Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
425 lines
14 KiB
425 lines
14 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#ifndef ABSL_RANDOM_BETA_DISTRIBUTION_H_ |
|
#define ABSL_RANDOM_BETA_DISTRIBUTION_H_ |
|
|
|
#include <cassert> |
|
#include <cmath> |
|
#include <istream> |
|
#include <limits> |
|
#include <ostream> |
|
#include <type_traits> |
|
|
|
#include "absl/meta/type_traits.h" |
|
#include "absl/random/internal/fast_uniform_bits.h" |
|
#include "absl/random/internal/fastmath.h" |
|
#include "absl/random/internal/generate_real.h" |
|
#include "absl/random/internal/iostream_state_saver.h" |
|
|
|
namespace absl { |
|
|
|
// absl::beta_distribution: |
|
// Generate a floating-point variate conforming to a Beta distribution: |
|
// pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1), |
|
// where the params alpha and beta are both strictly positive real values. |
|
// |
|
// The support is the open interval (0, 1), but the return value might be equal |
|
// to 0 or 1, due to numerical errors when alpha and beta are very different. |
|
// |
|
// Usage note: One usage is that alpha and beta are counts of number of |
|
// successes and failures. When the total number of trials are large, consider |
|
// approximating a beta distribution with a Gaussian distribution with the same |
|
// mean and variance. One could use the skewness, which depends only on the |
|
// smaller of alpha and beta when the number of trials are sufficiently large, |
|
// to quantify how far a beta distribution is from the normal distribution. |
|
template <typename RealType = double> |
|
class beta_distribution { |
|
public: |
|
using result_type = RealType; |
|
|
|
class param_type { |
|
public: |
|
using distribution_type = beta_distribution; |
|
|
|
explicit param_type(result_type alpha, result_type beta) |
|
: alpha_(alpha), beta_(beta) { |
|
assert(alpha >= 0); |
|
assert(beta >= 0); |
|
assert(alpha <= (std::numeric_limits<result_type>::max)()); |
|
assert(beta <= (std::numeric_limits<result_type>::max)()); |
|
if (alpha == 0 || beta == 0) { |
|
method_ = DEGENERATE_SMALL; |
|
x_ = (alpha >= beta) ? 1 : 0; |
|
return; |
|
} |
|
// a_ = min(beta, alpha), b_ = max(beta, alpha). |
|
if (beta < alpha) { |
|
inverted_ = true; |
|
a_ = beta; |
|
b_ = alpha; |
|
} else { |
|
inverted_ = false; |
|
a_ = alpha; |
|
b_ = beta; |
|
} |
|
if (a_ <= 1 && b_ >= ThresholdForLargeA()) { |
|
method_ = DEGENERATE_SMALL; |
|
x_ = inverted_ ? result_type(1) : result_type(0); |
|
return; |
|
} |
|
// For threshold values, see also: |
|
// Evaluation of Beta Generation Algorithms, Ying-Chao Hung, et. al. |
|
// February, 2009. |
|
if ((b_ < 1.0 && a_ + b_ <= 1.2) || a_ <= ThresholdForSmallA()) { |
|
// Choose Joehnk over Cheng when it's faster or when Cheng encounters |
|
// numerical issues. |
|
method_ = JOEHNK; |
|
a_ = result_type(1) / alpha_; |
|
b_ = result_type(1) / beta_; |
|
if (std::isinf(a_) || std::isinf(b_)) { |
|
method_ = DEGENERATE_SMALL; |
|
x_ = inverted_ ? result_type(1) : result_type(0); |
|
} |
|
return; |
|
} |
|
if (a_ >= ThresholdForLargeA()) { |
|
method_ = DEGENERATE_LARGE; |
|
// Note: on PPC for long double, evaluating |
|
// `std::numeric_limits::max() / ThresholdForLargeA` results in NaN. |
|
result_type r = a_ / b_; |
|
x_ = (inverted_ ? result_type(1) : r) / (1 + r); |
|
return; |
|
} |
|
x_ = a_ + b_; |
|
log_x_ = std::log(x_); |
|
if (a_ <= 1) { |
|
method_ = CHENG_BA; |
|
y_ = result_type(1) / a_; |
|
gamma_ = a_ + a_; |
|
return; |
|
} |
|
method_ = CHENG_BB; |
|
result_type r = (a_ - 1) / (b_ - 1); |
|
y_ = std::sqrt((1 + r) / (b_ * r * 2 - r + 1)); |
|
gamma_ = a_ + result_type(1) / y_; |
|
} |
|
|
|
result_type alpha() const { return alpha_; } |
|
result_type beta() const { return beta_; } |
|
|
|
friend bool operator==(const param_type& a, const param_type& b) { |
|
return a.alpha_ == b.alpha_ && a.beta_ == b.beta_; |
|
} |
|
|
|
friend bool operator!=(const param_type& a, const param_type& b) { |
|
return !(a == b); |
|
} |
|
|
|
private: |
|
friend class beta_distribution; |
|
|
|
#ifdef _MSC_VER |
|
// MSVC does not have constexpr implementations for std::log and std::exp |
|
// so they are computed at runtime. |
|
#define ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR |
|
#else |
|
#define ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR constexpr |
|
#endif |
|
|
|
// The threshold for whether std::exp(1/a) is finite. |
|
// Note that this value is quite large, and a smaller a_ is NOT abnormal. |
|
static ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR result_type |
|
ThresholdForSmallA() { |
|
return result_type(1) / |
|
std::log((std::numeric_limits<result_type>::max)()); |
|
} |
|
|
|
// The threshold for whether a * std::log(a) is finite. |
|
static ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR result_type |
|
ThresholdForLargeA() { |
|
return std::exp( |
|
std::log((std::numeric_limits<result_type>::max)()) - |
|
std::log(std::log((std::numeric_limits<result_type>::max)())) - |
|
ThresholdPadding()); |
|
} |
|
|
|
#undef ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR |
|
|
|
// Pad the threshold for large A for long double on PPC. This is done via a |
|
// template specialization below. |
|
static constexpr result_type ThresholdPadding() { return 0; } |
|
|
|
enum Method { |
|
JOEHNK, // Uses algorithm Joehnk |
|
CHENG_BA, // Uses algorithm BA in Cheng |
|
CHENG_BB, // Uses algorithm BB in Cheng |
|
|
|
// Note: See also: |
|
// Hung et al. Evaluation of beta generation algorithms. Communications |
|
// in Statistics-Simulation and Computation 38.4 (2009): 750-770. |
|
// especially: |
|
// Zechner, Heinz, and Ernst Stadlober. Generating beta variates via |
|
// patchwork rejection. Computing 50.1 (1993): 1-18. |
|
|
|
DEGENERATE_SMALL, // a_ is abnormally small. |
|
DEGENERATE_LARGE, // a_ is abnormally large. |
|
}; |
|
|
|
result_type alpha_; |
|
result_type beta_; |
|
|
|
result_type a_; // the smaller of {alpha, beta}, or 1.0/alpha_ in JOEHNK |
|
result_type b_; // the larger of {alpha, beta}, or 1.0/beta_ in JOEHNK |
|
result_type x_; // alpha + beta, or the result in degenerate cases |
|
result_type log_x_; // log(x_) |
|
result_type y_; // "beta" in Cheng |
|
result_type gamma_; // "gamma" in Cheng |
|
|
|
Method method_; |
|
|
|
// Placing this last for optimal alignment. |
|
// Whether alpha_ != a_, i.e. true iff alpha_ > beta_. |
|
bool inverted_; |
|
|
|
static_assert(std::is_floating_point<RealType>::value, |
|
"Class-template absl::beta_distribution<> must be " |
|
"parameterized using a floating-point type."); |
|
}; |
|
|
|
beta_distribution() : beta_distribution(1) {} |
|
|
|
explicit beta_distribution(result_type alpha, result_type beta = 1) |
|
: param_(alpha, beta) {} |
|
|
|
explicit beta_distribution(const param_type& p) : param_(p) {} |
|
|
|
void reset() {} |
|
|
|
// Generating functions |
|
template <typename URBG> |
|
result_type operator()(URBG& g) { // NOLINT(runtime/references) |
|
return (*this)(g, param_); |
|
} |
|
|
|
template <typename URBG> |
|
result_type operator()(URBG& g, // NOLINT(runtime/references) |
|
const param_type& p); |
|
|
|
param_type param() const { return param_; } |
|
void param(const param_type& p) { param_ = p; } |
|
|
|
result_type(min)() const { return 0; } |
|
result_type(max)() const { return 1; } |
|
|
|
result_type alpha() const { return param_.alpha(); } |
|
result_type beta() const { return param_.beta(); } |
|
|
|
friend bool operator==(const beta_distribution& a, |
|
const beta_distribution& b) { |
|
return a.param_ == b.param_; |
|
} |
|
friend bool operator!=(const beta_distribution& a, |
|
const beta_distribution& b) { |
|
return a.param_ != b.param_; |
|
} |
|
|
|
private: |
|
template <typename URBG> |
|
result_type AlgorithmJoehnk(URBG& g, // NOLINT(runtime/references) |
|
const param_type& p); |
|
|
|
template <typename URBG> |
|
result_type AlgorithmCheng(URBG& g, // NOLINT(runtime/references) |
|
const param_type& p); |
|
|
|
template <typename URBG> |
|
result_type DegenerateCase(URBG& g, // NOLINT(runtime/references) |
|
const param_type& p) { |
|
if (p.method_ == param_type::DEGENERATE_SMALL && p.alpha_ == p.beta_) { |
|
// Returns 0 or 1 with equal probability. |
|
random_internal::FastUniformBits<uint8_t> fast_u8; |
|
return static_cast<result_type>((fast_u8(g) & 0x10) != |
|
0); // pick any single bit. |
|
} |
|
return p.x_; |
|
} |
|
|
|
param_type param_; |
|
random_internal::FastUniformBits<uint64_t> fast_u64_; |
|
}; |
|
|
|
#if defined(__powerpc64__) || defined(__PPC64__) || defined(__powerpc__) || \ |
|
defined(__ppc__) || defined(__PPC__) |
|
// PPC needs a more stringent boundary for long double. |
|
template <> |
|
constexpr long double |
|
beta_distribution<long double>::param_type::ThresholdPadding() { |
|
return 10; |
|
} |
|
#endif |
|
|
|
template <typename RealType> |
|
template <typename URBG> |
|
typename beta_distribution<RealType>::result_type |
|
beta_distribution<RealType>::AlgorithmJoehnk( |
|
URBG& g, // NOLINT(runtime/references) |
|
const param_type& p) { |
|
using random_internal::GeneratePositiveTag; |
|
using random_internal::GenerateRealFromBits; |
|
using real_type = |
|
absl::conditional_t<std::is_same<RealType, float>::value, float, double>; |
|
|
|
// Based on Joehnk, M. D. Erzeugung von betaverteilten und gammaverteilten |
|
// Zufallszahlen. Metrika 8.1 (1964): 5-15. |
|
// This method is described in Knuth, Vol 2 (Third Edition), pp 134. |
|
|
|
result_type u, v, x, y, z; |
|
for (;;) { |
|
u = GenerateRealFromBits<real_type, GeneratePositiveTag, false>( |
|
fast_u64_(g)); |
|
v = GenerateRealFromBits<real_type, GeneratePositiveTag, false>( |
|
fast_u64_(g)); |
|
|
|
// Direct method. std::pow is slow for float, so rely on the optimizer to |
|
// remove the std::pow() path for that case. |
|
if (!std::is_same<float, result_type>::value) { |
|
x = std::pow(u, p.a_); |
|
y = std::pow(v, p.b_); |
|
z = x + y; |
|
if (z > 1) { |
|
// Reject if and only if `x + y > 1.0` |
|
continue; |
|
} |
|
if (z > 0) { |
|
// When both alpha and beta are small, x and y are both close to 0, so |
|
// divide by (x+y) directly may result in nan. |
|
return x / z; |
|
} |
|
} |
|
|
|
// Log transform. |
|
// x = log( pow(u, p.a_) ), y = log( pow(v, p.b_) ) |
|
// since u, v <= 1.0, x, y < 0. |
|
x = std::log(u) * p.a_; |
|
y = std::log(v) * p.b_; |
|
if (!std::isfinite(x) || !std::isfinite(y)) { |
|
continue; |
|
} |
|
// z = log( pow(u, a) + pow(v, b) ) |
|
z = x > y ? (x + std::log(1 + std::exp(y - x))) |
|
: (y + std::log(1 + std::exp(x - y))); |
|
// Reject iff log(x+y) > 0. |
|
if (z > 0) { |
|
continue; |
|
} |
|
return std::exp(x - z); |
|
} |
|
} |
|
|
|
template <typename RealType> |
|
template <typename URBG> |
|
typename beta_distribution<RealType>::result_type |
|
beta_distribution<RealType>::AlgorithmCheng( |
|
URBG& g, // NOLINT(runtime/references) |
|
const param_type& p) { |
|
using random_internal::GeneratePositiveTag; |
|
using random_internal::GenerateRealFromBits; |
|
using real_type = |
|
absl::conditional_t<std::is_same<RealType, float>::value, float, double>; |
|
|
|
// Based on Cheng, Russell CH. Generating beta variates with nonintegral |
|
// shape parameters. Communications of the ACM 21.4 (1978): 317-322. |
|
// (https://dl.acm.org/citation.cfm?id=359482). |
|
static constexpr result_type kLogFour = |
|
result_type(1.3862943611198906188344642429163531361); // log(4) |
|
static constexpr result_type kS = |
|
result_type(2.6094379124341003746007593332261876); // 1+log(5) |
|
|
|
const bool use_algorithm_ba = (p.method_ == param_type::CHENG_BA); |
|
result_type u1, u2, v, w, z, r, s, t, bw_inv, lhs; |
|
for (;;) { |
|
u1 = GenerateRealFromBits<real_type, GeneratePositiveTag, false>( |
|
fast_u64_(g)); |
|
u2 = GenerateRealFromBits<real_type, GeneratePositiveTag, false>( |
|
fast_u64_(g)); |
|
v = p.y_ * std::log(u1 / (1 - u1)); |
|
w = p.a_ * std::exp(v); |
|
bw_inv = result_type(1) / (p.b_ + w); |
|
r = p.gamma_ * v - kLogFour; |
|
s = p.a_ + r - w; |
|
z = u1 * u1 * u2; |
|
if (!use_algorithm_ba && s + kS >= 5 * z) { |
|
break; |
|
} |
|
t = std::log(z); |
|
if (!use_algorithm_ba && s >= t) { |
|
break; |
|
} |
|
lhs = p.x_ * (p.log_x_ + std::log(bw_inv)) + r; |
|
if (lhs >= t) { |
|
break; |
|
} |
|
} |
|
return p.inverted_ ? (1 - w * bw_inv) : w * bw_inv; |
|
} |
|
|
|
template <typename RealType> |
|
template <typename URBG> |
|
typename beta_distribution<RealType>::result_type |
|
beta_distribution<RealType>::operator()(URBG& g, // NOLINT(runtime/references) |
|
const param_type& p) { |
|
switch (p.method_) { |
|
case param_type::JOEHNK: |
|
return AlgorithmJoehnk(g, p); |
|
case param_type::CHENG_BA: |
|
ABSL_FALLTHROUGH_INTENDED; |
|
case param_type::CHENG_BB: |
|
return AlgorithmCheng(g, p); |
|
default: |
|
return DegenerateCase(g, p); |
|
} |
|
} |
|
|
|
template <typename CharT, typename Traits, typename RealType> |
|
std::basic_ostream<CharT, Traits>& operator<<( |
|
std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references) |
|
const beta_distribution<RealType>& x) { |
|
auto saver = random_internal::make_ostream_state_saver(os); |
|
os.precision(random_internal::stream_precision_helper<RealType>::kPrecision); |
|
os << x.alpha() << os.fill() << x.beta(); |
|
return os; |
|
} |
|
|
|
template <typename CharT, typename Traits, typename RealType> |
|
std::basic_istream<CharT, Traits>& operator>>( |
|
std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references) |
|
beta_distribution<RealType>& x) { // NOLINT(runtime/references) |
|
using result_type = typename beta_distribution<RealType>::result_type; |
|
using param_type = typename beta_distribution<RealType>::param_type; |
|
result_type alpha, beta; |
|
|
|
auto saver = random_internal::make_istream_state_saver(is); |
|
alpha = random_internal::read_floating_point<result_type>(is); |
|
if (is.fail()) return is; |
|
beta = random_internal::read_floating_point<result_type>(is); |
|
if (!is.fail()) { |
|
x.param(param_type(alpha, beta)); |
|
} |
|
return is; |
|
} |
|
|
|
} // namespace absl |
|
|
|
#endif // ABSL_RANDOM_BETA_DISTRIBUTION_H_
|
|
|