Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1121 lines
38 KiB
1121 lines
38 KiB
// Copyright 2020 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
// A Cord is a sequence of characters with some unusual access propreties. |
|
// A Cord supports efficient insertions and deletions at the start and end of |
|
// the byte sequence, but random access reads are slower, and random access |
|
// modifications are not supported by the API. Cord also provides cheap copies |
|
// (using a copy-on-write strategy) and cheap substring operations. |
|
// |
|
// Thread safety |
|
// ------------- |
|
// Cord has the same thread-safety properties as many other types like |
|
// std::string, std::vector<>, int, etc -- it is thread-compatible. In |
|
// particular, if no thread may call a non-const method, then it is safe to |
|
// concurrently call const methods. Copying a Cord produces a new instance that |
|
// can be used concurrently with the original in arbitrary ways. |
|
// |
|
// Implementation is similar to the "Ropes" described in: |
|
// Ropes: An alternative to strings |
|
// Hans J. Boehm, Russ Atkinson, Michael Plass |
|
// Software Practice and Experience, December 1995 |
|
|
|
#ifndef ABSL_STRINGS_CORD_H_ |
|
#define ABSL_STRINGS_CORD_H_ |
|
|
|
#include <algorithm> |
|
#include <cstddef> |
|
#include <cstdint> |
|
#include <cstring> |
|
#include <iostream> |
|
#include <iterator> |
|
#include <string> |
|
|
|
#include "absl/base/internal/endian.h" |
|
#include "absl/base/internal/invoke.h" |
|
#include "absl/base/internal/per_thread_tls.h" |
|
#include "absl/base/macros.h" |
|
#include "absl/base/port.h" |
|
#include "absl/container/inlined_vector.h" |
|
#include "absl/functional/function_ref.h" |
|
#include "absl/meta/type_traits.h" |
|
#include "absl/strings/internal/cord_internal.h" |
|
#include "absl/strings/internal/resize_uninitialized.h" |
|
#include "absl/strings/string_view.h" |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
class Cord; |
|
class CordTestPeer; |
|
template <typename Releaser> |
|
Cord MakeCordFromExternal(absl::string_view, Releaser&&); |
|
void CopyCordToString(const Cord& src, std::string* dst); |
|
namespace hash_internal { |
|
template <typename H> |
|
H HashFragmentedCord(H, const Cord&); |
|
} |
|
|
|
// A Cord is a sequence of characters. |
|
class Cord { |
|
private: |
|
template <typename T> |
|
using EnableIfString = |
|
absl::enable_if_t<std::is_same<T, std::string>::value, int>; |
|
|
|
public: |
|
// -------------------------------------------------------------------- |
|
// Constructors, destructors and helper factories |
|
|
|
// Create an empty cord |
|
constexpr Cord() noexcept; |
|
|
|
// Cord is copyable and efficiently movable. |
|
// The moved-from state is valid but unspecified. |
|
Cord(const Cord& src); |
|
Cord(Cord&& src) noexcept; |
|
Cord& operator=(const Cord& x); |
|
Cord& operator=(Cord&& x) noexcept; |
|
|
|
// Create a cord out of "src". This constructor is explicit on |
|
// purpose so that people do not get automatic type conversions. |
|
explicit Cord(absl::string_view src); |
|
Cord& operator=(absl::string_view src); |
|
|
|
// These are templated to avoid ambiguities for types that are convertible to |
|
// both `absl::string_view` and `std::string`, such as `const char*`. |
|
// |
|
// Note that these functions reserve the right to reuse the `string&&`'s |
|
// memory and that they will do so in the future. |
|
template <typename T, EnableIfString<T> = 0> |
|
explicit Cord(T&& src) : Cord(absl::string_view(src)) {} |
|
template <typename T, EnableIfString<T> = 0> |
|
Cord& operator=(T&& src); |
|
|
|
// Destroy the cord |
|
~Cord() { |
|
if (contents_.is_tree()) DestroyCordSlow(); |
|
} |
|
|
|
// Creates a Cord that takes ownership of external memory. The contents of |
|
// `data` are not copied. |
|
// |
|
// This function takes a callable that is invoked when all Cords are |
|
// finished with `data`. The data must remain live and unchanging until the |
|
// releaser is called. The requirements for the releaser are that it: |
|
// * is move constructible, |
|
// * supports `void operator()(absl::string_view) const`, |
|
// * does not have alignment requirement greater than what is guaranteed by |
|
// ::operator new. This is dictated by alignof(std::max_align_t) before |
|
// C++17 and __STDCPP_DEFAULT_NEW_ALIGNMENT__ if compiling with C++17 or |
|
// it is supported by the implementation. |
|
// |
|
// Example: |
|
// |
|
// Cord MakeCord(BlockPool* pool) { |
|
// Block* block = pool->NewBlock(); |
|
// FillBlock(block); |
|
// return absl::MakeCordFromExternal( |
|
// block->ToStringView(), |
|
// [pool, block](absl::string_view /*ignored*/) { |
|
// pool->FreeBlock(block); |
|
// }); |
|
// } |
|
// |
|
// WARNING: It's likely a bug if your releaser doesn't do anything. |
|
// For example, consider the following: |
|
// |
|
// void Foo(const char* buffer, int len) { |
|
// auto c = absl::MakeCordFromExternal(absl::string_view(buffer, len), |
|
// [](absl::string_view) {}); |
|
// |
|
// // BUG: If Bar() copies its cord for any reason, including keeping a |
|
// // substring of it, the lifetime of buffer might be extended beyond |
|
// // when Foo() returns. |
|
// Bar(c); |
|
// } |
|
template <typename Releaser> |
|
friend Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser); |
|
|
|
// -------------------------------------------------------------------- |
|
// Mutations |
|
|
|
void Clear(); |
|
|
|
void Append(const Cord& src); |
|
void Append(Cord&& src); |
|
void Append(absl::string_view src); |
|
template <typename T, EnableIfString<T> = 0> |
|
void Append(T&& src); |
|
|
|
void Prepend(const Cord& src); |
|
void Prepend(absl::string_view src); |
|
template <typename T, EnableIfString<T> = 0> |
|
void Prepend(T&& src); |
|
|
|
void RemovePrefix(size_t n); |
|
void RemoveSuffix(size_t n); |
|
|
|
// Returns a new cord representing the subrange [pos, pos + new_size) of |
|
// *this. If pos >= size(), the result is empty(). If |
|
// (pos + new_size) >= size(), the result is the subrange [pos, size()). |
|
Cord Subcord(size_t pos, size_t new_size) const; |
|
|
|
friend void swap(Cord& x, Cord& y) noexcept; |
|
|
|
// -------------------------------------------------------------------- |
|
// Accessors |
|
|
|
size_t size() const; |
|
bool empty() const; |
|
|
|
// Returns the approximate number of bytes pinned by this Cord. Note that |
|
// Cords that share memory could each be "charged" independently for the same |
|
// shared memory. |
|
size_t EstimatedMemoryUsage() const; |
|
|
|
// -------------------------------------------------------------------- |
|
// Comparators |
|
|
|
// Compares 'this' Cord with rhs. This function and its relatives |
|
// treat Cords as sequences of unsigned bytes. The comparison is a |
|
// straightforward lexicographic comparison. Return value: |
|
// -1 'this' Cord is smaller |
|
// 0 two Cords are equal |
|
// 1 'this' Cord is larger |
|
int Compare(absl::string_view rhs) const; |
|
int Compare(const Cord& rhs) const; |
|
|
|
// Does 'this' cord start/end with rhs |
|
bool StartsWith(const Cord& rhs) const; |
|
bool StartsWith(absl::string_view rhs) const; |
|
bool EndsWith(absl::string_view rhs) const; |
|
bool EndsWith(const Cord& rhs) const; |
|
|
|
// -------------------------------------------------------------------- |
|
// Conversion to other types |
|
|
|
explicit operator std::string() const; |
|
|
|
// Copies the contents from `src` to `*dst`. |
|
// |
|
// This function optimizes the case of reusing the destination std::string since it |
|
// can reuse previously allocated capacity. However, this function does not |
|
// guarantee that pointers previously returned by `dst->data()` remain valid |
|
// even if `*dst` had enough capacity to hold `src`. If `*dst` is a new |
|
// object, prefer to simply use the conversion operator to `std::string`. |
|
friend void CopyCordToString(const Cord& src, std::string* dst); |
|
|
|
// -------------------------------------------------------------------- |
|
// Iteration |
|
|
|
class CharIterator; |
|
|
|
// Type for iterating over the chunks of a `Cord`. See comments for |
|
// `Cord::chunk_begin()`, `Cord::chunk_end()` and `Cord::Chunks()` below for |
|
// preferred usage. |
|
// |
|
// Additional notes: |
|
// * The `string_view` returned by dereferencing a valid, non-`end()` |
|
// iterator is guaranteed to be non-empty. |
|
// * A `ChunkIterator` object is invalidated after any non-const |
|
// operation on the `Cord` object over which it iterates. |
|
// * Two `ChunkIterator` objects can be equality compared if and only if |
|
// they remain valid and iterate over the same `Cord`. |
|
// * This is a proxy iterator. This means the `string_view` returned by the |
|
// iterator does not live inside the Cord, and its lifetime is limited to |
|
// the lifetime of the iterator itself. To help prevent issues, |
|
// `ChunkIterator::reference` is not a true reference type and is |
|
// equivalent to `value_type`. |
|
// * The iterator keeps state that can grow for `Cord`s that contain many |
|
// nodes and are imbalanced due to sharing. Prefer to pass this type by |
|
// const reference instead of by value. |
|
class ChunkIterator { |
|
public: |
|
using iterator_category = std::input_iterator_tag; |
|
using value_type = absl::string_view; |
|
using difference_type = ptrdiff_t; |
|
using pointer = const value_type*; |
|
using reference = value_type; |
|
|
|
ChunkIterator() = default; |
|
|
|
ChunkIterator& operator++(); |
|
ChunkIterator operator++(int); |
|
bool operator==(const ChunkIterator& other) const; |
|
bool operator!=(const ChunkIterator& other) const; |
|
reference operator*() const; |
|
pointer operator->() const; |
|
|
|
friend class Cord; |
|
friend class CharIterator; |
|
|
|
private: |
|
// Constructs a `begin()` iterator from `cord`. |
|
explicit ChunkIterator(const Cord* cord); |
|
|
|
// Removes `n` bytes from `current_chunk_`. Expects `n` to be smaller than |
|
// `current_chunk_.size()`. |
|
void RemoveChunkPrefix(size_t n); |
|
Cord AdvanceAndReadBytes(size_t n); |
|
void AdvanceBytes(size_t n); |
|
// Iterates `n` bytes, where `n` is expected to be greater than or equal to |
|
// `current_chunk_.size()`. |
|
void AdvanceBytesSlowPath(size_t n); |
|
|
|
// A view into bytes of the current `CordRep`. It may only be a view to a |
|
// suffix of bytes if this is being used by `CharIterator`. |
|
absl::string_view current_chunk_; |
|
// The current leaf, or `nullptr` if the iterator points to short data. |
|
// If the current chunk is a substring node, current_leaf_ points to the |
|
// underlying flat or external node. |
|
absl::cord_internal::CordRep* current_leaf_ = nullptr; |
|
// The number of bytes left in the `Cord` over which we are iterating. |
|
size_t bytes_remaining_ = 0; |
|
absl::InlinedVector<absl::cord_internal::CordRep*, 4> |
|
stack_of_right_children_; |
|
}; |
|
|
|
// Returns an iterator to the first chunk of the `Cord`. |
|
// |
|
// This is useful for getting a `ChunkIterator` outside the context of a |
|
// range-based for-loop (in which case see `Cord::Chunks()` below). |
|
// |
|
// Example: |
|
// |
|
// absl::Cord::ChunkIterator FindAsChunk(const absl::Cord& c, |
|
// absl::string_view s) { |
|
// return std::find(c.chunk_begin(), c.chunk_end(), s); |
|
// } |
|
ChunkIterator chunk_begin() const; |
|
// Returns an iterator one increment past the last chunk of the `Cord`. |
|
ChunkIterator chunk_end() const; |
|
|
|
// Convenience wrapper over `Cord::chunk_begin()` and `Cord::chunk_end()` to |
|
// enable range-based for-loop iteration over `Cord` chunks. |
|
// |
|
// Prefer to use `Cord::Chunks()` below instead of constructing this directly. |
|
class ChunkRange { |
|
public: |
|
explicit ChunkRange(const Cord* cord) : cord_(cord) {} |
|
|
|
ChunkIterator begin() const; |
|
ChunkIterator end() const; |
|
|
|
private: |
|
const Cord* cord_; |
|
}; |
|
|
|
// Returns a range for iterating over the chunks of a `Cord` with a |
|
// range-based for-loop. |
|
// |
|
// Example: |
|
// |
|
// void ProcessChunks(const Cord& cord) { |
|
// for (absl::string_view chunk : cord.Chunks()) { ... } |
|
// } |
|
// |
|
// Note that the ordinary caveats of temporary lifetime extension apply: |
|
// |
|
// void Process() { |
|
// for (absl::string_view chunk : CordFactory().Chunks()) { |
|
// // The temporary Cord returned by CordFactory has been destroyed! |
|
// } |
|
// } |
|
ChunkRange Chunks() const; |
|
|
|
// Type for iterating over the characters of a `Cord`. See comments for |
|
// `Cord::char_begin()`, `Cord::char_end()` and `Cord::Chars()` below for |
|
// preferred usage. |
|
// |
|
// Additional notes: |
|
// * A `CharIterator` object is invalidated after any non-const |
|
// operation on the `Cord` object over which it iterates. |
|
// * Two `CharIterator` objects can be equality compared if and only if |
|
// they remain valid and iterate over the same `Cord`. |
|
// * The iterator keeps state that can grow for `Cord`s that contain many |
|
// nodes and are imbalanced due to sharing. Prefer to pass this type by |
|
// const reference instead of by value. |
|
// * This type cannot be a forward iterator because a `Cord` can reuse |
|
// sections of memory. This violates the requirement that if dereferencing |
|
// two iterators returns the same object, the iterators must compare |
|
// equal. |
|
class CharIterator { |
|
public: |
|
using iterator_category = std::input_iterator_tag; |
|
using value_type = char; |
|
using difference_type = ptrdiff_t; |
|
using pointer = const char*; |
|
using reference = const char&; |
|
|
|
CharIterator() = default; |
|
|
|
CharIterator& operator++(); |
|
CharIterator operator++(int); |
|
bool operator==(const CharIterator& other) const; |
|
bool operator!=(const CharIterator& other) const; |
|
reference operator*() const; |
|
pointer operator->() const; |
|
|
|
friend Cord; |
|
|
|
private: |
|
explicit CharIterator(const Cord* cord) : chunk_iterator_(cord) {} |
|
|
|
ChunkIterator chunk_iterator_; |
|
}; |
|
|
|
// Advances `*it` by `n_bytes` and returns the bytes passed as a `Cord`. |
|
// |
|
// `n_bytes` must be less than or equal to the number of bytes remaining for |
|
// iteration. Otherwise the behavior is undefined. It is valid to pass |
|
// `char_end()` and 0. |
|
static Cord AdvanceAndRead(CharIterator* it, size_t n_bytes); |
|
|
|
// Advances `*it` by `n_bytes`. |
|
// |
|
// `n_bytes` must be less than or equal to the number of bytes remaining for |
|
// iteration. Otherwise the behavior is undefined. It is valid to pass |
|
// `char_end()` and 0. |
|
static void Advance(CharIterator* it, size_t n_bytes); |
|
|
|
// Returns the longest contiguous view starting at the iterator's position. |
|
// |
|
// `it` must be dereferenceable. |
|
static absl::string_view ChunkRemaining(const CharIterator& it); |
|
|
|
// Returns an iterator to the first character of the `Cord`. |
|
CharIterator char_begin() const; |
|
// Returns an iterator to one past the last character of the `Cord`. |
|
CharIterator char_end() const; |
|
|
|
// Convenience wrapper over `Cord::char_begin()` and `Cord::char_end()` to |
|
// enable range-based for-loop iterator over the characters of a `Cord`. |
|
// |
|
// Prefer to use `Cord::Chars()` below instead of constructing this directly. |
|
class CharRange { |
|
public: |
|
explicit CharRange(const Cord* cord) : cord_(cord) {} |
|
|
|
CharIterator begin() const; |
|
CharIterator end() const; |
|
|
|
private: |
|
const Cord* cord_; |
|
}; |
|
|
|
// Returns a range for iterating over the characters of a `Cord` with a |
|
// range-based for-loop. |
|
// |
|
// Example: |
|
// |
|
// void ProcessCord(const Cord& cord) { |
|
// for (char c : cord.Chars()) { ... } |
|
// } |
|
// |
|
// Note that the ordinary caveats of temporary lifetime extension apply: |
|
// |
|
// void Process() { |
|
// for (char c : CordFactory().Chars()) { |
|
// // The temporary Cord returned by CordFactory has been destroyed! |
|
// } |
|
// } |
|
CharRange Chars() const; |
|
|
|
// -------------------------------------------------------------------- |
|
// Miscellaneous |
|
|
|
// Get the "i"th character of 'this' and return it. |
|
// NOTE: This routine is reasonably efficient. It is roughly |
|
// logarithmic in the number of nodes that make up the cord. Still, |
|
// if you need to iterate over the contents of a cord, you should |
|
// use a CharIterator/CordIterator rather than call operator[] or Get() |
|
// repeatedly in a loop. |
|
// |
|
// REQUIRES: 0 <= i < size() |
|
char operator[](size_t i) const; |
|
|
|
// Flattens the cord into a single array and returns a view of the data. |
|
// |
|
// If the cord was already flat, the contents are not modified. |
|
absl::string_view Flatten(); |
|
|
|
private: |
|
friend class CordTestPeer; |
|
template <typename H> |
|
friend H absl::hash_internal::HashFragmentedCord(H, const Cord&); |
|
friend bool operator==(const Cord& lhs, const Cord& rhs); |
|
friend bool operator==(const Cord& lhs, absl::string_view rhs); |
|
|
|
// Call the provided function once for each cord chunk, in order. Unlike |
|
// Chunks(), this API will not allocate memory. |
|
void ForEachChunk(absl::FunctionRef<void(absl::string_view)>) const; |
|
|
|
// Allocates new contiguous storage for the contents of the cord. This is |
|
// called by Flatten() when the cord was not already flat. |
|
absl::string_view FlattenSlowPath(); |
|
|
|
// Actual cord contents are hidden inside the following simple |
|
// class so that we can isolate the bulk of cord.cc from changes |
|
// to the representation. |
|
// |
|
// InlineRep holds either either a tree pointer, or an array of kMaxInline |
|
// bytes. |
|
class InlineRep { |
|
public: |
|
static const unsigned char kMaxInline = 15; |
|
static_assert(kMaxInline >= sizeof(absl::cord_internal::CordRep*), ""); |
|
// Tag byte & kMaxInline means we are storing a pointer. |
|
static const unsigned char kTreeFlag = 1 << 4; |
|
// Tag byte & kProfiledFlag means we are profiling the Cord. |
|
static const unsigned char kProfiledFlag = 1 << 5; |
|
|
|
constexpr InlineRep() : data_{} {} |
|
InlineRep(const InlineRep& src); |
|
InlineRep(InlineRep&& src); |
|
InlineRep& operator=(const InlineRep& src); |
|
InlineRep& operator=(InlineRep&& src) noexcept; |
|
|
|
void Swap(InlineRep* rhs); |
|
bool empty() const; |
|
size_t size() const; |
|
const char* data() const; // Returns nullptr if holding pointer |
|
void set_data(const char* data, size_t n, |
|
bool nullify_tail); // Discards pointer, if any |
|
char* set_data(size_t n); // Write data to the result |
|
// Returns nullptr if holding bytes |
|
absl::cord_internal::CordRep* tree() const; |
|
// Discards old pointer, if any |
|
void set_tree(absl::cord_internal::CordRep* rep); |
|
// Replaces a tree with a new root. This is faster than set_tree, but it |
|
// should only be used when it's clear that the old rep was a tree. |
|
void replace_tree(absl::cord_internal::CordRep* rep); |
|
// Returns non-null iff was holding a pointer |
|
absl::cord_internal::CordRep* clear(); |
|
// Convert to pointer if necessary |
|
absl::cord_internal::CordRep* force_tree(size_t extra_hint); |
|
void reduce_size(size_t n); // REQUIRES: holding data |
|
void remove_prefix(size_t n); // REQUIRES: holding data |
|
void AppendArray(const char* src_data, size_t src_size); |
|
absl::string_view FindFlatStartPiece() const; |
|
void AppendTree(absl::cord_internal::CordRep* tree); |
|
void PrependTree(absl::cord_internal::CordRep* tree); |
|
void GetAppendRegion(char** region, size_t* size, size_t max_length); |
|
void GetAppendRegion(char** region, size_t* size); |
|
bool IsSame(const InlineRep& other) const { |
|
return memcmp(data_, other.data_, sizeof(data_)) == 0; |
|
} |
|
int BitwiseCompare(const InlineRep& other) const { |
|
uint64_t x, y; |
|
// Use memcpy to avoid anti-aliasing issues. |
|
memcpy(&x, data_, sizeof(x)); |
|
memcpy(&y, other.data_, sizeof(y)); |
|
if (x == y) { |
|
memcpy(&x, data_ + 8, sizeof(x)); |
|
memcpy(&y, other.data_ + 8, sizeof(y)); |
|
if (x == y) return 0; |
|
} |
|
return absl::big_endian::FromHost64(x) < absl::big_endian::FromHost64(y) |
|
? -1 |
|
: 1; |
|
} |
|
void CopyTo(std::string* dst) const { |
|
// memcpy is much faster when operating on a known size. On most supported |
|
// platforms, the small std::string optimization is large enough that resizing |
|
// to 15 bytes does not cause a memory allocation. |
|
absl::strings_internal::STLStringResizeUninitialized(dst, |
|
sizeof(data_) - 1); |
|
memcpy(&(*dst)[0], data_, sizeof(data_) - 1); |
|
// erase is faster than resize because the logic for memory allocation is |
|
// not needed. |
|
dst->erase(data_[kMaxInline]); |
|
} |
|
|
|
// Copies the inline contents into `dst`. Assumes the cord is not empty. |
|
void CopyToArray(char* dst) const; |
|
|
|
bool is_tree() const { return data_[kMaxInline] > kMaxInline; } |
|
|
|
private: |
|
friend class Cord; |
|
|
|
void AssignSlow(const InlineRep& src); |
|
// Unrefs the tree, stops profiling, and zeroes the contents |
|
void ClearSlow(); |
|
|
|
// If the data has length <= kMaxInline, we store it in data_[0..len-1], |
|
// and store the length in data_[kMaxInline]. Else we store it in a tree |
|
// and store a pointer to that tree in data_[0..sizeof(CordRep*)-1]. |
|
alignas(absl::cord_internal::CordRep*) char data_[kMaxInline + 1]; |
|
}; |
|
InlineRep contents_; |
|
|
|
// Helper for MemoryUsage() |
|
static size_t MemoryUsageAux(const absl::cord_internal::CordRep* rep); |
|
|
|
// Helper for GetFlat() |
|
static bool GetFlatAux(absl::cord_internal::CordRep* rep, |
|
absl::string_view* fragment); |
|
|
|
// Helper for ForEachChunk() |
|
static void ForEachChunkAux( |
|
absl::cord_internal::CordRep* rep, |
|
absl::FunctionRef<void(absl::string_view)> callback); |
|
|
|
// The destructor for non-empty Cords. |
|
void DestroyCordSlow(); |
|
|
|
// Out-of-line implementation of slower parts of logic. |
|
void CopyToArraySlowPath(char* dst) const; |
|
int CompareSlowPath(absl::string_view rhs, size_t compared_size, |
|
size_t size_to_compare) const; |
|
int CompareSlowPath(const Cord& rhs, size_t compared_size, |
|
size_t size_to_compare) const; |
|
bool EqualsImpl(absl::string_view rhs, size_t size_to_compare) const; |
|
bool EqualsImpl(const Cord& rhs, size_t size_to_compare) const; |
|
int CompareImpl(const Cord& rhs) const; |
|
|
|
template <typename ResultType, typename RHS> |
|
friend ResultType GenericCompare(const Cord& lhs, const RHS& rhs, |
|
size_t size_to_compare); |
|
static absl::string_view GetFirstChunk(const Cord& c); |
|
static absl::string_view GetFirstChunk(absl::string_view sv); |
|
|
|
// Returns a new reference to contents_.tree(), or steals an existing |
|
// reference if called on an rvalue. |
|
absl::cord_internal::CordRep* TakeRep() const&; |
|
absl::cord_internal::CordRep* TakeRep() &&; |
|
|
|
// Helper for Append() |
|
template <typename C> |
|
void AppendImpl(C&& src); |
|
}; |
|
|
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
|
|
// allow a Cord to be logged |
|
extern std::ostream& operator<<(std::ostream& out, const Cord& cord); |
|
|
|
// ------------------------------------------------------------------ |
|
// Internal details follow. Clients should ignore. |
|
|
|
namespace cord_internal { |
|
|
|
// Fast implementation of memmove for up to 15 bytes. This implementation is |
|
// safe for overlapping regions. If nullify_tail is true, the destination is |
|
// padded with '\0' up to 16 bytes. |
|
inline void SmallMemmove(char* dst, const char* src, size_t n, |
|
bool nullify_tail = false) { |
|
if (n >= 8) { |
|
assert(n <= 16); |
|
uint64_t buf1; |
|
uint64_t buf2; |
|
memcpy(&buf1, src, 8); |
|
memcpy(&buf2, src + n - 8, 8); |
|
if (nullify_tail) { |
|
memset(dst + 8, 0, 8); |
|
} |
|
memcpy(dst, &buf1, 8); |
|
memcpy(dst + n - 8, &buf2, 8); |
|
} else if (n >= 4) { |
|
uint32_t buf1; |
|
uint32_t buf2; |
|
memcpy(&buf1, src, 4); |
|
memcpy(&buf2, src + n - 4, 4); |
|
if (nullify_tail) { |
|
memset(dst + 4, 0, 4); |
|
memset(dst + 8, 0, 8); |
|
} |
|
memcpy(dst, &buf1, 4); |
|
memcpy(dst + n - 4, &buf2, 4); |
|
} else { |
|
if (n != 0) { |
|
dst[0] = src[0]; |
|
dst[n / 2] = src[n / 2]; |
|
dst[n - 1] = src[n - 1]; |
|
} |
|
if (nullify_tail) { |
|
memset(dst + 8, 0, 8); |
|
memset(dst + n, 0, 8); |
|
} |
|
} |
|
} |
|
|
|
struct ExternalRepReleaserPair { |
|
CordRep* rep; |
|
void* releaser_address; |
|
}; |
|
|
|
// Allocates a new external `CordRep` and returns a pointer to it and a pointer |
|
// to `releaser_size` bytes where the desired releaser can be constructed. |
|
// Expects `data` to be non-empty. |
|
ExternalRepReleaserPair NewExternalWithUninitializedReleaser( |
|
absl::string_view data, ExternalReleaserInvoker invoker, |
|
size_t releaser_size); |
|
|
|
// Creates a new `CordRep` that owns `data` and `releaser` and returns a pointer |
|
// to it, or `nullptr` if `data` was empty. |
|
template <typename Releaser> |
|
// NOLINTNEXTLINE - suppress clang-tidy raw pointer return. |
|
CordRep* NewExternalRep(absl::string_view data, Releaser&& releaser) { |
|
static_assert( |
|
#if defined(__STDCPP_DEFAULT_NEW_ALIGNMENT__) |
|
alignof(Releaser) <= __STDCPP_DEFAULT_NEW_ALIGNMENT__, |
|
#else |
|
alignof(Releaser) <= alignof(max_align_t), |
|
#endif |
|
"Releasers with alignment requirement greater than what is returned by " |
|
"default `::operator new()` are not supported."); |
|
|
|
using ReleaserType = absl::decay_t<Releaser>; |
|
if (data.empty()) { |
|
// Never create empty external nodes. |
|
::absl::base_internal::Invoke( |
|
ReleaserType(std::forward<Releaser>(releaser)), data); |
|
return nullptr; |
|
} |
|
|
|
auto releaser_invoker = [](void* type_erased_releaser, absl::string_view d) { |
|
auto* my_releaser = static_cast<ReleaserType*>(type_erased_releaser); |
|
::absl::base_internal::Invoke(std::move(*my_releaser), d); |
|
my_releaser->~ReleaserType(); |
|
return sizeof(Releaser); |
|
}; |
|
|
|
ExternalRepReleaserPair external = NewExternalWithUninitializedReleaser( |
|
data, releaser_invoker, sizeof(releaser)); |
|
::new (external.releaser_address) |
|
ReleaserType(std::forward<Releaser>(releaser)); |
|
return external.rep; |
|
} |
|
|
|
// Overload for function reference types that dispatches using a function |
|
// pointer because there are no `alignof()` or `sizeof()` a function reference. |
|
// NOLINTNEXTLINE - suppress clang-tidy raw pointer return. |
|
inline CordRep* NewExternalRep(absl::string_view data, |
|
void (&releaser)(absl::string_view)) { |
|
return NewExternalRep(data, &releaser); |
|
} |
|
|
|
} // namespace cord_internal |
|
|
|
template <typename Releaser> |
|
Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser) { |
|
Cord cord; |
|
cord.contents_.set_tree(::absl::cord_internal::NewExternalRep( |
|
data, std::forward<Releaser>(releaser))); |
|
return cord; |
|
} |
|
|
|
inline Cord::InlineRep::InlineRep(const Cord::InlineRep& src) { |
|
cord_internal::SmallMemmove(data_, src.data_, sizeof(data_)); |
|
} |
|
|
|
inline Cord::InlineRep::InlineRep(Cord::InlineRep&& src) { |
|
memcpy(data_, src.data_, sizeof(data_)); |
|
memset(src.data_, 0, sizeof(data_)); |
|
} |
|
|
|
inline Cord::InlineRep& Cord::InlineRep::operator=(const Cord::InlineRep& src) { |
|
if (this == &src) { |
|
return *this; |
|
} |
|
if (!is_tree() && !src.is_tree()) { |
|
cord_internal::SmallMemmove(data_, src.data_, sizeof(data_)); |
|
return *this; |
|
} |
|
AssignSlow(src); |
|
return *this; |
|
} |
|
|
|
inline Cord::InlineRep& Cord::InlineRep::operator=( |
|
Cord::InlineRep&& src) noexcept { |
|
if (is_tree()) { |
|
ClearSlow(); |
|
} |
|
memcpy(data_, src.data_, sizeof(data_)); |
|
memset(src.data_, 0, sizeof(data_)); |
|
return *this; |
|
} |
|
|
|
inline void Cord::InlineRep::Swap(Cord::InlineRep* rhs) { |
|
if (rhs == this) { |
|
return; |
|
} |
|
|
|
Cord::InlineRep tmp; |
|
cord_internal::SmallMemmove(tmp.data_, data_, sizeof(data_)); |
|
cord_internal::SmallMemmove(data_, rhs->data_, sizeof(data_)); |
|
cord_internal::SmallMemmove(rhs->data_, tmp.data_, sizeof(data_)); |
|
} |
|
|
|
inline const char* Cord::InlineRep::data() const { |
|
return is_tree() ? nullptr : data_; |
|
} |
|
|
|
inline absl::cord_internal::CordRep* Cord::InlineRep::tree() const { |
|
if (is_tree()) { |
|
absl::cord_internal::CordRep* rep; |
|
memcpy(&rep, data_, sizeof(rep)); |
|
return rep; |
|
} else { |
|
return nullptr; |
|
} |
|
} |
|
|
|
inline bool Cord::InlineRep::empty() const { return data_[kMaxInline] == 0; } |
|
|
|
inline size_t Cord::InlineRep::size() const { |
|
const char tag = data_[kMaxInline]; |
|
if (tag <= kMaxInline) return tag; |
|
return static_cast<size_t>(tree()->length); |
|
} |
|
|
|
inline void Cord::InlineRep::set_tree(absl::cord_internal::CordRep* rep) { |
|
if (rep == nullptr) { |
|
memset(data_, 0, sizeof(data_)); |
|
} else { |
|
bool was_tree = is_tree(); |
|
memcpy(data_, &rep, sizeof(rep)); |
|
memset(data_ + sizeof(rep), 0, sizeof(data_) - sizeof(rep) - 1); |
|
if (!was_tree) { |
|
data_[kMaxInline] = kTreeFlag; |
|
} |
|
} |
|
} |
|
|
|
inline void Cord::InlineRep::replace_tree(absl::cord_internal::CordRep* rep) { |
|
ABSL_ASSERT(is_tree()); |
|
if (ABSL_PREDICT_FALSE(rep == nullptr)) { |
|
set_tree(rep); |
|
return; |
|
} |
|
memcpy(data_, &rep, sizeof(rep)); |
|
memset(data_ + sizeof(rep), 0, sizeof(data_) - sizeof(rep) - 1); |
|
} |
|
|
|
inline absl::cord_internal::CordRep* Cord::InlineRep::clear() { |
|
const char tag = data_[kMaxInline]; |
|
absl::cord_internal::CordRep* result = nullptr; |
|
if (tag > kMaxInline) { |
|
memcpy(&result, data_, sizeof(result)); |
|
} |
|
memset(data_, 0, sizeof(data_)); // Clear the cord |
|
return result; |
|
} |
|
|
|
inline void Cord::InlineRep::CopyToArray(char* dst) const { |
|
assert(!is_tree()); |
|
size_t n = data_[kMaxInline]; |
|
assert(n != 0); |
|
cord_internal::SmallMemmove(dst, data_, n); |
|
} |
|
|
|
constexpr inline Cord::Cord() noexcept {} |
|
|
|
inline Cord& Cord::operator=(const Cord& x) { |
|
contents_ = x.contents_; |
|
return *this; |
|
} |
|
|
|
inline Cord::Cord(Cord&& src) noexcept : contents_(std::move(src.contents_)) {} |
|
|
|
inline Cord& Cord::operator=(Cord&& x) noexcept { |
|
contents_ = std::move(x.contents_); |
|
return *this; |
|
} |
|
|
|
template <typename T, Cord::EnableIfString<T>> |
|
inline Cord& Cord::operator=(T&& src) { |
|
*this = absl::string_view(src); |
|
return *this; |
|
} |
|
|
|
inline size_t Cord::size() const { |
|
// Length is 1st field in str.rep_ |
|
return contents_.size(); |
|
} |
|
|
|
inline bool Cord::empty() const { return contents_.empty(); } |
|
|
|
inline size_t Cord::EstimatedMemoryUsage() const { |
|
size_t result = sizeof(Cord); |
|
if (const absl::cord_internal::CordRep* rep = contents_.tree()) { |
|
result += MemoryUsageAux(rep); |
|
} |
|
return result; |
|
} |
|
|
|
inline absl::string_view Cord::Flatten() { |
|
absl::cord_internal::CordRep* rep = contents_.tree(); |
|
if (rep == nullptr) { |
|
return absl::string_view(contents_.data(), contents_.size()); |
|
} else { |
|
absl::string_view already_flat_contents; |
|
if (GetFlatAux(rep, &already_flat_contents)) { |
|
return already_flat_contents; |
|
} |
|
} |
|
return FlattenSlowPath(); |
|
} |
|
|
|
inline void Cord::Append(absl::string_view src) { |
|
contents_.AppendArray(src.data(), src.size()); |
|
} |
|
|
|
template <typename T, Cord::EnableIfString<T>> |
|
inline void Cord::Append(T&& src) { |
|
// Note that this function reserves the right to reuse the `string&&`'s |
|
// memory and that it will do so in the future. |
|
Append(absl::string_view(src)); |
|
} |
|
|
|
template <typename T, Cord::EnableIfString<T>> |
|
inline void Cord::Prepend(T&& src) { |
|
// Note that this function reserves the right to reuse the `string&&`'s |
|
// memory and that it will do so in the future. |
|
Prepend(absl::string_view(src)); |
|
} |
|
|
|
inline int Cord::Compare(const Cord& rhs) const { |
|
if (!contents_.is_tree() && !rhs.contents_.is_tree()) { |
|
return contents_.BitwiseCompare(rhs.contents_); |
|
} |
|
|
|
return CompareImpl(rhs); |
|
} |
|
|
|
// Does 'this' cord start/end with rhs |
|
inline bool Cord::StartsWith(const Cord& rhs) const { |
|
if (contents_.IsSame(rhs.contents_)) return true; |
|
size_t rhs_size = rhs.size(); |
|
if (size() < rhs_size) return false; |
|
return EqualsImpl(rhs, rhs_size); |
|
} |
|
|
|
inline bool Cord::StartsWith(absl::string_view rhs) const { |
|
size_t rhs_size = rhs.size(); |
|
if (size() < rhs_size) return false; |
|
return EqualsImpl(rhs, rhs_size); |
|
} |
|
|
|
inline Cord::ChunkIterator::ChunkIterator(const Cord* cord) |
|
: bytes_remaining_(cord->size()) { |
|
if (cord->empty()) return; |
|
if (cord->contents_.is_tree()) { |
|
stack_of_right_children_.push_back(cord->contents_.tree()); |
|
operator++(); |
|
} else { |
|
current_chunk_ = absl::string_view(cord->contents_.data(), cord->size()); |
|
} |
|
} |
|
|
|
inline Cord::ChunkIterator Cord::ChunkIterator::operator++(int) { |
|
ChunkIterator tmp(*this); |
|
operator++(); |
|
return tmp; |
|
} |
|
|
|
inline bool Cord::ChunkIterator::operator==(const ChunkIterator& other) const { |
|
return bytes_remaining_ == other.bytes_remaining_; |
|
} |
|
|
|
inline bool Cord::ChunkIterator::operator!=(const ChunkIterator& other) const { |
|
return !(*this == other); |
|
} |
|
|
|
inline Cord::ChunkIterator::reference Cord::ChunkIterator::operator*() const { |
|
assert(bytes_remaining_ != 0); |
|
return current_chunk_; |
|
} |
|
|
|
inline Cord::ChunkIterator::pointer Cord::ChunkIterator::operator->() const { |
|
assert(bytes_remaining_ != 0); |
|
return ¤t_chunk_; |
|
} |
|
|
|
inline void Cord::ChunkIterator::RemoveChunkPrefix(size_t n) { |
|
assert(n < current_chunk_.size()); |
|
current_chunk_.remove_prefix(n); |
|
bytes_remaining_ -= n; |
|
} |
|
|
|
inline void Cord::ChunkIterator::AdvanceBytes(size_t n) { |
|
if (ABSL_PREDICT_TRUE(n < current_chunk_.size())) { |
|
RemoveChunkPrefix(n); |
|
} else if (n != 0) { |
|
AdvanceBytesSlowPath(n); |
|
} |
|
} |
|
|
|
inline Cord::ChunkIterator Cord::chunk_begin() const { |
|
return ChunkIterator(this); |
|
} |
|
|
|
inline Cord::ChunkIterator Cord::chunk_end() const { return ChunkIterator(); } |
|
|
|
inline Cord::ChunkIterator Cord::ChunkRange::begin() const { |
|
return cord_->chunk_begin(); |
|
} |
|
|
|
inline Cord::ChunkIterator Cord::ChunkRange::end() const { |
|
return cord_->chunk_end(); |
|
} |
|
|
|
inline Cord::ChunkRange Cord::Chunks() const { return ChunkRange(this); } |
|
|
|
inline Cord::CharIterator& Cord::CharIterator::operator++() { |
|
if (ABSL_PREDICT_TRUE(chunk_iterator_->size() > 1)) { |
|
chunk_iterator_.RemoveChunkPrefix(1); |
|
} else { |
|
++chunk_iterator_; |
|
} |
|
return *this; |
|
} |
|
|
|
inline Cord::CharIterator Cord::CharIterator::operator++(int) { |
|
CharIterator tmp(*this); |
|
operator++(); |
|
return tmp; |
|
} |
|
|
|
inline bool Cord::CharIterator::operator==(const CharIterator& other) const { |
|
return chunk_iterator_ == other.chunk_iterator_; |
|
} |
|
|
|
inline bool Cord::CharIterator::operator!=(const CharIterator& other) const { |
|
return !(*this == other); |
|
} |
|
|
|
inline Cord::CharIterator::reference Cord::CharIterator::operator*() const { |
|
return *chunk_iterator_->data(); |
|
} |
|
|
|
inline Cord::CharIterator::pointer Cord::CharIterator::operator->() const { |
|
return chunk_iterator_->data(); |
|
} |
|
|
|
inline Cord Cord::AdvanceAndRead(CharIterator* it, size_t n_bytes) { |
|
assert(it != nullptr); |
|
return it->chunk_iterator_.AdvanceAndReadBytes(n_bytes); |
|
} |
|
|
|
inline void Cord::Advance(CharIterator* it, size_t n_bytes) { |
|
assert(it != nullptr); |
|
it->chunk_iterator_.AdvanceBytes(n_bytes); |
|
} |
|
|
|
inline absl::string_view Cord::ChunkRemaining(const CharIterator& it) { |
|
return *it.chunk_iterator_; |
|
} |
|
|
|
inline Cord::CharIterator Cord::char_begin() const { |
|
return CharIterator(this); |
|
} |
|
|
|
inline Cord::CharIterator Cord::char_end() const { return CharIterator(); } |
|
|
|
inline Cord::CharIterator Cord::CharRange::begin() const { |
|
return cord_->char_begin(); |
|
} |
|
|
|
inline Cord::CharIterator Cord::CharRange::end() const { |
|
return cord_->char_end(); |
|
} |
|
|
|
inline Cord::CharRange Cord::Chars() const { return CharRange(this); } |
|
|
|
inline void Cord::ForEachChunk( |
|
absl::FunctionRef<void(absl::string_view)> callback) const { |
|
absl::cord_internal::CordRep* rep = contents_.tree(); |
|
if (rep == nullptr) { |
|
callback(absl::string_view(contents_.data(), contents_.size())); |
|
} else { |
|
return ForEachChunkAux(rep, callback); |
|
} |
|
} |
|
|
|
// Nonmember Cord-to-Cord relational operarators. |
|
inline bool operator==(const Cord& lhs, const Cord& rhs) { |
|
if (lhs.contents_.IsSame(rhs.contents_)) return true; |
|
size_t rhs_size = rhs.size(); |
|
if (lhs.size() != rhs_size) return false; |
|
return lhs.EqualsImpl(rhs, rhs_size); |
|
} |
|
|
|
inline bool operator!=(const Cord& x, const Cord& y) { return !(x == y); } |
|
inline bool operator<(const Cord& x, const Cord& y) { |
|
return x.Compare(y) < 0; |
|
} |
|
inline bool operator>(const Cord& x, const Cord& y) { |
|
return x.Compare(y) > 0; |
|
} |
|
inline bool operator<=(const Cord& x, const Cord& y) { |
|
return x.Compare(y) <= 0; |
|
} |
|
inline bool operator>=(const Cord& x, const Cord& y) { |
|
return x.Compare(y) >= 0; |
|
} |
|
|
|
// Nonmember Cord-to-absl::string_view relational operators. |
|
// |
|
// Due to implicit conversions, these also enable comparisons of Cord with |
|
// with std::string, ::string, and const char*. |
|
inline bool operator==(const Cord& lhs, absl::string_view rhs) { |
|
size_t lhs_size = lhs.size(); |
|
size_t rhs_size = rhs.size(); |
|
if (lhs_size != rhs_size) return false; |
|
return lhs.EqualsImpl(rhs, rhs_size); |
|
} |
|
|
|
inline bool operator==(absl::string_view x, const Cord& y) { return y == x; } |
|
inline bool operator!=(const Cord& x, absl::string_view y) { return !(x == y); } |
|
inline bool operator!=(absl::string_view x, const Cord& y) { return !(x == y); } |
|
inline bool operator<(const Cord& x, absl::string_view y) { |
|
return x.Compare(y) < 0; |
|
} |
|
inline bool operator<(absl::string_view x, const Cord& y) { |
|
return y.Compare(x) > 0; |
|
} |
|
inline bool operator>(const Cord& x, absl::string_view y) { return y < x; } |
|
inline bool operator>(absl::string_view x, const Cord& y) { return y < x; } |
|
inline bool operator<=(const Cord& x, absl::string_view y) { return !(y < x); } |
|
inline bool operator<=(absl::string_view x, const Cord& y) { return !(y < x); } |
|
inline bool operator>=(const Cord& x, absl::string_view y) { return !(x < y); } |
|
inline bool operator>=(absl::string_view x, const Cord& y) { return !(x < y); } |
|
|
|
// Overload of swap for Cord. The use of non-const references is |
|
// required. :( |
|
inline void swap(Cord& x, Cord& y) noexcept { y.contents_.Swap(&x.contents_); } |
|
|
|
// Some internals exposed to test code. |
|
namespace strings_internal { |
|
class CordTestAccess { |
|
public: |
|
static size_t FlatOverhead(); |
|
static size_t MaxFlatLength(); |
|
static size_t SizeofCordRepConcat(); |
|
static size_t SizeofCordRepExternal(); |
|
static size_t SizeofCordRepSubstring(); |
|
static size_t FlatTagToLength(uint8_t tag); |
|
static uint8_t LengthToTag(size_t s); |
|
}; |
|
} // namespace strings_internal |
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
|
|
#endif // ABSL_STRINGS_CORD_H_
|
|
|