Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
163 lines
5.3 KiB
163 lines
5.3 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#ifndef ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_ |
|
#define ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_ |
|
|
|
#include <cassert> |
|
#include <cmath> |
|
#include <istream> |
|
#include <limits> |
|
#include <type_traits> |
|
|
|
#include "absl/meta/type_traits.h" |
|
#include "absl/random/internal/fast_uniform_bits.h" |
|
#include "absl/random/internal/generate_real.h" |
|
#include "absl/random/internal/iostream_state_saver.h" |
|
|
|
namespace absl { |
|
|
|
// absl::exponential_distribution: |
|
// Generates a number conforming to an exponential distribution and is |
|
// equivalent to the standard [rand.dist.pois.exp] distribution. |
|
template <typename RealType = double> |
|
class exponential_distribution { |
|
public: |
|
using result_type = RealType; |
|
|
|
class param_type { |
|
public: |
|
using distribution_type = exponential_distribution; |
|
|
|
explicit param_type(result_type lambda = 1) : lambda_(lambda) { |
|
assert(lambda > 0); |
|
neg_inv_lambda_ = -result_type(1) / lambda_; |
|
} |
|
|
|
result_type lambda() const { return lambda_; } |
|
|
|
friend bool operator==(const param_type& a, const param_type& b) { |
|
return a.lambda_ == b.lambda_; |
|
} |
|
|
|
friend bool operator!=(const param_type& a, const param_type& b) { |
|
return !(a == b); |
|
} |
|
|
|
private: |
|
friend class exponential_distribution; |
|
|
|
result_type lambda_; |
|
result_type neg_inv_lambda_; |
|
|
|
static_assert( |
|
std::is_floating_point<RealType>::value, |
|
"Class-template absl::exponential_distribution<> must be parameterized " |
|
"using a floating-point type."); |
|
}; |
|
|
|
exponential_distribution() : exponential_distribution(1) {} |
|
|
|
explicit exponential_distribution(result_type lambda) : param_(lambda) {} |
|
|
|
explicit exponential_distribution(const param_type& p) : param_(p) {} |
|
|
|
void reset() {} |
|
|
|
// Generating functions |
|
template <typename URBG> |
|
result_type operator()(URBG& g) { // NOLINT(runtime/references) |
|
return (*this)(g, param_); |
|
} |
|
|
|
template <typename URBG> |
|
result_type operator()(URBG& g, // NOLINT(runtime/references) |
|
const param_type& p); |
|
|
|
param_type param() const { return param_; } |
|
void param(const param_type& p) { param_ = p; } |
|
|
|
result_type(min)() const { return 0; } |
|
result_type(max)() const { |
|
return std::numeric_limits<result_type>::infinity(); |
|
} |
|
|
|
result_type lambda() const { return param_.lambda(); } |
|
|
|
friend bool operator==(const exponential_distribution& a, |
|
const exponential_distribution& b) { |
|
return a.param_ == b.param_; |
|
} |
|
friend bool operator!=(const exponential_distribution& a, |
|
const exponential_distribution& b) { |
|
return a.param_ != b.param_; |
|
} |
|
|
|
private: |
|
param_type param_; |
|
random_internal::FastUniformBits<uint64_t> fast_u64_; |
|
}; |
|
|
|
// -------------------------------------------------------------------------- |
|
// Implementation details follow |
|
// -------------------------------------------------------------------------- |
|
|
|
template <typename RealType> |
|
template <typename URBG> |
|
typename exponential_distribution<RealType>::result_type |
|
exponential_distribution<RealType>::operator()( |
|
URBG& g, // NOLINT(runtime/references) |
|
const param_type& p) { |
|
using random_internal::GenerateNegativeTag; |
|
using random_internal::GenerateRealFromBits; |
|
using real_type = |
|
absl::conditional_t<std::is_same<RealType, float>::value, float, double>; |
|
|
|
const result_type u = GenerateRealFromBits<real_type, GenerateNegativeTag, |
|
false>(fast_u64_(g)); // U(-1, 0) |
|
|
|
// log1p(-x) is mathematically equivalent to log(1 - x) but has more |
|
// accuracy for x near zero. |
|
return p.neg_inv_lambda_ * std::log1p(u); |
|
} |
|
|
|
template <typename CharT, typename Traits, typename RealType> |
|
std::basic_ostream<CharT, Traits>& operator<<( |
|
std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references) |
|
const exponential_distribution<RealType>& x) { |
|
auto saver = random_internal::make_ostream_state_saver(os); |
|
os.precision(random_internal::stream_precision_helper<RealType>::kPrecision); |
|
os << x.lambda(); |
|
return os; |
|
} |
|
|
|
template <typename CharT, typename Traits, typename RealType> |
|
std::basic_istream<CharT, Traits>& operator>>( |
|
std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references) |
|
exponential_distribution<RealType>& x) { // NOLINT(runtime/references) |
|
using result_type = typename exponential_distribution<RealType>::result_type; |
|
using param_type = typename exponential_distribution<RealType>::param_type; |
|
result_type lambda; |
|
|
|
auto saver = random_internal::make_istream_state_saver(is); |
|
lambda = random_internal::read_floating_point<result_type>(is); |
|
if (!is.fail()) { |
|
x.param(param_type(lambda)); |
|
} |
|
return is; |
|
} |
|
|
|
} // namespace absl |
|
|
|
#endif // ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_
|
|
|