Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1706 lines
54 KiB
1706 lines
54 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#include "absl/synchronization/mutex.h" |
|
|
|
#ifdef _WIN32 |
|
#include <windows.h> |
|
#endif |
|
|
|
#include <algorithm> |
|
#include <atomic> |
|
#include <cstdlib> |
|
#include <functional> |
|
#include <memory> |
|
#include <random> |
|
#include <string> |
|
#include <thread> // NOLINT(build/c++11) |
|
#include <vector> |
|
|
|
#include "gtest/gtest.h" |
|
#include "absl/base/attributes.h" |
|
#include "absl/base/config.h" |
|
#include "absl/base/internal/raw_logging.h" |
|
#include "absl/base/internal/sysinfo.h" |
|
#include "absl/memory/memory.h" |
|
#include "absl/synchronization/internal/thread_pool.h" |
|
#include "absl/time/clock.h" |
|
#include "absl/time/time.h" |
|
|
|
namespace { |
|
|
|
// TODO(dmauro): Replace with a commandline flag. |
|
static constexpr bool kExtendedTest = false; |
|
|
|
std::unique_ptr<absl::synchronization_internal::ThreadPool> CreatePool( |
|
int threads) { |
|
return absl::make_unique<absl::synchronization_internal::ThreadPool>(threads); |
|
} |
|
|
|
std::unique_ptr<absl::synchronization_internal::ThreadPool> |
|
CreateDefaultPool() { |
|
return CreatePool(kExtendedTest ? 32 : 10); |
|
} |
|
|
|
// Hack to schedule a function to run on a thread pool thread after a |
|
// duration has elapsed. |
|
static void ScheduleAfter(absl::synchronization_internal::ThreadPool *tp, |
|
absl::Duration after, |
|
const std::function<void()> &func) { |
|
tp->Schedule([func, after] { |
|
absl::SleepFor(after); |
|
func(); |
|
}); |
|
} |
|
|
|
struct TestContext { |
|
int iterations; |
|
int threads; |
|
int g0; // global 0 |
|
int g1; // global 1 |
|
absl::Mutex mu; |
|
absl::CondVar cv; |
|
}; |
|
|
|
// To test whether the invariant check call occurs |
|
static std::atomic<bool> invariant_checked; |
|
|
|
static bool GetInvariantChecked() { |
|
return invariant_checked.load(std::memory_order_relaxed); |
|
} |
|
|
|
static void SetInvariantChecked(bool new_value) { |
|
invariant_checked.store(new_value, std::memory_order_relaxed); |
|
} |
|
|
|
static void CheckSumG0G1(void *v) { |
|
TestContext *cxt = static_cast<TestContext *>(v); |
|
ABSL_RAW_CHECK(cxt->g0 == -cxt->g1, "Error in CheckSumG0G1"); |
|
SetInvariantChecked(true); |
|
} |
|
|
|
static void TestMu(TestContext *cxt, int c) { |
|
for (int i = 0; i != cxt->iterations; i++) { |
|
absl::MutexLock l(&cxt->mu); |
|
int a = cxt->g0 + 1; |
|
cxt->g0 = a; |
|
cxt->g1--; |
|
} |
|
} |
|
|
|
static void TestTry(TestContext *cxt, int c) { |
|
for (int i = 0; i != cxt->iterations; i++) { |
|
do { |
|
std::this_thread::yield(); |
|
} while (!cxt->mu.TryLock()); |
|
int a = cxt->g0 + 1; |
|
cxt->g0 = a; |
|
cxt->g1--; |
|
cxt->mu.Unlock(); |
|
} |
|
} |
|
|
|
static void TestR20ms(TestContext *cxt, int c) { |
|
for (int i = 0; i != cxt->iterations; i++) { |
|
absl::ReaderMutexLock l(&cxt->mu); |
|
absl::SleepFor(absl::Milliseconds(20)); |
|
cxt->mu.AssertReaderHeld(); |
|
} |
|
} |
|
|
|
static void TestRW(TestContext *cxt, int c) { |
|
if ((c & 1) == 0) { |
|
for (int i = 0; i != cxt->iterations; i++) { |
|
absl::WriterMutexLock l(&cxt->mu); |
|
cxt->g0++; |
|
cxt->g1--; |
|
cxt->mu.AssertHeld(); |
|
cxt->mu.AssertReaderHeld(); |
|
} |
|
} else { |
|
for (int i = 0; i != cxt->iterations; i++) { |
|
absl::ReaderMutexLock l(&cxt->mu); |
|
ABSL_RAW_CHECK(cxt->g0 == -cxt->g1, "Error in TestRW"); |
|
cxt->mu.AssertReaderHeld(); |
|
} |
|
} |
|
} |
|
|
|
struct MyContext { |
|
int target; |
|
TestContext *cxt; |
|
bool MyTurn(); |
|
}; |
|
|
|
bool MyContext::MyTurn() { |
|
TestContext *cxt = this->cxt; |
|
return cxt->g0 == this->target || cxt->g0 == cxt->iterations; |
|
} |
|
|
|
static void TestAwait(TestContext *cxt, int c) { |
|
MyContext mc; |
|
mc.target = c; |
|
mc.cxt = cxt; |
|
absl::MutexLock l(&cxt->mu); |
|
cxt->mu.AssertHeld(); |
|
while (cxt->g0 < cxt->iterations) { |
|
cxt->mu.Await(absl::Condition(&mc, &MyContext::MyTurn)); |
|
ABSL_RAW_CHECK(mc.MyTurn(), "Error in TestAwait"); |
|
cxt->mu.AssertHeld(); |
|
if (cxt->g0 < cxt->iterations) { |
|
int a = cxt->g0 + 1; |
|
cxt->g0 = a; |
|
mc.target += cxt->threads; |
|
} |
|
} |
|
} |
|
|
|
static void TestSignalAll(TestContext *cxt, int c) { |
|
int target = c; |
|
absl::MutexLock l(&cxt->mu); |
|
cxt->mu.AssertHeld(); |
|
while (cxt->g0 < cxt->iterations) { |
|
while (cxt->g0 != target && cxt->g0 != cxt->iterations) { |
|
cxt->cv.Wait(&cxt->mu); |
|
} |
|
if (cxt->g0 < cxt->iterations) { |
|
int a = cxt->g0 + 1; |
|
cxt->g0 = a; |
|
cxt->cv.SignalAll(); |
|
target += cxt->threads; |
|
} |
|
} |
|
} |
|
|
|
static void TestSignal(TestContext *cxt, int c) { |
|
ABSL_RAW_CHECK(cxt->threads == 2, "TestSignal should use 2 threads"); |
|
int target = c; |
|
absl::MutexLock l(&cxt->mu); |
|
cxt->mu.AssertHeld(); |
|
while (cxt->g0 < cxt->iterations) { |
|
while (cxt->g0 != target && cxt->g0 != cxt->iterations) { |
|
cxt->cv.Wait(&cxt->mu); |
|
} |
|
if (cxt->g0 < cxt->iterations) { |
|
int a = cxt->g0 + 1; |
|
cxt->g0 = a; |
|
cxt->cv.Signal(); |
|
target += cxt->threads; |
|
} |
|
} |
|
} |
|
|
|
static void TestCVTimeout(TestContext *cxt, int c) { |
|
int target = c; |
|
absl::MutexLock l(&cxt->mu); |
|
cxt->mu.AssertHeld(); |
|
while (cxt->g0 < cxt->iterations) { |
|
while (cxt->g0 != target && cxt->g0 != cxt->iterations) { |
|
cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(100)); |
|
} |
|
if (cxt->g0 < cxt->iterations) { |
|
int a = cxt->g0 + 1; |
|
cxt->g0 = a; |
|
cxt->cv.SignalAll(); |
|
target += cxt->threads; |
|
} |
|
} |
|
} |
|
|
|
static bool G0GE2(TestContext *cxt) { return cxt->g0 >= 2; } |
|
|
|
static void TestTime(TestContext *cxt, int c, bool use_cv) { |
|
ABSL_RAW_CHECK(cxt->iterations == 1, "TestTime should only use 1 iteration"); |
|
ABSL_RAW_CHECK(cxt->threads > 2, "TestTime should use more than 2 threads"); |
|
const bool kFalse = false; |
|
absl::Condition false_cond(&kFalse); |
|
absl::Condition g0ge2(G0GE2, cxt); |
|
if (c == 0) { |
|
absl::MutexLock l(&cxt->mu); |
|
|
|
absl::Time start = absl::Now(); |
|
if (use_cv) { |
|
cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(1)); |
|
} else { |
|
ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(1)), |
|
"TestTime failed"); |
|
} |
|
absl::Duration elapsed = absl::Now() - start; |
|
ABSL_RAW_CHECK( |
|
absl::Seconds(0.9) <= elapsed && elapsed <= absl::Seconds(2.0), |
|
"TestTime failed"); |
|
ABSL_RAW_CHECK(cxt->g0 == 1, "TestTime failed"); |
|
|
|
start = absl::Now(); |
|
if (use_cv) { |
|
cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(1)); |
|
} else { |
|
ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(1)), |
|
"TestTime failed"); |
|
} |
|
elapsed = absl::Now() - start; |
|
ABSL_RAW_CHECK( |
|
absl::Seconds(0.9) <= elapsed && elapsed <= absl::Seconds(2.0), |
|
"TestTime failed"); |
|
cxt->g0++; |
|
if (use_cv) { |
|
cxt->cv.Signal(); |
|
} |
|
|
|
start = absl::Now(); |
|
if (use_cv) { |
|
cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(4)); |
|
} else { |
|
ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(4)), |
|
"TestTime failed"); |
|
} |
|
elapsed = absl::Now() - start; |
|
ABSL_RAW_CHECK( |
|
absl::Seconds(3.9) <= elapsed && elapsed <= absl::Seconds(6.0), |
|
"TestTime failed"); |
|
ABSL_RAW_CHECK(cxt->g0 >= 3, "TestTime failed"); |
|
|
|
start = absl::Now(); |
|
if (use_cv) { |
|
cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(1)); |
|
} else { |
|
ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(1)), |
|
"TestTime failed"); |
|
} |
|
elapsed = absl::Now() - start; |
|
ABSL_RAW_CHECK( |
|
absl::Seconds(0.9) <= elapsed && elapsed <= absl::Seconds(2.0), |
|
"TestTime failed"); |
|
if (use_cv) { |
|
cxt->cv.SignalAll(); |
|
} |
|
|
|
start = absl::Now(); |
|
if (use_cv) { |
|
cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(1)); |
|
} else { |
|
ABSL_RAW_CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(1)), |
|
"TestTime failed"); |
|
} |
|
elapsed = absl::Now() - start; |
|
ABSL_RAW_CHECK(absl::Seconds(0.9) <= elapsed && |
|
elapsed <= absl::Seconds(2.0), "TestTime failed"); |
|
ABSL_RAW_CHECK(cxt->g0 == cxt->threads, "TestTime failed"); |
|
|
|
} else if (c == 1) { |
|
absl::MutexLock l(&cxt->mu); |
|
const absl::Time start = absl::Now(); |
|
if (use_cv) { |
|
cxt->cv.WaitWithTimeout(&cxt->mu, absl::Milliseconds(500)); |
|
} else { |
|
ABSL_RAW_CHECK( |
|
!cxt->mu.AwaitWithTimeout(false_cond, absl::Milliseconds(500)), |
|
"TestTime failed"); |
|
} |
|
const absl::Duration elapsed = absl::Now() - start; |
|
ABSL_RAW_CHECK( |
|
absl::Seconds(0.4) <= elapsed && elapsed <= absl::Seconds(0.9), |
|
"TestTime failed"); |
|
cxt->g0++; |
|
} else if (c == 2) { |
|
absl::MutexLock l(&cxt->mu); |
|
if (use_cv) { |
|
while (cxt->g0 < 2) { |
|
cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(100)); |
|
} |
|
} else { |
|
ABSL_RAW_CHECK(cxt->mu.AwaitWithTimeout(g0ge2, absl::Seconds(100)), |
|
"TestTime failed"); |
|
} |
|
cxt->g0++; |
|
} else { |
|
absl::MutexLock l(&cxt->mu); |
|
if (use_cv) { |
|
while (cxt->g0 < 2) { |
|
cxt->cv.Wait(&cxt->mu); |
|
} |
|
} else { |
|
cxt->mu.Await(g0ge2); |
|
} |
|
cxt->g0++; |
|
} |
|
} |
|
|
|
static void TestMuTime(TestContext *cxt, int c) { TestTime(cxt, c, false); } |
|
|
|
static void TestCVTime(TestContext *cxt, int c) { TestTime(cxt, c, true); } |
|
|
|
static void EndTest(int *c0, int *c1, absl::Mutex *mu, absl::CondVar *cv, |
|
const std::function<void(int)>& cb) { |
|
mu->Lock(); |
|
int c = (*c0)++; |
|
mu->Unlock(); |
|
cb(c); |
|
absl::MutexLock l(mu); |
|
(*c1)++; |
|
cv->Signal(); |
|
} |
|
|
|
// Code common to RunTest() and RunTestWithInvariantDebugging(). |
|
static int RunTestCommon(TestContext *cxt, void (*test)(TestContext *cxt, int), |
|
int threads, int iterations, int operations) { |
|
absl::Mutex mu2; |
|
absl::CondVar cv2; |
|
int c0 = 0; |
|
int c1 = 0; |
|
cxt->g0 = 0; |
|
cxt->g1 = 0; |
|
cxt->iterations = iterations; |
|
cxt->threads = threads; |
|
absl::synchronization_internal::ThreadPool tp(threads); |
|
for (int i = 0; i != threads; i++) { |
|
tp.Schedule(std::bind(&EndTest, &c0, &c1, &mu2, &cv2, |
|
std::function<void(int)>( |
|
std::bind(test, cxt, std::placeholders::_1)))); |
|
} |
|
mu2.Lock(); |
|
while (c1 != threads) { |
|
cv2.Wait(&mu2); |
|
} |
|
mu2.Unlock(); |
|
return cxt->g0; |
|
} |
|
|
|
// Basis for the parameterized tests configured below. |
|
static int RunTest(void (*test)(TestContext *cxt, int), int threads, |
|
int iterations, int operations) { |
|
TestContext cxt; |
|
return RunTestCommon(&cxt, test, threads, iterations, operations); |
|
} |
|
|
|
// Like RunTest(), but sets an invariant on the tested Mutex and |
|
// verifies that the invariant check happened. The invariant function |
|
// will be passed the TestContext* as its arg and must call |
|
// SetInvariantChecked(true); |
|
#if !defined(ABSL_MUTEX_ENABLE_INVARIANT_DEBUGGING_NOT_IMPLEMENTED) |
|
static int RunTestWithInvariantDebugging(void (*test)(TestContext *cxt, int), |
|
int threads, int iterations, |
|
int operations, |
|
void (*invariant)(void *)) { |
|
absl::EnableMutexInvariantDebugging(true); |
|
SetInvariantChecked(false); |
|
TestContext cxt; |
|
cxt.mu.EnableInvariantDebugging(invariant, &cxt); |
|
int ret = RunTestCommon(&cxt, test, threads, iterations, operations); |
|
ABSL_RAW_CHECK(GetInvariantChecked(), "Invariant not checked"); |
|
absl::EnableMutexInvariantDebugging(false); // Restore. |
|
return ret; |
|
} |
|
#endif |
|
|
|
// -------------------------------------------------------- |
|
// Test for fix of bug in TryRemove() |
|
struct TimeoutBugStruct { |
|
absl::Mutex mu; |
|
bool a; |
|
int a_waiter_count; |
|
}; |
|
|
|
static void WaitForA(TimeoutBugStruct *x) { |
|
x->mu.LockWhen(absl::Condition(&x->a)); |
|
x->a_waiter_count--; |
|
x->mu.Unlock(); |
|
} |
|
|
|
static bool NoAWaiters(TimeoutBugStruct *x) { return x->a_waiter_count == 0; } |
|
|
|
// Test that a CondVar.Wait(&mutex) can un-block a call to mutex.Await() in |
|
// another thread. |
|
TEST(Mutex, CondVarWaitSignalsAwait) { |
|
// Use a struct so the lock annotations apply. |
|
struct { |
|
absl::Mutex barrier_mu; |
|
bool barrier ABSL_GUARDED_BY(barrier_mu) = false; |
|
|
|
absl::Mutex release_mu; |
|
bool release ABSL_GUARDED_BY(release_mu) = false; |
|
absl::CondVar released_cv; |
|
} state; |
|
|
|
auto pool = CreateDefaultPool(); |
|
|
|
// Thread A. Sets barrier, waits for release using Mutex::Await, then |
|
// signals released_cv. |
|
pool->Schedule([&state] { |
|
state.release_mu.Lock(); |
|
|
|
state.barrier_mu.Lock(); |
|
state.barrier = true; |
|
state.barrier_mu.Unlock(); |
|
|
|
state.release_mu.Await(absl::Condition(&state.release)); |
|
state.released_cv.Signal(); |
|
state.release_mu.Unlock(); |
|
}); |
|
|
|
state.barrier_mu.LockWhen(absl::Condition(&state.barrier)); |
|
state.barrier_mu.Unlock(); |
|
state.release_mu.Lock(); |
|
// Thread A is now blocked on release by way of Mutex::Await(). |
|
|
|
// Set release. Calling released_cv.Wait() should un-block thread A, |
|
// which will signal released_cv. If not, the test will hang. |
|
state.release = true; |
|
state.released_cv.Wait(&state.release_mu); |
|
state.release_mu.Unlock(); |
|
} |
|
|
|
// Test that a CondVar.WaitWithTimeout(&mutex) can un-block a call to |
|
// mutex.Await() in another thread. |
|
TEST(Mutex, CondVarWaitWithTimeoutSignalsAwait) { |
|
// Use a struct so the lock annotations apply. |
|
struct { |
|
absl::Mutex barrier_mu; |
|
bool barrier ABSL_GUARDED_BY(barrier_mu) = false; |
|
|
|
absl::Mutex release_mu; |
|
bool release ABSL_GUARDED_BY(release_mu) = false; |
|
absl::CondVar released_cv; |
|
} state; |
|
|
|
auto pool = CreateDefaultPool(); |
|
|
|
// Thread A. Sets barrier, waits for release using Mutex::Await, then |
|
// signals released_cv. |
|
pool->Schedule([&state] { |
|
state.release_mu.Lock(); |
|
|
|
state.barrier_mu.Lock(); |
|
state.barrier = true; |
|
state.barrier_mu.Unlock(); |
|
|
|
state.release_mu.Await(absl::Condition(&state.release)); |
|
state.released_cv.Signal(); |
|
state.release_mu.Unlock(); |
|
}); |
|
|
|
state.barrier_mu.LockWhen(absl::Condition(&state.barrier)); |
|
state.barrier_mu.Unlock(); |
|
state.release_mu.Lock(); |
|
// Thread A is now blocked on release by way of Mutex::Await(). |
|
|
|
// Set release. Calling released_cv.Wait() should un-block thread A, |
|
// which will signal released_cv. If not, the test will hang. |
|
state.release = true; |
|
EXPECT_TRUE( |
|
!state.released_cv.WaitWithTimeout(&state.release_mu, absl::Seconds(10))) |
|
<< "; Unrecoverable test failure: CondVar::WaitWithTimeout did not " |
|
"unblock the absl::Mutex::Await call in another thread."; |
|
|
|
state.release_mu.Unlock(); |
|
} |
|
|
|
// Test for regression of a bug in loop of TryRemove() |
|
TEST(Mutex, MutexTimeoutBug) { |
|
auto tp = CreateDefaultPool(); |
|
|
|
TimeoutBugStruct x; |
|
x.a = false; |
|
x.a_waiter_count = 2; |
|
tp->Schedule(std::bind(&WaitForA, &x)); |
|
tp->Schedule(std::bind(&WaitForA, &x)); |
|
absl::SleepFor(absl::Seconds(1)); // Allow first two threads to hang. |
|
// The skip field of the second will point to the first because there are |
|
// only two. |
|
|
|
// Now cause a thread waiting on an always-false to time out |
|
// This would deadlock when the bug was present. |
|
bool always_false = false; |
|
x.mu.LockWhenWithTimeout(absl::Condition(&always_false), |
|
absl::Milliseconds(500)); |
|
|
|
// if we get here, the bug is not present. Cleanup the state. |
|
|
|
x.a = true; // wakeup the two waiters on A |
|
x.mu.Await(absl::Condition(&NoAWaiters, &x)); // wait for them to exit |
|
x.mu.Unlock(); |
|
} |
|
|
|
struct CondVarWaitDeadlock : testing::TestWithParam<int> { |
|
absl::Mutex mu; |
|
absl::CondVar cv; |
|
bool cond1 = false; |
|
bool cond2 = false; |
|
bool read_lock1; |
|
bool read_lock2; |
|
bool signal_unlocked; |
|
|
|
CondVarWaitDeadlock() { |
|
read_lock1 = GetParam() & (1 << 0); |
|
read_lock2 = GetParam() & (1 << 1); |
|
signal_unlocked = GetParam() & (1 << 2); |
|
} |
|
|
|
void Waiter1() { |
|
if (read_lock1) { |
|
mu.ReaderLock(); |
|
while (!cond1) { |
|
cv.Wait(&mu); |
|
} |
|
mu.ReaderUnlock(); |
|
} else { |
|
mu.Lock(); |
|
while (!cond1) { |
|
cv.Wait(&mu); |
|
} |
|
mu.Unlock(); |
|
} |
|
} |
|
|
|
void Waiter2() { |
|
if (read_lock2) { |
|
mu.ReaderLockWhen(absl::Condition(&cond2)); |
|
mu.ReaderUnlock(); |
|
} else { |
|
mu.LockWhen(absl::Condition(&cond2)); |
|
mu.Unlock(); |
|
} |
|
} |
|
}; |
|
|
|
// Test for a deadlock bug in Mutex::Fer(). |
|
// The sequence of events that lead to the deadlock is: |
|
// 1. waiter1 blocks on cv in read mode (mu bits = 0). |
|
// 2. waiter2 blocks on mu in either mode (mu bits = kMuWait). |
|
// 3. main thread locks mu, sets cond1, unlocks mu (mu bits = kMuWait). |
|
// 4. main thread signals on cv and this eventually calls Mutex::Fer(). |
|
// Currently Fer wakes waiter1 since mu bits = kMuWait (mutex is unlocked). |
|
// Before the bug fix Fer neither woke waiter1 nor queued it on mutex, |
|
// which resulted in deadlock. |
|
TEST_P(CondVarWaitDeadlock, Test) { |
|
auto waiter1 = CreatePool(1); |
|
auto waiter2 = CreatePool(1); |
|
waiter1->Schedule([this] { this->Waiter1(); }); |
|
waiter2->Schedule([this] { this->Waiter2(); }); |
|
|
|
// Wait while threads block (best-effort is fine). |
|
absl::SleepFor(absl::Milliseconds(100)); |
|
|
|
// Wake condwaiter. |
|
mu.Lock(); |
|
cond1 = true; |
|
if (signal_unlocked) { |
|
mu.Unlock(); |
|
cv.Signal(); |
|
} else { |
|
cv.Signal(); |
|
mu.Unlock(); |
|
} |
|
waiter1.reset(); // "join" waiter1 |
|
|
|
// Wake waiter. |
|
mu.Lock(); |
|
cond2 = true; |
|
mu.Unlock(); |
|
waiter2.reset(); // "join" waiter2 |
|
} |
|
|
|
INSTANTIATE_TEST_SUITE_P(CondVarWaitDeadlockTest, CondVarWaitDeadlock, |
|
::testing::Range(0, 8), |
|
::testing::PrintToStringParamName()); |
|
|
|
// -------------------------------------------------------- |
|
// Test for fix of bug in DequeueAllWakeable() |
|
// Bug was that if there was more than one waiting reader |
|
// and all should be woken, the most recently blocked one |
|
// would not be. |
|
|
|
struct DequeueAllWakeableBugStruct { |
|
absl::Mutex mu; |
|
absl::Mutex mu2; // protects all fields below |
|
int unfinished_count; // count of unfinished readers; under mu2 |
|
bool done1; // unfinished_count == 0; under mu2 |
|
int finished_count; // count of finished readers, under mu2 |
|
bool done2; // finished_count == 0; under mu2 |
|
}; |
|
|
|
// Test for regression of a bug in loop of DequeueAllWakeable() |
|
static void AcquireAsReader(DequeueAllWakeableBugStruct *x) { |
|
x->mu.ReaderLock(); |
|
x->mu2.Lock(); |
|
x->unfinished_count--; |
|
x->done1 = (x->unfinished_count == 0); |
|
x->mu2.Unlock(); |
|
// make sure that both readers acquired mu before we release it. |
|
absl::SleepFor(absl::Seconds(2)); |
|
x->mu.ReaderUnlock(); |
|
|
|
x->mu2.Lock(); |
|
x->finished_count--; |
|
x->done2 = (x->finished_count == 0); |
|
x->mu2.Unlock(); |
|
} |
|
|
|
// Test for regression of a bug in loop of DequeueAllWakeable() |
|
TEST(Mutex, MutexReaderWakeupBug) { |
|
auto tp = CreateDefaultPool(); |
|
|
|
DequeueAllWakeableBugStruct x; |
|
x.unfinished_count = 2; |
|
x.done1 = false; |
|
x.finished_count = 2; |
|
x.done2 = false; |
|
x.mu.Lock(); // acquire mu exclusively |
|
// queue two thread that will block on reader locks on x.mu |
|
tp->Schedule(std::bind(&AcquireAsReader, &x)); |
|
tp->Schedule(std::bind(&AcquireAsReader, &x)); |
|
absl::SleepFor(absl::Seconds(1)); // give time for reader threads to block |
|
x.mu.Unlock(); // wake them up |
|
|
|
// both readers should finish promptly |
|
EXPECT_TRUE( |
|
x.mu2.LockWhenWithTimeout(absl::Condition(&x.done1), absl::Seconds(10))); |
|
x.mu2.Unlock(); |
|
|
|
EXPECT_TRUE( |
|
x.mu2.LockWhenWithTimeout(absl::Condition(&x.done2), absl::Seconds(10))); |
|
x.mu2.Unlock(); |
|
} |
|
|
|
struct LockWhenTestStruct { |
|
absl::Mutex mu1; |
|
bool cond = false; |
|
|
|
absl::Mutex mu2; |
|
bool waiting = false; |
|
}; |
|
|
|
static bool LockWhenTestIsCond(LockWhenTestStruct* s) { |
|
s->mu2.Lock(); |
|
s->waiting = true; |
|
s->mu2.Unlock(); |
|
return s->cond; |
|
} |
|
|
|
static void LockWhenTestWaitForIsCond(LockWhenTestStruct* s) { |
|
s->mu1.LockWhen(absl::Condition(&LockWhenTestIsCond, s)); |
|
s->mu1.Unlock(); |
|
} |
|
|
|
TEST(Mutex, LockWhen) { |
|
LockWhenTestStruct s; |
|
|
|
std::thread t(LockWhenTestWaitForIsCond, &s); |
|
s.mu2.LockWhen(absl::Condition(&s.waiting)); |
|
s.mu2.Unlock(); |
|
|
|
s.mu1.Lock(); |
|
s.cond = true; |
|
s.mu1.Unlock(); |
|
|
|
t.join(); |
|
} |
|
|
|
TEST(Mutex, LockWhenGuard) { |
|
absl::Mutex mu; |
|
int n = 30; |
|
bool done = false; |
|
|
|
// We don't inline the lambda because the conversion is ambiguous in MSVC. |
|
bool (*cond_eq_10)(int *) = [](int *p) { return *p == 10; }; |
|
bool (*cond_lt_10)(int *) = [](int *p) { return *p < 10; }; |
|
|
|
std::thread t1([&mu, &n, &done, cond_eq_10]() { |
|
absl::ReaderMutexLock lock(&mu, absl::Condition(cond_eq_10, &n)); |
|
done = true; |
|
}); |
|
|
|
std::thread t2[10]; |
|
for (std::thread &t : t2) { |
|
t = std::thread([&mu, &n, cond_lt_10]() { |
|
absl::WriterMutexLock lock(&mu, absl::Condition(cond_lt_10, &n)); |
|
++n; |
|
}); |
|
} |
|
|
|
{ |
|
absl::MutexLock lock(&mu); |
|
n = 0; |
|
} |
|
|
|
for (std::thread &t : t2) t.join(); |
|
t1.join(); |
|
|
|
EXPECT_TRUE(done); |
|
EXPECT_EQ(n, 10); |
|
} |
|
|
|
// -------------------------------------------------------- |
|
// The following test requires Mutex::ReaderLock to be a real shared |
|
// lock, which is not the case in all builds. |
|
#if !defined(ABSL_MUTEX_READER_LOCK_IS_EXCLUSIVE) |
|
|
|
// Test for fix of bug in UnlockSlow() that incorrectly decremented the reader |
|
// count when putting a thread to sleep waiting for a false condition when the |
|
// lock was not held. |
|
|
|
// For this bug to strike, we make a thread wait on a free mutex with no |
|
// waiters by causing its wakeup condition to be false. Then the |
|
// next two acquirers must be readers. The bug causes the lock |
|
// to be released when one reader unlocks, rather than both. |
|
|
|
struct ReaderDecrementBugStruct { |
|
bool cond; // to delay first thread (under mu) |
|
int done; // reference count (under mu) |
|
absl::Mutex mu; |
|
|
|
bool waiting_on_cond; // under mu2 |
|
bool have_reader_lock; // under mu2 |
|
bool complete; // under mu2 |
|
absl::Mutex mu2; // > mu |
|
}; |
|
|
|
// L >= mu, L < mu_waiting_on_cond |
|
static bool IsCond(void *v) { |
|
ReaderDecrementBugStruct *x = reinterpret_cast<ReaderDecrementBugStruct *>(v); |
|
x->mu2.Lock(); |
|
x->waiting_on_cond = true; |
|
x->mu2.Unlock(); |
|
return x->cond; |
|
} |
|
|
|
// L >= mu |
|
static bool AllDone(void *v) { |
|
ReaderDecrementBugStruct *x = reinterpret_cast<ReaderDecrementBugStruct *>(v); |
|
return x->done == 0; |
|
} |
|
|
|
// L={} |
|
static void WaitForCond(ReaderDecrementBugStruct *x) { |
|
absl::Mutex dummy; |
|
absl::MutexLock l(&dummy); |
|
x->mu.LockWhen(absl::Condition(&IsCond, x)); |
|
x->done--; |
|
x->mu.Unlock(); |
|
} |
|
|
|
// L={} |
|
static void GetReadLock(ReaderDecrementBugStruct *x) { |
|
x->mu.ReaderLock(); |
|
x->mu2.Lock(); |
|
x->have_reader_lock = true; |
|
x->mu2.Await(absl::Condition(&x->complete)); |
|
x->mu2.Unlock(); |
|
x->mu.ReaderUnlock(); |
|
x->mu.Lock(); |
|
x->done--; |
|
x->mu.Unlock(); |
|
} |
|
|
|
// Test for reader counter being decremented incorrectly by waiter |
|
// with false condition. |
|
TEST(Mutex, MutexReaderDecrementBug) ABSL_NO_THREAD_SAFETY_ANALYSIS { |
|
ReaderDecrementBugStruct x; |
|
x.cond = false; |
|
x.waiting_on_cond = false; |
|
x.have_reader_lock = false; |
|
x.complete = false; |
|
x.done = 2; // initial ref count |
|
|
|
// Run WaitForCond() and wait for it to sleep |
|
std::thread thread1(WaitForCond, &x); |
|
x.mu2.LockWhen(absl::Condition(&x.waiting_on_cond)); |
|
x.mu2.Unlock(); |
|
|
|
// Run GetReadLock(), and wait for it to get the read lock |
|
std::thread thread2(GetReadLock, &x); |
|
x.mu2.LockWhen(absl::Condition(&x.have_reader_lock)); |
|
x.mu2.Unlock(); |
|
|
|
// Get the reader lock ourselves, and release it. |
|
x.mu.ReaderLock(); |
|
x.mu.ReaderUnlock(); |
|
|
|
// The lock should be held in read mode by GetReadLock(). |
|
// If we have the bug, the lock will be free. |
|
x.mu.AssertReaderHeld(); |
|
|
|
// Wake up all the threads. |
|
x.mu2.Lock(); |
|
x.complete = true; |
|
x.mu2.Unlock(); |
|
|
|
// TODO(delesley): turn on analysis once lock upgrading is supported. |
|
// (This call upgrades the lock from shared to exclusive.) |
|
x.mu.Lock(); |
|
x.cond = true; |
|
x.mu.Await(absl::Condition(&AllDone, &x)); |
|
x.mu.Unlock(); |
|
|
|
thread1.join(); |
|
thread2.join(); |
|
} |
|
#endif // !ABSL_MUTEX_READER_LOCK_IS_EXCLUSIVE |
|
|
|
// Test that we correctly handle the situation when a lock is |
|
// held and then destroyed (w/o unlocking). |
|
#ifdef ABSL_HAVE_THREAD_SANITIZER |
|
// TSAN reports errors when locked Mutexes are destroyed. |
|
TEST(Mutex, DISABLED_LockedMutexDestructionBug) ABSL_NO_THREAD_SAFETY_ANALYSIS { |
|
#else |
|
TEST(Mutex, LockedMutexDestructionBug) ABSL_NO_THREAD_SAFETY_ANALYSIS { |
|
#endif |
|
for (int i = 0; i != 10; i++) { |
|
// Create, lock and destroy 10 locks. |
|
const int kNumLocks = 10; |
|
auto mu = absl::make_unique<absl::Mutex[]>(kNumLocks); |
|
for (int j = 0; j != kNumLocks; j++) { |
|
if ((j % 2) == 0) { |
|
mu[j].WriterLock(); |
|
} else { |
|
mu[j].ReaderLock(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
// -------------------------------------------------------- |
|
// Test for bug with pattern of readers using a condvar. The bug was that if a |
|
// reader went to sleep on a condition variable while one or more other readers |
|
// held the lock, but there were no waiters, the reader count (held in the |
|
// mutex word) would be lost. (This is because Enqueue() had at one time |
|
// always placed the thread on the Mutex queue. Later (CL 4075610), to |
|
// tolerate re-entry into Mutex from a Condition predicate, Enqueue() was |
|
// changed so that it could also place a thread on a condition-variable. This |
|
// introduced the case where Enqueue() returned with an empty queue, and this |
|
// case was handled incorrectly in one place.) |
|
|
|
static void ReaderForReaderOnCondVar(absl::Mutex *mu, absl::CondVar *cv, |
|
int *running) { |
|
std::random_device dev; |
|
std::mt19937 gen(dev()); |
|
std::uniform_int_distribution<int> random_millis(0, 15); |
|
mu->ReaderLock(); |
|
while (*running == 3) { |
|
absl::SleepFor(absl::Milliseconds(random_millis(gen))); |
|
cv->WaitWithTimeout(mu, absl::Milliseconds(random_millis(gen))); |
|
} |
|
mu->ReaderUnlock(); |
|
mu->Lock(); |
|
(*running)--; |
|
mu->Unlock(); |
|
} |
|
|
|
struct True { |
|
template <class... Args> |
|
bool operator()(Args...) const { |
|
return true; |
|
} |
|
}; |
|
|
|
struct DerivedTrue : True {}; |
|
|
|
TEST(Mutex, FunctorCondition) { |
|
{ // Variadic |
|
True f; |
|
EXPECT_TRUE(absl::Condition(&f).Eval()); |
|
} |
|
|
|
{ // Inherited |
|
DerivedTrue g; |
|
EXPECT_TRUE(absl::Condition(&g).Eval()); |
|
} |
|
|
|
{ // lambda |
|
int value = 3; |
|
auto is_zero = [&value] { return value == 0; }; |
|
absl::Condition c(&is_zero); |
|
EXPECT_FALSE(c.Eval()); |
|
value = 0; |
|
EXPECT_TRUE(c.Eval()); |
|
} |
|
|
|
{ // bind |
|
int value = 0; |
|
auto is_positive = std::bind(std::less<int>(), 0, std::cref(value)); |
|
absl::Condition c(&is_positive); |
|
EXPECT_FALSE(c.Eval()); |
|
value = 1; |
|
EXPECT_TRUE(c.Eval()); |
|
} |
|
|
|
{ // std::function |
|
int value = 3; |
|
std::function<bool()> is_zero = [&value] { return value == 0; }; |
|
absl::Condition c(&is_zero); |
|
EXPECT_FALSE(c.Eval()); |
|
value = 0; |
|
EXPECT_TRUE(c.Eval()); |
|
} |
|
} |
|
|
|
static bool IntIsZero(int *x) { return *x == 0; } |
|
|
|
// Test for reader waiting condition variable when there are other readers |
|
// but no waiters. |
|
TEST(Mutex, TestReaderOnCondVar) { |
|
auto tp = CreateDefaultPool(); |
|
absl::Mutex mu; |
|
absl::CondVar cv; |
|
int running = 3; |
|
tp->Schedule(std::bind(&ReaderForReaderOnCondVar, &mu, &cv, &running)); |
|
tp->Schedule(std::bind(&ReaderForReaderOnCondVar, &mu, &cv, &running)); |
|
absl::SleepFor(absl::Seconds(2)); |
|
mu.Lock(); |
|
running--; |
|
mu.Await(absl::Condition(&IntIsZero, &running)); |
|
mu.Unlock(); |
|
} |
|
|
|
// -------------------------------------------------------- |
|
struct AcquireFromConditionStruct { |
|
absl::Mutex mu0; // protects value, done |
|
int value; // times condition function is called; under mu0, |
|
bool done; // done with test? under mu0 |
|
absl::Mutex mu1; // used to attempt to mess up state of mu0 |
|
absl::CondVar cv; // so the condition function can be invoked from |
|
// CondVar::Wait(). |
|
}; |
|
|
|
static bool ConditionWithAcquire(AcquireFromConditionStruct *x) { |
|
x->value++; // count times this function is called |
|
|
|
if (x->value == 2 || x->value == 3) { |
|
// On the second and third invocation of this function, sleep for 100ms, |
|
// but with the side-effect of altering the state of a Mutex other than |
|
// than one for which this is a condition. The spec now explicitly allows |
|
// this side effect; previously it did not. it was illegal. |
|
bool always_false = false; |
|
x->mu1.LockWhenWithTimeout(absl::Condition(&always_false), |
|
absl::Milliseconds(100)); |
|
x->mu1.Unlock(); |
|
} |
|
ABSL_RAW_CHECK(x->value < 4, "should not be invoked a fourth time"); |
|
|
|
// We arrange for the condition to return true on only the 2nd and 3rd calls. |
|
return x->value == 2 || x->value == 3; |
|
} |
|
|
|
static void WaitForCond2(AcquireFromConditionStruct *x) { |
|
// wait for cond0 to become true |
|
x->mu0.LockWhen(absl::Condition(&ConditionWithAcquire, x)); |
|
x->done = true; |
|
x->mu0.Unlock(); |
|
} |
|
|
|
// Test for Condition whose function acquires other Mutexes |
|
TEST(Mutex, AcquireFromCondition) { |
|
auto tp = CreateDefaultPool(); |
|
|
|
AcquireFromConditionStruct x; |
|
x.value = 0; |
|
x.done = false; |
|
tp->Schedule( |
|
std::bind(&WaitForCond2, &x)); // run WaitForCond2() in a thread T |
|
// T will hang because the first invocation of ConditionWithAcquire() will |
|
// return false. |
|
absl::SleepFor(absl::Milliseconds(500)); // allow T time to hang |
|
|
|
x.mu0.Lock(); |
|
x.cv.WaitWithTimeout(&x.mu0, absl::Milliseconds(500)); // wake T |
|
// T will be woken because the Wait() will call ConditionWithAcquire() |
|
// for the second time, and it will return true. |
|
|
|
x.mu0.Unlock(); |
|
|
|
// T will then acquire the lock and recheck its own condition. |
|
// It will find the condition true, as this is the third invocation, |
|
// but the use of another Mutex by the calling function will |
|
// cause the old mutex implementation to think that the outer |
|
// LockWhen() has timed out because the inner LockWhenWithTimeout() did. |
|
// T will then check the condition a fourth time because it finds a |
|
// timeout occurred. This should not happen in the new |
|
// implementation that allows the Condition function to use Mutexes. |
|
|
|
// It should also succeed, even though the Condition function |
|
// is being invoked from CondVar::Wait, and thus this thread |
|
// is conceptually waiting both on the condition variable, and on mu2. |
|
|
|
x.mu0.LockWhen(absl::Condition(&x.done)); |
|
x.mu0.Unlock(); |
|
} |
|
|
|
TEST(Mutex, DeadlockDetector) { |
|
absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort); |
|
|
|
// check that we can call ForgetDeadlockInfo() on a lock with the lock held |
|
absl::Mutex m1; |
|
absl::Mutex m2; |
|
absl::Mutex m3; |
|
absl::Mutex m4; |
|
|
|
m1.Lock(); // m1 gets ID1 |
|
m2.Lock(); // m2 gets ID2 |
|
m3.Lock(); // m3 gets ID3 |
|
m3.Unlock(); |
|
m2.Unlock(); |
|
// m1 still held |
|
m1.ForgetDeadlockInfo(); // m1 loses ID |
|
m2.Lock(); // m2 gets ID2 |
|
m3.Lock(); // m3 gets ID3 |
|
m4.Lock(); // m4 gets ID4 |
|
m3.Unlock(); |
|
m2.Unlock(); |
|
m4.Unlock(); |
|
m1.Unlock(); |
|
} |
|
|
|
// Bazel has a test "warning" file that programs can write to if the |
|
// test should pass with a warning. This class disables the warning |
|
// file until it goes out of scope. |
|
class ScopedDisableBazelTestWarnings { |
|
public: |
|
ScopedDisableBazelTestWarnings() { |
|
#ifdef _WIN32 |
|
char file[MAX_PATH]; |
|
if (GetEnvironmentVariableA(kVarName, file, sizeof(file)) < sizeof(file)) { |
|
warnings_output_file_ = file; |
|
SetEnvironmentVariableA(kVarName, nullptr); |
|
} |
|
#else |
|
const char *file = getenv(kVarName); |
|
if (file != nullptr) { |
|
warnings_output_file_ = file; |
|
unsetenv(kVarName); |
|
} |
|
#endif |
|
} |
|
|
|
~ScopedDisableBazelTestWarnings() { |
|
if (!warnings_output_file_.empty()) { |
|
#ifdef _WIN32 |
|
SetEnvironmentVariableA(kVarName, warnings_output_file_.c_str()); |
|
#else |
|
setenv(kVarName, warnings_output_file_.c_str(), 0); |
|
#endif |
|
} |
|
} |
|
|
|
private: |
|
static const char kVarName[]; |
|
std::string warnings_output_file_; |
|
}; |
|
const char ScopedDisableBazelTestWarnings::kVarName[] = |
|
"TEST_WARNINGS_OUTPUT_FILE"; |
|
|
|
#ifdef ABSL_HAVE_THREAD_SANITIZER |
|
// This test intentionally creates deadlocks to test the deadlock detector. |
|
TEST(Mutex, DISABLED_DeadlockDetectorBazelWarning) { |
|
#else |
|
TEST(Mutex, DeadlockDetectorBazelWarning) { |
|
#endif |
|
absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kReport); |
|
|
|
// Cause deadlock detection to detect something, if it's |
|
// compiled in and enabled. But turn off the bazel warning. |
|
ScopedDisableBazelTestWarnings disable_bazel_test_warnings; |
|
|
|
absl::Mutex mu0; |
|
absl::Mutex mu1; |
|
bool got_mu0 = mu0.TryLock(); |
|
mu1.Lock(); // acquire mu1 while holding mu0 |
|
if (got_mu0) { |
|
mu0.Unlock(); |
|
} |
|
if (mu0.TryLock()) { // try lock shouldn't cause deadlock detector to fire |
|
mu0.Unlock(); |
|
} |
|
mu0.Lock(); // acquire mu0 while holding mu1; should get one deadlock |
|
// report here |
|
mu0.Unlock(); |
|
mu1.Unlock(); |
|
|
|
absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort); |
|
} |
|
|
|
// This test is tagged with NO_THREAD_SAFETY_ANALYSIS because the |
|
// annotation-based static thread-safety analysis is not currently |
|
// predicate-aware and cannot tell if the two for-loops that acquire and |
|
// release the locks have the same predicates. |
|
TEST(Mutex, DeadlockDetectorStressTest) ABSL_NO_THREAD_SAFETY_ANALYSIS { |
|
// Stress test: Here we create a large number of locks and use all of them. |
|
// If a deadlock detector keeps a full graph of lock acquisition order, |
|
// it will likely be too slow for this test to pass. |
|
const int n_locks = 1 << 17; |
|
auto array_of_locks = absl::make_unique<absl::Mutex[]>(n_locks); |
|
for (int i = 0; i < n_locks; i++) { |
|
int end = std::min(n_locks, i + 5); |
|
// acquire and then release locks i, i+1, ..., i+4 |
|
for (int j = i; j < end; j++) { |
|
array_of_locks[j].Lock(); |
|
} |
|
for (int j = i; j < end; j++) { |
|
array_of_locks[j].Unlock(); |
|
} |
|
} |
|
} |
|
|
|
#ifdef ABSL_HAVE_THREAD_SANITIZER |
|
// TSAN reports errors when locked Mutexes are destroyed. |
|
TEST(Mutex, DISABLED_DeadlockIdBug) ABSL_NO_THREAD_SAFETY_ANALYSIS { |
|
#else |
|
TEST(Mutex, DeadlockIdBug) ABSL_NO_THREAD_SAFETY_ANALYSIS { |
|
#endif |
|
// Test a scenario where a cached deadlock graph node id in the |
|
// list of held locks is not invalidated when the corresponding |
|
// mutex is deleted. |
|
absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort); |
|
// Mutex that will be destroyed while being held |
|
absl::Mutex *a = new absl::Mutex; |
|
// Other mutexes needed by test |
|
absl::Mutex b, c; |
|
|
|
// Hold mutex. |
|
a->Lock(); |
|
|
|
// Force deadlock id assignment by acquiring another lock. |
|
b.Lock(); |
|
b.Unlock(); |
|
|
|
// Delete the mutex. The Mutex destructor tries to remove held locks, |
|
// but the attempt isn't foolproof. It can fail if: |
|
// (a) Deadlock detection is currently disabled. |
|
// (b) The destruction is from another thread. |
|
// We exploit (a) by temporarily disabling deadlock detection. |
|
absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kIgnore); |
|
delete a; |
|
absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort); |
|
|
|
// Now acquire another lock which will force a deadlock id assignment. |
|
// We should end up getting assigned the same deadlock id that was |
|
// freed up when "a" was deleted, which will cause a spurious deadlock |
|
// report if the held lock entry for "a" was not invalidated. |
|
c.Lock(); |
|
c.Unlock(); |
|
} |
|
|
|
// -------------------------------------------------------- |
|
// Test for timeouts/deadlines on condition waits that are specified using |
|
// absl::Duration and absl::Time. For each waiting function we test with |
|
// a timeout/deadline that has already expired/passed, one that is infinite |
|
// and so never expires/passes, and one that will expire/pass in the near |
|
// future. |
|
|
|
static absl::Duration TimeoutTestAllowedSchedulingDelay() { |
|
// Note: we use a function here because Microsoft Visual Studio fails to |
|
// properly initialize constexpr static absl::Duration variables. |
|
return absl::Milliseconds(150); |
|
} |
|
|
|
// Returns true if `actual_delay` is close enough to `expected_delay` to pass |
|
// the timeouts/deadlines test. Otherwise, logs warnings and returns false. |
|
ABSL_MUST_USE_RESULT |
|
static bool DelayIsWithinBounds(absl::Duration expected_delay, |
|
absl::Duration actual_delay) { |
|
bool pass = true; |
|
// Do not allow the observed delay to be less than expected. This may occur |
|
// in practice due to clock skew or when the synchronization primitives use a |
|
// different clock than absl::Now(), but these cases should be handled by the |
|
// the retry mechanism in each TimeoutTest. |
|
if (actual_delay < expected_delay) { |
|
ABSL_RAW_LOG(WARNING, |
|
"Actual delay %s was too short, expected %s (difference %s)", |
|
absl::FormatDuration(actual_delay).c_str(), |
|
absl::FormatDuration(expected_delay).c_str(), |
|
absl::FormatDuration(actual_delay - expected_delay).c_str()); |
|
pass = false; |
|
} |
|
// If the expected delay is <= zero then allow a small error tolerance, since |
|
// we do not expect context switches to occur during test execution. |
|
// Otherwise, thread scheduling delays may be substantial in rare cases, so |
|
// tolerate up to kTimeoutTestAllowedSchedulingDelay of error. |
|
absl::Duration tolerance = expected_delay <= absl::ZeroDuration() |
|
? absl::Milliseconds(10) |
|
: TimeoutTestAllowedSchedulingDelay(); |
|
if (actual_delay > expected_delay + tolerance) { |
|
ABSL_RAW_LOG(WARNING, |
|
"Actual delay %s was too long, expected %s (difference %s)", |
|
absl::FormatDuration(actual_delay).c_str(), |
|
absl::FormatDuration(expected_delay).c_str(), |
|
absl::FormatDuration(actual_delay - expected_delay).c_str()); |
|
pass = false; |
|
} |
|
return pass; |
|
} |
|
|
|
// Parameters for TimeoutTest, below. |
|
struct TimeoutTestParam { |
|
// The file and line number (used for logging purposes only). |
|
const char *from_file; |
|
int from_line; |
|
|
|
// Should the absolute deadline API based on absl::Time be tested? If false, |
|
// the relative deadline API based on absl::Duration is tested. |
|
bool use_absolute_deadline; |
|
|
|
// The deadline/timeout used when calling the API being tested |
|
// (e.g. Mutex::LockWhenWithDeadline). |
|
absl::Duration wait_timeout; |
|
|
|
// The delay before the condition will be set true by the test code. If zero |
|
// or negative, the condition is set true immediately (before calling the API |
|
// being tested). Otherwise, if infinite, the condition is never set true. |
|
// Otherwise a closure is scheduled for the future that sets the condition |
|
// true. |
|
absl::Duration satisfy_condition_delay; |
|
|
|
// The expected result of the condition after the call to the API being |
|
// tested. Generally `true` means the condition was true when the API returns, |
|
// `false` indicates an expected timeout. |
|
bool expected_result; |
|
|
|
// The expected delay before the API under test returns. This is inherently |
|
// flaky, so some slop is allowed (see `DelayIsWithinBounds` above), and the |
|
// test keeps trying indefinitely until this constraint passes. |
|
absl::Duration expected_delay; |
|
}; |
|
|
|
// Print a `TimeoutTestParam` to a debug log. |
|
std::ostream &operator<<(std::ostream &os, const TimeoutTestParam ¶m) { |
|
return os << "from: " << param.from_file << ":" << param.from_line |
|
<< " use_absolute_deadline: " |
|
<< (param.use_absolute_deadline ? "true" : "false") |
|
<< " wait_timeout: " << param.wait_timeout |
|
<< " satisfy_condition_delay: " << param.satisfy_condition_delay |
|
<< " expected_result: " |
|
<< (param.expected_result ? "true" : "false") |
|
<< " expected_delay: " << param.expected_delay; |
|
} |
|
|
|
std::string FormatString(const TimeoutTestParam ¶m) { |
|
std::ostringstream os; |
|
os << param; |
|
return os.str(); |
|
} |
|
|
|
// Like `thread::Executor::ScheduleAt` except: |
|
// a) Delays zero or negative are executed immediately in the current thread. |
|
// b) Infinite delays are never scheduled. |
|
// c) Calls this test's `ScheduleAt` helper instead of using `pool` directly. |
|
static void RunAfterDelay(absl::Duration delay, |
|
absl::synchronization_internal::ThreadPool *pool, |
|
const std::function<void()> &callback) { |
|
if (delay <= absl::ZeroDuration()) { |
|
callback(); // immediate |
|
} else if (delay != absl::InfiniteDuration()) { |
|
ScheduleAfter(pool, delay, callback); |
|
} |
|
} |
|
|
|
class TimeoutTest : public ::testing::Test, |
|
public ::testing::WithParamInterface<TimeoutTestParam> {}; |
|
|
|
std::vector<TimeoutTestParam> MakeTimeoutTestParamValues() { |
|
// The `finite` delay is a finite, relatively short, delay. We make it larger |
|
// than our allowed scheduling delay (slop factor) to avoid confusion when |
|
// diagnosing test failures. The other constants here have clear meanings. |
|
const absl::Duration finite = 3 * TimeoutTestAllowedSchedulingDelay(); |
|
const absl::Duration never = absl::InfiniteDuration(); |
|
const absl::Duration negative = -absl::InfiniteDuration(); |
|
const absl::Duration immediate = absl::ZeroDuration(); |
|
|
|
// Every test case is run twice; once using the absolute deadline API and once |
|
// using the relative timeout API. |
|
std::vector<TimeoutTestParam> values; |
|
for (bool use_absolute_deadline : {false, true}) { |
|
// Tests with a negative timeout (deadline in the past), which should |
|
// immediately return current state of the condition. |
|
|
|
// The condition is already true: |
|
values.push_back(TimeoutTestParam{ |
|
__FILE__, __LINE__, use_absolute_deadline, |
|
negative, // wait_timeout |
|
immediate, // satisfy_condition_delay |
|
true, // expected_result |
|
immediate, // expected_delay |
|
}); |
|
|
|
// The condition becomes true, but the timeout has already expired: |
|
values.push_back(TimeoutTestParam{ |
|
__FILE__, __LINE__, use_absolute_deadline, |
|
negative, // wait_timeout |
|
finite, // satisfy_condition_delay |
|
false, // expected_result |
|
immediate // expected_delay |
|
}); |
|
|
|
// The condition never becomes true: |
|
values.push_back(TimeoutTestParam{ |
|
__FILE__, __LINE__, use_absolute_deadline, |
|
negative, // wait_timeout |
|
never, // satisfy_condition_delay |
|
false, // expected_result |
|
immediate // expected_delay |
|
}); |
|
|
|
// Tests with an infinite timeout (deadline in the infinite future), which |
|
// should only return when the condition becomes true. |
|
|
|
// The condition is already true: |
|
values.push_back(TimeoutTestParam{ |
|
__FILE__, __LINE__, use_absolute_deadline, |
|
never, // wait_timeout |
|
immediate, // satisfy_condition_delay |
|
true, // expected_result |
|
immediate // expected_delay |
|
}); |
|
|
|
// The condition becomes true before the (infinite) expiry: |
|
values.push_back(TimeoutTestParam{ |
|
__FILE__, __LINE__, use_absolute_deadline, |
|
never, // wait_timeout |
|
finite, // satisfy_condition_delay |
|
true, // expected_result |
|
finite, // expected_delay |
|
}); |
|
|
|
// Tests with a (small) finite timeout (deadline soon), with the condition |
|
// becoming true both before and after its expiry. |
|
|
|
// The condition is already true: |
|
values.push_back(TimeoutTestParam{ |
|
__FILE__, __LINE__, use_absolute_deadline, |
|
never, // wait_timeout |
|
immediate, // satisfy_condition_delay |
|
true, // expected_result |
|
immediate // expected_delay |
|
}); |
|
|
|
// The condition becomes true before the expiry: |
|
values.push_back(TimeoutTestParam{ |
|
__FILE__, __LINE__, use_absolute_deadline, |
|
finite * 2, // wait_timeout |
|
finite, // satisfy_condition_delay |
|
true, // expected_result |
|
finite // expected_delay |
|
}); |
|
|
|
// The condition becomes true, but the timeout has already expired: |
|
values.push_back(TimeoutTestParam{ |
|
__FILE__, __LINE__, use_absolute_deadline, |
|
finite, // wait_timeout |
|
finite * 2, // satisfy_condition_delay |
|
false, // expected_result |
|
finite // expected_delay |
|
}); |
|
|
|
// The condition never becomes true: |
|
values.push_back(TimeoutTestParam{ |
|
__FILE__, __LINE__, use_absolute_deadline, |
|
finite, // wait_timeout |
|
never, // satisfy_condition_delay |
|
false, // expected_result |
|
finite // expected_delay |
|
}); |
|
} |
|
return values; |
|
} |
|
|
|
// Instantiate `TimeoutTest` with `MakeTimeoutTestParamValues()`. |
|
INSTANTIATE_TEST_SUITE_P(All, TimeoutTest, |
|
testing::ValuesIn(MakeTimeoutTestParamValues())); |
|
|
|
TEST_P(TimeoutTest, Await) { |
|
const TimeoutTestParam params = GetParam(); |
|
ABSL_RAW_LOG(INFO, "Params: %s", FormatString(params).c_str()); |
|
|
|
// Because this test asserts bounds on scheduling delays it is flaky. To |
|
// compensate it loops forever until it passes. Failures express as test |
|
// timeouts, in which case the test log can be used to diagnose the issue. |
|
for (int attempt = 1;; ++attempt) { |
|
ABSL_RAW_LOG(INFO, "Attempt %d", attempt); |
|
|
|
absl::Mutex mu; |
|
bool value = false; // condition value (under mu) |
|
|
|
std::unique_ptr<absl::synchronization_internal::ThreadPool> pool = |
|
CreateDefaultPool(); |
|
RunAfterDelay(params.satisfy_condition_delay, pool.get(), [&] { |
|
absl::MutexLock l(&mu); |
|
value = true; |
|
}); |
|
|
|
absl::MutexLock lock(&mu); |
|
absl::Time start_time = absl::Now(); |
|
absl::Condition cond(&value); |
|
bool result = |
|
params.use_absolute_deadline |
|
? mu.AwaitWithDeadline(cond, start_time + params.wait_timeout) |
|
: mu.AwaitWithTimeout(cond, params.wait_timeout); |
|
if (DelayIsWithinBounds(params.expected_delay, absl::Now() - start_time)) { |
|
EXPECT_EQ(params.expected_result, result); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
TEST_P(TimeoutTest, LockWhen) { |
|
const TimeoutTestParam params = GetParam(); |
|
ABSL_RAW_LOG(INFO, "Params: %s", FormatString(params).c_str()); |
|
|
|
// Because this test asserts bounds on scheduling delays it is flaky. To |
|
// compensate it loops forever until it passes. Failures express as test |
|
// timeouts, in which case the test log can be used to diagnose the issue. |
|
for (int attempt = 1;; ++attempt) { |
|
ABSL_RAW_LOG(INFO, "Attempt %d", attempt); |
|
|
|
absl::Mutex mu; |
|
bool value = false; // condition value (under mu) |
|
|
|
std::unique_ptr<absl::synchronization_internal::ThreadPool> pool = |
|
CreateDefaultPool(); |
|
RunAfterDelay(params.satisfy_condition_delay, pool.get(), [&] { |
|
absl::MutexLock l(&mu); |
|
value = true; |
|
}); |
|
|
|
absl::Time start_time = absl::Now(); |
|
absl::Condition cond(&value); |
|
bool result = |
|
params.use_absolute_deadline |
|
? mu.LockWhenWithDeadline(cond, start_time + params.wait_timeout) |
|
: mu.LockWhenWithTimeout(cond, params.wait_timeout); |
|
mu.Unlock(); |
|
|
|
if (DelayIsWithinBounds(params.expected_delay, absl::Now() - start_time)) { |
|
EXPECT_EQ(params.expected_result, result); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
TEST_P(TimeoutTest, ReaderLockWhen) { |
|
const TimeoutTestParam params = GetParam(); |
|
ABSL_RAW_LOG(INFO, "Params: %s", FormatString(params).c_str()); |
|
|
|
// Because this test asserts bounds on scheduling delays it is flaky. To |
|
// compensate it loops forever until it passes. Failures express as test |
|
// timeouts, in which case the test log can be used to diagnose the issue. |
|
for (int attempt = 0;; ++attempt) { |
|
ABSL_RAW_LOG(INFO, "Attempt %d", attempt); |
|
|
|
absl::Mutex mu; |
|
bool value = false; // condition value (under mu) |
|
|
|
std::unique_ptr<absl::synchronization_internal::ThreadPool> pool = |
|
CreateDefaultPool(); |
|
RunAfterDelay(params.satisfy_condition_delay, pool.get(), [&] { |
|
absl::MutexLock l(&mu); |
|
value = true; |
|
}); |
|
|
|
absl::Time start_time = absl::Now(); |
|
bool result = |
|
params.use_absolute_deadline |
|
? mu.ReaderLockWhenWithDeadline(absl::Condition(&value), |
|
start_time + params.wait_timeout) |
|
: mu.ReaderLockWhenWithTimeout(absl::Condition(&value), |
|
params.wait_timeout); |
|
mu.ReaderUnlock(); |
|
|
|
if (DelayIsWithinBounds(params.expected_delay, absl::Now() - start_time)) { |
|
EXPECT_EQ(params.expected_result, result); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
TEST_P(TimeoutTest, Wait) { |
|
const TimeoutTestParam params = GetParam(); |
|
ABSL_RAW_LOG(INFO, "Params: %s", FormatString(params).c_str()); |
|
|
|
// Because this test asserts bounds on scheduling delays it is flaky. To |
|
// compensate it loops forever until it passes. Failures express as test |
|
// timeouts, in which case the test log can be used to diagnose the issue. |
|
for (int attempt = 0;; ++attempt) { |
|
ABSL_RAW_LOG(INFO, "Attempt %d", attempt); |
|
|
|
absl::Mutex mu; |
|
bool value = false; // condition value (under mu) |
|
absl::CondVar cv; // signals a change of `value` |
|
|
|
std::unique_ptr<absl::synchronization_internal::ThreadPool> pool = |
|
CreateDefaultPool(); |
|
RunAfterDelay(params.satisfy_condition_delay, pool.get(), [&] { |
|
absl::MutexLock l(&mu); |
|
value = true; |
|
cv.Signal(); |
|
}); |
|
|
|
absl::MutexLock lock(&mu); |
|
absl::Time start_time = absl::Now(); |
|
absl::Duration timeout = params.wait_timeout; |
|
absl::Time deadline = start_time + timeout; |
|
while (!value) { |
|
if (params.use_absolute_deadline ? cv.WaitWithDeadline(&mu, deadline) |
|
: cv.WaitWithTimeout(&mu, timeout)) { |
|
break; // deadline/timeout exceeded |
|
} |
|
timeout = deadline - absl::Now(); // recompute |
|
} |
|
bool result = value; // note: `mu` is still held |
|
|
|
if (DelayIsWithinBounds(params.expected_delay, absl::Now() - start_time)) { |
|
EXPECT_EQ(params.expected_result, result); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
TEST(Mutex, Logging) { |
|
// Allow user to look at logging output |
|
absl::Mutex logged_mutex; |
|
logged_mutex.EnableDebugLog("fido_mutex"); |
|
absl::CondVar logged_cv; |
|
logged_cv.EnableDebugLog("rover_cv"); |
|
logged_mutex.Lock(); |
|
logged_cv.WaitWithTimeout(&logged_mutex, absl::Milliseconds(20)); |
|
logged_mutex.Unlock(); |
|
logged_mutex.ReaderLock(); |
|
logged_mutex.ReaderUnlock(); |
|
logged_mutex.Lock(); |
|
logged_mutex.Unlock(); |
|
logged_cv.Signal(); |
|
logged_cv.SignalAll(); |
|
} |
|
|
|
// -------------------------------------------------------- |
|
|
|
// Generate the vector of thread counts for tests parameterized on thread count. |
|
static std::vector<int> AllThreadCountValues() { |
|
if (kExtendedTest) { |
|
return {2, 4, 8, 10, 16, 20, 24, 30, 32}; |
|
} |
|
return {2, 4, 10}; |
|
} |
|
|
|
// A test fixture parameterized by thread count. |
|
class MutexVariableThreadCountTest : public ::testing::TestWithParam<int> {}; |
|
|
|
// Instantiate the above with AllThreadCountOptions(). |
|
INSTANTIATE_TEST_SUITE_P(ThreadCounts, MutexVariableThreadCountTest, |
|
::testing::ValuesIn(AllThreadCountValues()), |
|
::testing::PrintToStringParamName()); |
|
|
|
// Reduces iterations by some factor for slow platforms |
|
// (determined empirically). |
|
static int ScaleIterations(int x) { |
|
// ABSL_MUTEX_READER_LOCK_IS_EXCLUSIVE is set in the implementation |
|
// of Mutex that uses either std::mutex or pthread_mutex_t. Use |
|
// these as keys to determine the slow implementation. |
|
#if defined(ABSL_MUTEX_READER_LOCK_IS_EXCLUSIVE) |
|
return x / 10; |
|
#else |
|
return x; |
|
#endif |
|
} |
|
|
|
TEST_P(MutexVariableThreadCountTest, Mutex) { |
|
int threads = GetParam(); |
|
int iterations = ScaleIterations(10000000) / threads; |
|
int operations = threads * iterations; |
|
EXPECT_EQ(RunTest(&TestMu, threads, iterations, operations), operations); |
|
#if !defined(ABSL_MUTEX_ENABLE_INVARIANT_DEBUGGING_NOT_IMPLEMENTED) |
|
iterations = std::min(iterations, 10); |
|
operations = threads * iterations; |
|
EXPECT_EQ(RunTestWithInvariantDebugging(&TestMu, threads, iterations, |
|
operations, CheckSumG0G1), |
|
operations); |
|
#endif |
|
} |
|
|
|
TEST_P(MutexVariableThreadCountTest, Try) { |
|
int threads = GetParam(); |
|
int iterations = 1000000 / threads; |
|
int operations = iterations * threads; |
|
EXPECT_EQ(RunTest(&TestTry, threads, iterations, operations), operations); |
|
#if !defined(ABSL_MUTEX_ENABLE_INVARIANT_DEBUGGING_NOT_IMPLEMENTED) |
|
iterations = std::min(iterations, 10); |
|
operations = threads * iterations; |
|
EXPECT_EQ(RunTestWithInvariantDebugging(&TestTry, threads, iterations, |
|
operations, CheckSumG0G1), |
|
operations); |
|
#endif |
|
} |
|
|
|
TEST_P(MutexVariableThreadCountTest, R20ms) { |
|
int threads = GetParam(); |
|
int iterations = 100; |
|
int operations = iterations * threads; |
|
EXPECT_EQ(RunTest(&TestR20ms, threads, iterations, operations), 0); |
|
} |
|
|
|
TEST_P(MutexVariableThreadCountTest, RW) { |
|
int threads = GetParam(); |
|
int iterations = ScaleIterations(20000000) / threads; |
|
int operations = iterations * threads; |
|
EXPECT_EQ(RunTest(&TestRW, threads, iterations, operations), operations / 2); |
|
#if !defined(ABSL_MUTEX_ENABLE_INVARIANT_DEBUGGING_NOT_IMPLEMENTED) |
|
iterations = std::min(iterations, 10); |
|
operations = threads * iterations; |
|
EXPECT_EQ(RunTestWithInvariantDebugging(&TestRW, threads, iterations, |
|
operations, CheckSumG0G1), |
|
operations / 2); |
|
#endif |
|
} |
|
|
|
TEST_P(MutexVariableThreadCountTest, Await) { |
|
int threads = GetParam(); |
|
int iterations = ScaleIterations(500000); |
|
int operations = iterations; |
|
EXPECT_EQ(RunTest(&TestAwait, threads, iterations, operations), operations); |
|
} |
|
|
|
TEST_P(MutexVariableThreadCountTest, SignalAll) { |
|
int threads = GetParam(); |
|
int iterations = 200000 / threads; |
|
int operations = iterations; |
|
EXPECT_EQ(RunTest(&TestSignalAll, threads, iterations, operations), |
|
operations); |
|
} |
|
|
|
TEST(Mutex, Signal) { |
|
int threads = 2; // TestSignal must use two threads |
|
int iterations = 200000; |
|
int operations = iterations; |
|
EXPECT_EQ(RunTest(&TestSignal, threads, iterations, operations), operations); |
|
} |
|
|
|
TEST(Mutex, Timed) { |
|
int threads = 10; // Use a fixed thread count of 10 |
|
int iterations = 1000; |
|
int operations = iterations; |
|
EXPECT_EQ(RunTest(&TestCVTimeout, threads, iterations, operations), |
|
operations); |
|
} |
|
|
|
TEST(Mutex, CVTime) { |
|
int threads = 10; // Use a fixed thread count of 10 |
|
int iterations = 1; |
|
EXPECT_EQ(RunTest(&TestCVTime, threads, iterations, 1), |
|
threads * iterations); |
|
} |
|
|
|
TEST(Mutex, MuTime) { |
|
int threads = 10; // Use a fixed thread count of 10 |
|
int iterations = 1; |
|
EXPECT_EQ(RunTest(&TestMuTime, threads, iterations, 1), threads * iterations); |
|
} |
|
|
|
} // namespace
|
|
|