and stores the resulting unit |
|
// in "*unit". The given string pointer is modified to point to the first |
|
// unconsumed char. |
|
bool ConsumeDurationUnit(const char** start, const char* end, Duration* unit) { |
|
size_t size = end - *start; |
|
switch (size) { |
|
case 0: |
|
return false; |
|
default: |
|
switch (**start) { |
|
case 'n': |
|
if (*(*start + 1) == 's') { |
|
*start += 2; |
|
*unit = Nanoseconds(1); |
|
return true; |
|
} |
|
break; |
|
case 'u': |
|
if (*(*start + 1) == 's') { |
|
*start += 2; |
|
*unit = Microseconds(1); |
|
return true; |
|
} |
|
break; |
|
case 'm': |
|
if (*(*start + 1) == 's') { |
|
*start += 2; |
|
*unit = Milliseconds(1); |
|
return true; |
|
} |
|
break; |
|
default: |
|
break; |
|
} |
|
ABSL_FALLTHROUGH_INTENDED; |
|
case 1: |
|
switch (**start) { |
|
case 's': |
|
*unit = Seconds(1); |
|
*start += 1; |
|
return true; |
|
case 'm': |
|
*unit = Minutes(1); |
|
*start += 1; |
|
return true; |
|
case 'h': |
|
*unit = Hours(1); |
|
*start += 1; |
|
return true; |
|
default: |
|
return false; |
|
} |
|
} |
|
} |
|
|
|
} // namespace |
|
|
|
// From Go's doc at https://golang.org/pkg/time/#ParseDuration |
|
// [ParseDuration] parses a duration string. A duration string is |
|
// a possibly signed sequence of decimal numbers, each with optional |
|
// fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m". |
|
// Valid time units are "ns", "us" "ms", "s", "m", "h". |
|
bool ParseDuration(absl::string_view dur_sv, Duration* d) { |
|
int sign = 1; |
|
if (absl::ConsumePrefix(&dur_sv, "-")) { |
|
sign = -1; |
|
} else { |
|
absl::ConsumePrefix(&dur_sv, "+"); |
|
} |
|
if (dur_sv.empty()) return false; |
|
|
|
// Special case for a string of "0". |
|
if (dur_sv == "0") { |
|
*d = ZeroDuration(); |
|
return true; |
|
} |
|
|
|
if (dur_sv == "inf") { |
|
*d = sign * InfiniteDuration(); |
|
return true; |
|
} |
|
|
|
const char* start = dur_sv.data(); |
|
const char* end = start + dur_sv.size(); |
|
|
|
Duration dur; |
|
while (start != end) { |
|
int64_t int_part; |
|
int64_t frac_part; |
|
int64_t frac_scale; |
|
Duration unit; |
|
if (!ConsumeDurationNumber(&start, end, &int_part, &frac_part, |
|
&frac_scale) || |
|
!ConsumeDurationUnit(&start, end, &unit)) { |
|
return false; |
|
} |
|
if (int_part != 0) dur += sign * int_part * unit; |
|
if (frac_part != 0) dur += sign * frac_part * unit / frac_scale; |
|
} |
|
*d = dur; |
|
return true; |
|
} |
|
|
|
bool AbslParseFlag(absl::string_view text, Duration* dst, std::string*) { |
|
return ParseDuration(text, dst); |
|
} |
|
|
|
std::string AbslUnparseFlag(Duration d) { return FormatDuration(d); } |
|
bool ParseFlag(const std::string& text, Duration* dst, std::string* ) { |
|
return ParseDuration(text, dst); |
|
} |
|
|
|
std::string UnparseFlag(Duration d) { return FormatDuration(d); } |
|
|
|
ABSL_NAMESPACE_END |
|
} // namespace absl
|
|
|