Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
958 lines
30 KiB
958 lines
30 KiB
#include "absl/strings/internal/str_format/float_conversion.h" |
|
|
|
#include <string.h> |
|
#include <algorithm> |
|
#include <array> |
|
#include <cassert> |
|
#include <cmath> |
|
#include <limits> |
|
#include <string> |
|
|
|
#include "absl/base/attributes.h" |
|
#include "absl/base/internal/bits.h" |
|
#include "absl/base/optimization.h" |
|
#include "absl/meta/type_traits.h" |
|
#include "absl/numeric/int128.h" |
|
#include "absl/types/span.h" |
|
|
|
namespace absl { |
|
namespace str_format_internal { |
|
|
|
namespace { |
|
|
|
// Calculates `10 * (*v) + carry` and stores the result in `*v` and returns |
|
// the carry. |
|
template <typename Int> |
|
inline Int MultiplyBy10WithCarry(Int *v, Int carry) { |
|
using NextInt = absl::conditional_t<sizeof(Int) == 4, uint64_t, uint128>; |
|
static_assert(sizeof(void *) >= sizeof(Int), |
|
"Don't want to use uint128 in 32-bit mode. It is too slow."); |
|
NextInt tmp = 10 * static_cast<NextInt>(*v) + carry; |
|
*v = static_cast<Int>(tmp); |
|
return static_cast<Int>(tmp >> (sizeof(Int) * 8)); |
|
} |
|
|
|
// Calculates `(2^64 * carry + *v) / 10`. |
|
// Stores the quotient in `*v` and returns the remainder. |
|
// Requires: `0 <= carry <= 9` |
|
inline uint64_t DivideBy10WithCarry(uint64_t *v, uint64_t carry) { |
|
constexpr uint64_t divisor = 10; |
|
// 2^64 / divisor = word_quotient + word_remainder / divisor |
|
constexpr uint64_t word_quotient = (uint64_t{1} << 63) / (divisor / 2); |
|
constexpr uint64_t word_remainder = uint64_t{} - word_quotient * divisor; |
|
|
|
const uint64_t mod = *v % divisor; |
|
const uint64_t next_carry = word_remainder * carry + mod; |
|
*v = *v / divisor + carry * word_quotient + next_carry / divisor; |
|
return next_carry % divisor; |
|
} |
|
|
|
int LeadingZeros(uint64_t v) { return base_internal::CountLeadingZeros64(v); } |
|
int LeadingZeros(uint128 v) { |
|
auto high = static_cast<uint64_t>(v >> 64); |
|
auto low = static_cast<uint64_t>(v); |
|
return high != 0 ? base_internal::CountLeadingZeros64(high) |
|
: 64 + base_internal::CountLeadingZeros64(low); |
|
} |
|
|
|
int TrailingZeros(uint64_t v) { |
|
return base_internal::CountTrailingZerosNonZero64(v); |
|
} |
|
int TrailingZeros(uint128 v) { |
|
auto high = static_cast<uint64_t>(v >> 64); |
|
auto low = static_cast<uint64_t>(v); |
|
return low == 0 ? 64 + base_internal::CountTrailingZerosNonZero64(high) |
|
: base_internal::CountTrailingZerosNonZero64(low); |
|
} |
|
|
|
// The buffer must have an extra digit that is known to not need rounding. |
|
// This is done below by having an extra '0' digit on the left. |
|
void RoundUp(char *last_digit) { |
|
char *p = last_digit; |
|
while (*p == '9' || *p == '.') { |
|
if (*p == '9') *p = '0'; |
|
--p; |
|
} |
|
++*p; |
|
} |
|
|
|
void RoundToEven(char *last_digit) { |
|
char *p = last_digit; |
|
if (*p == '.') --p; |
|
if (*p % 2 == 1) RoundUp(p); |
|
} |
|
|
|
char *PrintIntegralDigitsFromRightDynamic(uint128 v, Span<uint32_t> array, |
|
int exp, char *p) { |
|
if (v == 0) { |
|
*--p = '0'; |
|
return p; |
|
} |
|
|
|
int w = exp / 32; |
|
const int offset = exp % 32; |
|
// Left shift v by exp bits. |
|
array[w] = static_cast<uint32_t>(v << offset); |
|
for (v >>= (32 - offset); v; v >>= 32) array[++w] = static_cast<uint32_t>(v); |
|
|
|
// While we have more than one word available, go in chunks of 1e9. |
|
// We are guaranteed to have at least those many digits. |
|
// `w` holds the largest populated word, so keep it updated. |
|
while (w > 0) { |
|
uint32_t carry = 0; |
|
for (int i = w; i >= 0; --i) { |
|
uint64_t tmp = uint64_t{array[i]} + (uint64_t{carry} << 32); |
|
array[i] = tmp / uint64_t{1000000000}; |
|
carry = tmp % uint64_t{1000000000}; |
|
} |
|
// If the highest word is now empty, remove it from view. |
|
if (array[w] == 0) --w; |
|
|
|
for (int i = 0; i < 9; ++i, carry /= 10) { |
|
*--p = carry % 10 + '0'; |
|
} |
|
} |
|
|
|
// Print the leftover of the last word. |
|
for (auto last = array[0]; last != 0; last /= 10) { |
|
*--p = last % 10 + '0'; |
|
} |
|
|
|
return p; |
|
} |
|
|
|
struct FractionalResult { |
|
const char *end; |
|
int precision; |
|
}; |
|
|
|
FractionalResult PrintFractionalDigitsDynamic(uint128 v, Span<uint32_t> array, |
|
char *p, int exp, int precision) { |
|
int w = exp / 32; |
|
const int offset = exp % 32; |
|
|
|
// Right shift `v` by `exp` bits. |
|
array[w] = static_cast<uint32_t>(v << (32 - offset)); |
|
v >>= offset; |
|
// Make sure we don't overflow the array. We already calculated that non-zero |
|
// bits fit, so we might not have space for leading zero bits. |
|
for (int pos = w; v; v >>= 32) array[--pos] = static_cast<uint32_t>(v); |
|
|
|
// Multiply the whole sequence by 10. |
|
// On each iteration, the leftover carry word is the next digit. |
|
// `w` holds the largest populated word, so keep it updated. |
|
for (; w >= 0 && precision > 0; --precision) { |
|
uint32_t carry = 0; |
|
for (int i = w; i >= 0; --i) { |
|
carry = MultiplyBy10WithCarry(&array[i], carry); |
|
} |
|
// If the lowest word is now empty, remove it from view. |
|
if (array[w] == 0) --w; |
|
*p++ = carry + '0'; |
|
} |
|
|
|
constexpr uint32_t threshold = 0x80000000; |
|
if (array[0] < threshold) { |
|
// We round down, so nothing to do. |
|
} else if (array[0] > threshold || |
|
std::any_of(&array[1], &array[w + 1], |
|
[](uint32_t word) { return word != 0; })) { |
|
RoundUp(p - 1); |
|
} else { |
|
RoundToEven(p - 1); |
|
} |
|
return {p, precision}; |
|
} |
|
|
|
// Generic digit printer. |
|
// `bits` determines how many bits of termporary space it needs for the |
|
// calcualtions. |
|
template <int bits, typename = void> |
|
class DigitPrinter { |
|
static constexpr int kInts = (bits + 31) / 32; |
|
|
|
public: |
|
// Quick upper bound for the number of decimal digits we need. |
|
// This would be std::ceil(std::log10(std::pow(2, bits))), but that is not |
|
// constexpr. |
|
static constexpr int kDigits10 = 1 + (bits + 9) / 10 * 3 + bits / 900; |
|
using InputType = uint128; |
|
|
|
static char *PrintIntegralDigitsFromRight(InputType v, int exp, char *end) { |
|
std::array<uint32_t, kInts> array{}; |
|
return PrintIntegralDigitsFromRightDynamic(v, absl::MakeSpan(array), exp, |
|
end); |
|
} |
|
|
|
static FractionalResult PrintFractionalDigits(InputType v, char *p, int exp, |
|
int precision) { |
|
std::array<uint32_t, kInts> array{}; |
|
return PrintFractionalDigitsDynamic(v, absl::MakeSpan(array), p, exp, |
|
precision); |
|
} |
|
}; |
|
|
|
// Specialiation for 64-bit working space. |
|
// This is a performance optimization over the generic primary template. |
|
// Only enabled in 64-bit platforms. The generic one is faster in 32-bit |
|
// platforms. |
|
template <int bits> |
|
class DigitPrinter<bits, absl::enable_if_t<bits == 64 && (sizeof(void *) >= |
|
sizeof(uint64_t))>> { |
|
public: |
|
static constexpr size_t kDigits10 = 20; |
|
using InputType = uint64_t; |
|
|
|
static char *PrintIntegralDigitsFromRight(uint64_t v, int exp, char *p) { |
|
v <<= exp; |
|
do { |
|
*--p = DivideBy10WithCarry(&v, 0) + '0'; |
|
} while (v != 0); |
|
return p; |
|
} |
|
|
|
static FractionalResult PrintFractionalDigits(uint64_t v, char *p, int exp, |
|
int precision) { |
|
v <<= (64 - exp); |
|
while (precision > 0) { |
|
if (!v) return {p, precision}; |
|
*p++ = MultiplyBy10WithCarry(&v, uint64_t{}) + '0'; |
|
--precision; |
|
} |
|
|
|
// We need to round. |
|
if (v < 0x8000000000000000) { |
|
// We round down, so nothing to do. |
|
} else if (v > 0x8000000000000000) { |
|
// We round up. |
|
RoundUp(p - 1); |
|
} else { |
|
RoundToEven(p - 1); |
|
} |
|
|
|
assert(precision == 0); |
|
// Precision can only be zero here. Return a constant instead. |
|
return {p, 0}; |
|
} |
|
}; |
|
|
|
// Specialiation for 128-bit working space. |
|
// This is a performance optimization over the generic primary template. |
|
template <int bits> |
|
class DigitPrinter<bits, absl::enable_if_t<bits == 128 && (sizeof(void *) >= |
|
sizeof(uint64_t))>> { |
|
public: |
|
static constexpr size_t kDigits10 = 40; |
|
using InputType = uint128; |
|
|
|
static char *PrintIntegralDigitsFromRight(uint128 v, int exp, char *p) { |
|
v <<= exp; |
|
auto high = static_cast<uint64_t>(v >> 64); |
|
auto low = static_cast<uint64_t>(v); |
|
|
|
do { |
|
uint64_t carry = DivideBy10WithCarry(&high, 0); |
|
carry = DivideBy10WithCarry(&low, carry); |
|
*--p = carry + '0'; |
|
} while (high != 0u); |
|
|
|
while (low != 0u) { |
|
*--p = DivideBy10WithCarry(&low, 0) + '0'; |
|
} |
|
return p; |
|
} |
|
|
|
static FractionalResult PrintFractionalDigits(uint128 v, char *p, int exp, |
|
int precision) { |
|
v <<= (128 - exp); |
|
auto high = static_cast<uint64_t>(v >> 64); |
|
auto low = static_cast<uint64_t>(v); |
|
|
|
// While we have digits to print and `low` is not empty, do the long |
|
// multiplication. |
|
while (precision > 0 && low != 0) { |
|
uint64_t carry = MultiplyBy10WithCarry(&low, uint64_t{}); |
|
carry = MultiplyBy10WithCarry(&high, carry); |
|
|
|
*p++ = carry + '0'; |
|
--precision; |
|
} |
|
|
|
// Now `low` is empty, so use a faster approach for the rest of the digits. |
|
// This block is pretty much the same as the main loop for the 64-bit case |
|
// above. |
|
while (precision > 0) { |
|
if (!high) return {p, precision}; |
|
*p++ = MultiplyBy10WithCarry(&high, uint64_t{}) + '0'; |
|
--precision; |
|
} |
|
|
|
// We need to round. |
|
if (high < 0x8000000000000000) { |
|
// We round down, so nothing to do. |
|
} else if (high > 0x8000000000000000 || low != 0) { |
|
// We round up. |
|
RoundUp(p - 1); |
|
} else { |
|
RoundToEven(p - 1); |
|
} |
|
|
|
assert(precision == 0); |
|
// Precision can only be zero here. Return a constant instead. |
|
return {p, 0}; |
|
} |
|
}; |
|
|
|
struct FormatState { |
|
char sign_char; |
|
int precision; |
|
const ConversionSpec &conv; |
|
FormatSinkImpl *sink; |
|
}; |
|
|
|
void FinalPrint(string_view data, int trailing_zeros, |
|
const FormatState &state) { |
|
if (state.conv.width() < 0) { |
|
// No width specified. Fast-path. |
|
if (state.sign_char != '\0') state.sink->Append(1, state.sign_char); |
|
state.sink->Append(data); |
|
state.sink->Append(trailing_zeros, '0'); |
|
return; |
|
} |
|
|
|
int left_spaces = 0, zeros = 0, right_spaces = 0; |
|
int total_size = (state.sign_char != 0 ? 1 : 0) + |
|
static_cast<int>(data.size()) + trailing_zeros; |
|
int missing_chars = std::max(state.conv.width() - total_size, 0); |
|
if (state.conv.flags().left) { |
|
right_spaces = missing_chars; |
|
} else if (state.conv.flags().zero) { |
|
zeros = missing_chars; |
|
} else { |
|
left_spaces = missing_chars; |
|
} |
|
|
|
state.sink->Append(left_spaces, ' '); |
|
if (state.sign_char != '\0') state.sink->Append(1, state.sign_char); |
|
state.sink->Append(zeros, '0'); |
|
state.sink->Append(data); |
|
state.sink->Append(trailing_zeros, '0'); |
|
state.sink->Append(right_spaces, ' '); |
|
} |
|
|
|
template <int num_bits, typename Int> |
|
void FormatFPositiveExp(Int v, int exp, const FormatState &state) { |
|
using IntegralPrinter = DigitPrinter<num_bits>; |
|
char buffer[IntegralPrinter::kDigits10 + /* . */ 1]; |
|
buffer[IntegralPrinter::kDigits10] = '.'; |
|
|
|
const char *digits = IntegralPrinter::PrintIntegralDigitsFromRight( |
|
static_cast<typename IntegralPrinter::InputType>(v), exp, |
|
buffer + sizeof(buffer) - 1); |
|
size_t size = buffer + sizeof(buffer) - digits; |
|
|
|
// In `alt` mode (flag #) we keep the `.` even if there are no fractional |
|
// digits. In non-alt mode, we strip it. |
|
if (ABSL_PREDICT_FALSE(state.precision == 0 && !state.conv.flags().alt)) { |
|
--size; |
|
} |
|
|
|
FinalPrint(string_view(digits, size), state.precision, state); |
|
} |
|
|
|
template <int num_bits, typename Int> |
|
void FormatFNegativeExp(Int v, int exp, const FormatState &state) { |
|
constexpr int input_bits = sizeof(Int) * 8; |
|
|
|
using IntegralPrinter = DigitPrinter<input_bits>; |
|
using FractionalPrinter = DigitPrinter<num_bits>; |
|
|
|
static constexpr size_t integral_size = |
|
1 + /* in case we need to round up an extra digit */ |
|
IntegralPrinter::kDigits10 + 1; |
|
char buffer[integral_size + /* . */ 1 + num_bits]; |
|
buffer[integral_size] = '.'; |
|
char *const integral_digits_end = buffer + integral_size; |
|
char *integral_digits_start; |
|
char *const fractional_digits_start = buffer + integral_size + 1; |
|
|
|
if (exp < input_bits) { |
|
integral_digits_start = IntegralPrinter::PrintIntegralDigitsFromRight( |
|
v >> exp, 0, integral_digits_end); |
|
} else { |
|
integral_digits_start = integral_digits_end - 1; |
|
*integral_digits_start = '0'; |
|
} |
|
|
|
// PrintFractionalDigits may pull a carried 1 all the way up through the |
|
// integral portion. |
|
integral_digits_start[-1] = '0'; |
|
auto fractional_result = FractionalPrinter::PrintFractionalDigits( |
|
static_cast<typename FractionalPrinter::InputType>(v), |
|
fractional_digits_start, exp, state.precision); |
|
if (integral_digits_start[-1] != '0') --integral_digits_start; |
|
|
|
size_t size = fractional_result.end - integral_digits_start; |
|
|
|
// In `alt` mode (flag #) we keep the `.` even if there are no fractional |
|
// digits. In non-alt mode, we strip it. |
|
if (ABSL_PREDICT_FALSE(state.precision == 0 && !state.conv.flags().alt)) { |
|
--size; |
|
} |
|
FinalPrint(string_view(integral_digits_start, size), |
|
fractional_result.precision, state); |
|
} |
|
|
|
template <typename Int> |
|
void FormatF(Int mantissa, int exp, const FormatState &state) { |
|
// Remove trailing zeros as they are not useful. |
|
// This helps use faster implementations/less stack space in some cases. |
|
if (mantissa != 0) { |
|
int trailing = TrailingZeros(mantissa); |
|
mantissa >>= trailing; |
|
exp += trailing; |
|
} |
|
|
|
// The table driven dispatch gives us two benefits: fast distpatch and |
|
// prevent inlining. |
|
// We must not inline any of the functions below (other than the ones for |
|
// 64-bit) to avoid blowing up this stack frame. |
|
|
|
if (exp >= 0) { |
|
// We will left shift the mantissa. Calculate how many bits we need. |
|
// Special case 64-bit as we will use a uint64_t for it. Use a table for the |
|
// rest and unconditionally use uint128. |
|
const int total_bits = sizeof(Int) * 8 - LeadingZeros(mantissa) + exp; |
|
|
|
if (total_bits <= 64) { |
|
return FormatFPositiveExp<64>(mantissa, exp, state); |
|
} else { |
|
using Formatter = void (*)(uint128, int, const FormatState &); |
|
static constexpr Formatter kFormatters[] = { |
|
FormatFPositiveExp<1 << 7>, FormatFPositiveExp<1 << 8>, |
|
FormatFPositiveExp<1 << 9>, FormatFPositiveExp<1 << 10>, |
|
FormatFPositiveExp<1 << 11>, FormatFPositiveExp<1 << 12>, |
|
FormatFPositiveExp<1 << 13>, FormatFPositiveExp<1 << 14>, |
|
FormatFPositiveExp<1 << 15>, |
|
}; |
|
static constexpr int max_total_bits = |
|
sizeof(Int) * 8 + std::numeric_limits<long double>::max_exponent; |
|
assert(total_bits <= max_total_bits); |
|
static_assert(max_total_bits <= (1 << 15), ""); |
|
const int log2 = |
|
64 - LeadingZeros((static_cast<uint64_t>(total_bits) - 1) / 128); |
|
assert(log2 < std::end(kFormatters) - std::begin(kFormatters)); |
|
kFormatters[log2](mantissa, exp, state); |
|
} |
|
} else { |
|
exp = -exp; |
|
|
|
// We know we don't need more than Int itself for the integral part. |
|
// We need `precision` fractional digits, but there are at most `exp` |
|
// non-zero digits after the decimal point. The rest will be zeros. |
|
// Special case 64-bit as we will use a uint64_t for it. Use a table for the |
|
// rest and unconditionally use uint128. |
|
|
|
if (exp <= 64) { |
|
return FormatFNegativeExp<64>(mantissa, exp, state); |
|
} else { |
|
using Formatter = void (*)(uint128, int, const FormatState &); |
|
static constexpr Formatter kFormatters[] = { |
|
FormatFNegativeExp<1 << 7>, FormatFNegativeExp<1 << 8>, |
|
FormatFNegativeExp<1 << 9>, FormatFNegativeExp<1 << 10>, |
|
FormatFNegativeExp<1 << 11>, FormatFNegativeExp<1 << 12>, |
|
FormatFNegativeExp<1 << 13>, FormatFNegativeExp<1 << 14>}; |
|
static_assert( |
|
-std::numeric_limits<long double>::min_exponent <= (1 << 14), ""); |
|
const int log2 = |
|
64 - LeadingZeros((static_cast<uint64_t>(exp) - 1) / 128); |
|
assert(log2 < std::end(kFormatters) - std::begin(kFormatters)); |
|
kFormatters[log2](mantissa, exp, state); |
|
} |
|
} |
|
} |
|
|
|
char *CopyStringTo(string_view v, char *out) { |
|
std::memcpy(out, v.data(), v.size()); |
|
return out + v.size(); |
|
} |
|
|
|
template <typename Float> |
|
bool FallbackToSnprintf(const Float v, const ConversionSpec &conv, |
|
FormatSinkImpl *sink) { |
|
int w = conv.width() >= 0 ? conv.width() : 0; |
|
int p = conv.precision() >= 0 ? conv.precision() : -1; |
|
char fmt[32]; |
|
{ |
|
char *fp = fmt; |
|
*fp++ = '%'; |
|
fp = CopyStringTo(conv.flags().ToString(), fp); |
|
fp = CopyStringTo("*.*", fp); |
|
if (std::is_same<long double, Float>()) { |
|
*fp++ = 'L'; |
|
} |
|
*fp++ = conv.conv().Char(); |
|
*fp = 0; |
|
assert(fp < fmt + sizeof(fmt)); |
|
} |
|
std::string space(512, '\0'); |
|
string_view result; |
|
while (true) { |
|
int n = snprintf(&space[0], space.size(), fmt, w, p, v); |
|
if (n < 0) return false; |
|
if (static_cast<size_t>(n) < space.size()) { |
|
result = string_view(space.data(), n); |
|
break; |
|
} |
|
space.resize(n + 1); |
|
} |
|
sink->Append(result); |
|
return true; |
|
} |
|
|
|
// 128-bits in decimal: ceil(128*log(2)/log(10)) |
|
// or std::numeric_limits<__uint128_t>::digits10 |
|
constexpr int kMaxFixedPrecision = 39; |
|
|
|
constexpr int kBufferLength = /*sign*/ 1 + |
|
/*integer*/ kMaxFixedPrecision + |
|
/*point*/ 1 + |
|
/*fraction*/ kMaxFixedPrecision + |
|
/*exponent e+123*/ 5; |
|
|
|
struct Buffer { |
|
void push_front(char c) { |
|
assert(begin > data); |
|
*--begin = c; |
|
} |
|
void push_back(char c) { |
|
assert(end < data + sizeof(data)); |
|
*end++ = c; |
|
} |
|
void pop_back() { |
|
assert(begin < end); |
|
--end; |
|
} |
|
|
|
char &back() { |
|
assert(begin < end); |
|
return end[-1]; |
|
} |
|
|
|
char last_digit() const { return end[-1] == '.' ? end[-2] : end[-1]; } |
|
|
|
int size() const { return static_cast<int>(end - begin); } |
|
|
|
char data[kBufferLength]; |
|
char *begin; |
|
char *end; |
|
}; |
|
|
|
enum class FormatStyle { Fixed, Precision }; |
|
|
|
// If the value is Inf or Nan, print it and return true. |
|
// Otherwise, return false. |
|
template <typename Float> |
|
bool ConvertNonNumericFloats(char sign_char, Float v, |
|
const ConversionSpec &conv, FormatSinkImpl *sink) { |
|
char text[4], *ptr = text; |
|
if (sign_char != '\0') *ptr++ = sign_char; |
|
if (std::isnan(v)) { |
|
ptr = std::copy_n(conv.conv().upper() ? "NAN" : "nan", 3, ptr); |
|
} else if (std::isinf(v)) { |
|
ptr = std::copy_n(conv.conv().upper() ? "INF" : "inf", 3, ptr); |
|
} else { |
|
return false; |
|
} |
|
|
|
return sink->PutPaddedString(string_view(text, ptr - text), conv.width(), -1, |
|
conv.flags().left); |
|
} |
|
|
|
// Round up the last digit of the value. |
|
// It will carry over and potentially overflow. 'exp' will be adjusted in that |
|
// case. |
|
template <FormatStyle mode> |
|
void RoundUp(Buffer *buffer, int *exp) { |
|
char *p = &buffer->back(); |
|
while (p >= buffer->begin && (*p == '9' || *p == '.')) { |
|
if (*p == '9') *p = '0'; |
|
--p; |
|
} |
|
|
|
if (p < buffer->begin) { |
|
*p = '1'; |
|
buffer->begin = p; |
|
if (mode == FormatStyle::Precision) { |
|
std::swap(p[1], p[2]); // move the . |
|
++*exp; |
|
buffer->pop_back(); |
|
} |
|
} else { |
|
++*p; |
|
} |
|
} |
|
|
|
void PrintExponent(int exp, char e, Buffer *out) { |
|
out->push_back(e); |
|
if (exp < 0) { |
|
out->push_back('-'); |
|
exp = -exp; |
|
} else { |
|
out->push_back('+'); |
|
} |
|
// Exponent digits. |
|
if (exp > 99) { |
|
out->push_back(exp / 100 + '0'); |
|
out->push_back(exp / 10 % 10 + '0'); |
|
out->push_back(exp % 10 + '0'); |
|
} else { |
|
out->push_back(exp / 10 + '0'); |
|
out->push_back(exp % 10 + '0'); |
|
} |
|
} |
|
|
|
template <typename Float, typename Int> |
|
constexpr bool CanFitMantissa() { |
|
return |
|
#if defined(__clang__) && !defined(__SSE3__) |
|
// Workaround for clang bug: https://bugs.llvm.org/show_bug.cgi?id=38289 |
|
// Casting from long double to uint64_t is miscompiled and drops bits. |
|
(!std::is_same<Float, long double>::value || |
|
!std::is_same<Int, uint64_t>::value) && |
|
#endif |
|
std::numeric_limits<Float>::digits <= std::numeric_limits<Int>::digits; |
|
} |
|
|
|
template <typename Float> |
|
struct Decomposed { |
|
using MantissaType = |
|
absl::conditional_t<std::is_same<long double, Float>::value, uint128, |
|
uint64_t>; |
|
static_assert(std::numeric_limits<Float>::digits <= sizeof(MantissaType) * 8, |
|
""); |
|
MantissaType mantissa; |
|
int exponent; |
|
}; |
|
|
|
// Decompose the double into an integer mantissa and an exponent. |
|
template <typename Float> |
|
Decomposed<Float> Decompose(Float v) { |
|
int exp; |
|
Float m = std::frexp(v, &exp); |
|
m = std::ldexp(m, std::numeric_limits<Float>::digits); |
|
exp -= std::numeric_limits<Float>::digits; |
|
|
|
return {static_cast<typename Decomposed<Float>::MantissaType>(m), exp}; |
|
} |
|
|
|
// Print 'digits' as decimal. |
|
// In Fixed mode, we add a '.' at the end. |
|
// In Precision mode, we add a '.' after the first digit. |
|
template <FormatStyle mode, typename Int> |
|
int PrintIntegralDigits(Int digits, Buffer *out) { |
|
int printed = 0; |
|
if (digits) { |
|
for (; digits; digits /= 10) out->push_front(digits % 10 + '0'); |
|
printed = out->size(); |
|
if (mode == FormatStyle::Precision) { |
|
out->push_front(*out->begin); |
|
out->begin[1] = '.'; |
|
} else { |
|
out->push_back('.'); |
|
} |
|
} else if (mode == FormatStyle::Fixed) { |
|
out->push_front('0'); |
|
out->push_back('.'); |
|
printed = 1; |
|
} |
|
return printed; |
|
} |
|
|
|
// Back out 'extra_digits' digits and round up if necessary. |
|
bool RemoveExtraPrecision(int extra_digits, bool has_leftover_value, |
|
Buffer *out, int *exp_out) { |
|
if (extra_digits <= 0) return false; |
|
|
|
// Back out the extra digits |
|
out->end -= extra_digits; |
|
|
|
bool needs_to_round_up = [&] { |
|
// We look at the digit just past the end. |
|
// There must be 'extra_digits' extra valid digits after end. |
|
if (*out->end > '5') return true; |
|
if (*out->end < '5') return false; |
|
if (has_leftover_value || std::any_of(out->end + 1, out->end + extra_digits, |
|
[](char c) { return c != '0'; })) |
|
return true; |
|
|
|
// Ends in ...50*, round to even. |
|
return out->last_digit() % 2 == 1; |
|
}(); |
|
|
|
if (needs_to_round_up) { |
|
RoundUp<FormatStyle::Precision>(out, exp_out); |
|
} |
|
return true; |
|
} |
|
|
|
// Print the value into the buffer. |
|
// This will not include the exponent, which will be returned in 'exp_out' for |
|
// Precision mode. |
|
template <typename Int, typename Float, FormatStyle mode> |
|
bool FloatToBufferImpl(Int int_mantissa, int exp, int precision, Buffer *out, |
|
int *exp_out) { |
|
assert((CanFitMantissa<Float, Int>())); |
|
|
|
const int int_bits = std::numeric_limits<Int>::digits; |
|
|
|
// In precision mode, we start printing one char to the right because it will |
|
// also include the '.' |
|
// In fixed mode we put the dot afterwards on the right. |
|
out->begin = out->end = |
|
out->data + 1 + kMaxFixedPrecision + (mode == FormatStyle::Precision); |
|
|
|
if (exp >= 0) { |
|
if (std::numeric_limits<Float>::digits + exp > int_bits) { |
|
// The value will overflow the Int |
|
return false; |
|
} |
|
int digits_printed = PrintIntegralDigits<mode>(int_mantissa << exp, out); |
|
int digits_to_zero_pad = precision; |
|
if (mode == FormatStyle::Precision) { |
|
*exp_out = digits_printed - 1; |
|
digits_to_zero_pad -= digits_printed - 1; |
|
if (RemoveExtraPrecision(-digits_to_zero_pad, false, out, exp_out)) { |
|
return true; |
|
} |
|
} |
|
for (; digits_to_zero_pad-- > 0;) out->push_back('0'); |
|
return true; |
|
} |
|
|
|
exp = -exp; |
|
// We need at least 4 empty bits for the next decimal digit. |
|
// We will multiply by 10. |
|
if (exp > int_bits - 4) return false; |
|
|
|
const Int mask = (Int{1} << exp) - 1; |
|
|
|
// Print the integral part first. |
|
int digits_printed = PrintIntegralDigits<mode>(int_mantissa >> exp, out); |
|
int_mantissa &= mask; |
|
|
|
int fractional_count = precision; |
|
if (mode == FormatStyle::Precision) { |
|
if (digits_printed == 0) { |
|
// Find the first non-zero digit, when in Precision mode. |
|
*exp_out = 0; |
|
if (int_mantissa) { |
|
while (int_mantissa <= mask) { |
|
int_mantissa *= 10; |
|
--*exp_out; |
|
} |
|
} |
|
out->push_front(static_cast<char>(int_mantissa >> exp) + '0'); |
|
out->push_back('.'); |
|
int_mantissa &= mask; |
|
} else { |
|
// We already have a digit, and a '.' |
|
*exp_out = digits_printed - 1; |
|
fractional_count -= *exp_out; |
|
if (RemoveExtraPrecision(-fractional_count, int_mantissa != 0, out, |
|
exp_out)) { |
|
// If we had enough digits, return right away. |
|
// The code below will try to round again otherwise. |
|
return true; |
|
} |
|
} |
|
} |
|
|
|
auto get_next_digit = [&] { |
|
int_mantissa *= 10; |
|
int digit = static_cast<int>(int_mantissa >> exp); |
|
int_mantissa &= mask; |
|
return digit; |
|
}; |
|
|
|
// Print fractional_count more digits, if available. |
|
for (; fractional_count > 0; --fractional_count) { |
|
out->push_back(get_next_digit() + '0'); |
|
} |
|
|
|
int next_digit = get_next_digit(); |
|
if (next_digit > 5 || |
|
(next_digit == 5 && (int_mantissa || out->last_digit() % 2 == 1))) { |
|
RoundUp<mode>(out, exp_out); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
template <FormatStyle mode, typename Float> |
|
bool FloatToBuffer(Decomposed<Float> decomposed, int precision, Buffer *out, |
|
int *exp) { |
|
if (precision > kMaxFixedPrecision) return false; |
|
|
|
// Try with uint64_t. |
|
if (CanFitMantissa<Float, std::uint64_t>() && |
|
FloatToBufferImpl<std::uint64_t, Float, mode>( |
|
static_cast<std::uint64_t>(decomposed.mantissa), |
|
static_cast<std::uint64_t>(decomposed.exponent), precision, out, exp)) |
|
return true; |
|
|
|
#if defined(ABSL_HAVE_INTRINSIC_INT128) |
|
// If that is not enough, try with __uint128_t. |
|
return CanFitMantissa<Float, __uint128_t>() && |
|
FloatToBufferImpl<__uint128_t, Float, mode>( |
|
static_cast<__uint128_t>(decomposed.mantissa), |
|
static_cast<__uint128_t>(decomposed.exponent), precision, out, |
|
exp); |
|
#endif |
|
return false; |
|
} |
|
|
|
void WriteBufferToSink(char sign_char, string_view str, |
|
const ConversionSpec &conv, FormatSinkImpl *sink) { |
|
int left_spaces = 0, zeros = 0, right_spaces = 0; |
|
int missing_chars = |
|
conv.width() >= 0 ? std::max(conv.width() - static_cast<int>(str.size()) - |
|
static_cast<int>(sign_char != 0), |
|
0) |
|
: 0; |
|
if (conv.flags().left) { |
|
right_spaces = missing_chars; |
|
} else if (conv.flags().zero) { |
|
zeros = missing_chars; |
|
} else { |
|
left_spaces = missing_chars; |
|
} |
|
|
|
sink->Append(left_spaces, ' '); |
|
if (sign_char != '\0') sink->Append(1, sign_char); |
|
sink->Append(zeros, '0'); |
|
sink->Append(str); |
|
sink->Append(right_spaces, ' '); |
|
} |
|
|
|
template <typename Float> |
|
bool FloatToSink(const Float v, const ConversionSpec &conv, |
|
FormatSinkImpl *sink) { |
|
// Print the sign or the sign column. |
|
Float abs_v = v; |
|
char sign_char = 0; |
|
if (std::signbit(abs_v)) { |
|
sign_char = '-'; |
|
abs_v = -abs_v; |
|
} else if (conv.flags().show_pos) { |
|
sign_char = '+'; |
|
} else if (conv.flags().sign_col) { |
|
sign_char = ' '; |
|
} |
|
|
|
// Print nan/inf. |
|
if (ConvertNonNumericFloats(sign_char, abs_v, conv, sink)) { |
|
return true; |
|
} |
|
|
|
int precision = conv.precision() < 0 ? 6 : conv.precision(); |
|
|
|
int exp = 0; |
|
|
|
auto decomposed = Decompose(abs_v); |
|
|
|
Buffer buffer; |
|
|
|
switch (conv.conv().id()) { |
|
case ConversionChar::f: |
|
case ConversionChar::F: |
|
FormatF(decomposed.mantissa, decomposed.exponent, |
|
{sign_char, precision, conv, sink}); |
|
return true; |
|
|
|
case ConversionChar::e: |
|
case ConversionChar::E: |
|
if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer, |
|
&exp)) { |
|
return FallbackToSnprintf(v, conv, sink); |
|
} |
|
if (!conv.flags().alt && buffer.back() == '.') buffer.pop_back(); |
|
PrintExponent(exp, conv.conv().upper() ? 'E' : 'e', &buffer); |
|
break; |
|
|
|
case ConversionChar::g: |
|
case ConversionChar::G: |
|
precision = std::max(0, precision - 1); |
|
if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer, |
|
&exp)) { |
|
return FallbackToSnprintf(v, conv, sink); |
|
} |
|
if (precision + 1 > exp && exp >= -4) { |
|
if (exp < 0) { |
|
// Have 1.23456, needs 0.00123456 |
|
// Move the first digit |
|
buffer.begin[1] = *buffer.begin; |
|
// Add some zeros |
|
for (; exp < -1; ++exp) *buffer.begin-- = '0'; |
|
*buffer.begin-- = '.'; |
|
*buffer.begin = '0'; |
|
} else if (exp > 0) { |
|
// Have 1.23456, needs 1234.56 |
|
// Move the '.' exp positions to the right. |
|
std::rotate(buffer.begin + 1, buffer.begin + 2, |
|
buffer.begin + exp + 2); |
|
} |
|
exp = 0; |
|
} |
|
if (!conv.flags().alt) { |
|
while (buffer.back() == '0') buffer.pop_back(); |
|
if (buffer.back() == '.') buffer.pop_back(); |
|
} |
|
if (exp) PrintExponent(exp, conv.conv().upper() ? 'E' : 'e', &buffer); |
|
break; |
|
|
|
case ConversionChar::a: |
|
case ConversionChar::A: |
|
return FallbackToSnprintf(v, conv, sink); |
|
|
|
default: |
|
return false; |
|
} |
|
|
|
WriteBufferToSink(sign_char, |
|
string_view(buffer.begin, buffer.end - buffer.begin), conv, |
|
sink); |
|
|
|
return true; |
|
} |
|
|
|
} // namespace |
|
|
|
bool ConvertFloatImpl(long double v, const ConversionSpec &conv, |
|
FormatSinkImpl *sink) { |
|
if (std::numeric_limits<long double>::digits == |
|
2 * std::numeric_limits<double>::digits) { |
|
// This is the `double-double` representation of `long double`. |
|
// We do not handle it natively. Fallback to snprintf. |
|
return FallbackToSnprintf(v, conv, sink); |
|
} |
|
|
|
return FloatToSink(v, conv, sink); |
|
} |
|
|
|
bool ConvertFloatImpl(float v, const ConversionSpec &conv, |
|
FormatSinkImpl *sink) { |
|
// DivideBy10WithCarry is not actually used in some builds. This here silences |
|
// the "unused" warning. We just need to put it in any function that is really |
|
// used. |
|
(void)&DivideBy10WithCarry; |
|
return FloatToSink(v, conv, sink); |
|
} |
|
|
|
bool ConvertFloatImpl(double v, const ConversionSpec &conv, |
|
FormatSinkImpl *sink) { |
|
return FloatToSink(v, conv, sink); |
|
} |
|
|
|
} // namespace str_format_internal |
|
} // namespace absl
|
|
|