Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1385 lines
48 KiB
1385 lines
48 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// http://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
// |
|
// ----------------------------------------------------------------------------- |
|
// File: inlined_vector.h |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// This header file contains the declaration and definition of an "inlined |
|
// vector" which behaves in an equivalent fashion to a `std::vector`, except |
|
// that storage for small sequences of the vector are provided inline without |
|
// requiring any heap allocation. |
|
|
|
// An `absl::InlinedVector<T,N>` specifies the size N at which to inline as one |
|
// of its template parameters. Vectors of length <= N are provided inline. |
|
// Typically N is very small (e.g., 4) so that sequences that are expected to be |
|
// short do not require allocations. |
|
|
|
// An `absl::InlinedVector` does not usually require a specific allocator; if |
|
// the inlined vector grows beyond its initial constraints, it will need to |
|
// allocate (as any normal `std::vector` would) and it will generally use the |
|
// default allocator in that case; optionally, a custom allocator may be |
|
// specified using an `absl::InlinedVector<T,N,A>` construction. |
|
|
|
#ifndef ABSL_CONTAINER_INLINED_VECTOR_H_ |
|
#define ABSL_CONTAINER_INLINED_VECTOR_H_ |
|
|
|
#include <algorithm> |
|
#include <cassert> |
|
#include <cstddef> |
|
#include <cstdlib> |
|
#include <cstring> |
|
#include <initializer_list> |
|
#include <iterator> |
|
#include <memory> |
|
#include <type_traits> |
|
#include <utility> |
|
|
|
#include "absl/algorithm/algorithm.h" |
|
#include "absl/base/internal/throw_delegate.h" |
|
#include "absl/base/optimization.h" |
|
#include "absl/base/port.h" |
|
#include "absl/memory/memory.h" |
|
|
|
namespace absl { |
|
|
|
// ----------------------------------------------------------------------------- |
|
// InlinedVector |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// An `absl::InlinedVector` is designed to be a drop-in replacement for |
|
// `std::vector` for use cases where the vector's size is sufficiently small |
|
// that it can be inlined. If the inlined vector does grow beyond its estimated |
|
// size, it will trigger an initial allocation on the heap, and will behave as a |
|
// `std:vector`. The API of the `absl::InlinedVector` within this file is |
|
// designed to cover the same API footprint as covered by `std::vector`. |
|
template <typename T, size_t N, typename A = std::allocator<T> > |
|
class InlinedVector { |
|
using AllocatorTraits = std::allocator_traits<A>; |
|
|
|
public: |
|
using allocator_type = A; |
|
using value_type = typename allocator_type::value_type; |
|
using pointer = typename allocator_type::pointer; |
|
using const_pointer = typename allocator_type::const_pointer; |
|
using reference = typename allocator_type::reference; |
|
using const_reference = typename allocator_type::const_reference; |
|
using size_type = typename allocator_type::size_type; |
|
using difference_type = typename allocator_type::difference_type; |
|
using iterator = pointer; |
|
using const_iterator = const_pointer; |
|
using reverse_iterator = std::reverse_iterator<iterator>; |
|
using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
|
|
|
InlinedVector() noexcept(noexcept(allocator_type())) |
|
: allocator_and_tag_(allocator_type()) {} |
|
|
|
explicit InlinedVector(const allocator_type& alloc) noexcept |
|
: allocator_and_tag_(alloc) {} |
|
|
|
// Create a vector with n copies of value_type(). |
|
explicit InlinedVector(size_type n, |
|
const allocator_type& alloc = allocator_type()) |
|
: allocator_and_tag_(alloc) { |
|
InitAssign(n); |
|
} |
|
|
|
// Create a vector with n copies of elem |
|
InlinedVector(size_type n, const value_type& elem, |
|
const allocator_type& alloc = allocator_type()) |
|
: allocator_and_tag_(alloc) { |
|
InitAssign(n, elem); |
|
} |
|
|
|
// Create and initialize with the elements [first .. last). |
|
// The unused enable_if argument restricts this constructor so that it is |
|
// elided when value_type is an integral type. This prevents ambiguous |
|
// interpretation between a call to this constructor with two integral |
|
// arguments and a call to the preceding (n, elem) constructor. |
|
template <typename InputIterator> |
|
InlinedVector( |
|
InputIterator first, InputIterator last, |
|
const allocator_type& alloc = allocator_type(), |
|
typename std::enable_if<!std::is_integral<InputIterator>::value>::type* = |
|
nullptr) |
|
: allocator_and_tag_(alloc) { |
|
AppendRange(first, last); |
|
} |
|
|
|
InlinedVector(std::initializer_list<value_type> init, |
|
const allocator_type& alloc = allocator_type()) |
|
: allocator_and_tag_(alloc) { |
|
AppendRange(init.begin(), init.end()); |
|
} |
|
|
|
InlinedVector(const InlinedVector& v); |
|
InlinedVector(const InlinedVector& v, const allocator_type& alloc); |
|
|
|
// This move constructor does not allocate and only moves the underlying |
|
// objects, so its `noexcept` specification depends on whether moving the |
|
// underlying objects can throw or not. We assume |
|
// a) move constructors should only throw due to allocation failure and |
|
// b) if `value_type`'s move constructor allocates, it uses the same |
|
// allocation function as the `InlinedVector`'s allocator, so the move |
|
// constructor is non-throwing if the allocator is non-throwing or |
|
// `value_type`'s move constructor is specified as `noexcept`. |
|
InlinedVector(InlinedVector&& v) noexcept( |
|
absl::allocator_is_nothrow<allocator_type>::value || |
|
std::is_nothrow_move_constructible<value_type>::value); |
|
|
|
// This move constructor allocates and also moves the underlying objects, so |
|
// its `noexcept` specification depends on whether the allocation can throw |
|
// and whether moving the underlying objects can throw. Based on the same |
|
// assumptions above, the `noexcept` specification is dominated by whether the |
|
// allocation can throw regardless of whether `value_type`'s move constructor |
|
// is specified as `noexcept`. |
|
InlinedVector(InlinedVector&& v, const allocator_type& alloc) noexcept( |
|
absl::allocator_is_nothrow<allocator_type>::value); |
|
|
|
~InlinedVector() { clear(); } |
|
|
|
InlinedVector& operator=(const InlinedVector& v) { |
|
if (this == &v) { |
|
return *this; |
|
} |
|
// Optimized to avoid reallocation. |
|
// Prefer reassignment to copy construction for elements. |
|
if (size() < v.size()) { // grow |
|
reserve(v.size()); |
|
std::copy(v.begin(), v.begin() + size(), begin()); |
|
std::copy(v.begin() + size(), v.end(), std::back_inserter(*this)); |
|
} else { // maybe shrink |
|
erase(begin() + v.size(), end()); |
|
std::copy(v.begin(), v.end(), begin()); |
|
} |
|
return *this; |
|
} |
|
|
|
InlinedVector& operator=(InlinedVector&& v) { |
|
if (this == &v) { |
|
return *this; |
|
} |
|
if (v.allocated()) { |
|
clear(); |
|
tag().set_allocated_size(v.size()); |
|
init_allocation(v.allocation()); |
|
v.tag() = Tag(); |
|
} else { |
|
if (allocated()) clear(); |
|
// Both are inlined now. |
|
if (size() < v.size()) { |
|
auto mid = std::make_move_iterator(v.begin() + size()); |
|
std::copy(std::make_move_iterator(v.begin()), mid, begin()); |
|
UninitializedCopy(mid, std::make_move_iterator(v.end()), end()); |
|
} else { |
|
auto new_end = std::copy(std::make_move_iterator(v.begin()), |
|
std::make_move_iterator(v.end()), begin()); |
|
Destroy(new_end, end()); |
|
} |
|
tag().set_inline_size(v.size()); |
|
} |
|
return *this; |
|
} |
|
|
|
InlinedVector& operator=(std::initializer_list<value_type> init) { |
|
AssignRange(init.begin(), init.end()); |
|
return *this; |
|
} |
|
|
|
// InlinedVector::assign() |
|
// |
|
// Replaces the contents of the inlined vector with copies of those in the |
|
// iterator range [first, last). |
|
template <typename InputIterator> |
|
void assign( |
|
InputIterator first, InputIterator last, |
|
typename std::enable_if<!std::is_integral<InputIterator>::value>::type* = |
|
nullptr) { |
|
AssignRange(first, last); |
|
} |
|
|
|
// Overload of `InlinedVector::assign()` to take values from elements of an |
|
// initializer list |
|
void assign(std::initializer_list<value_type> init) { |
|
AssignRange(init.begin(), init.end()); |
|
} |
|
|
|
// Overload of `InlinedVector::assign()` to replace the first `n` elements of |
|
// the inlined vector with `elem` values. |
|
void assign(size_type n, const value_type& elem) { |
|
if (n <= size()) { // Possibly shrink |
|
std::fill_n(begin(), n, elem); |
|
erase(begin() + n, end()); |
|
return; |
|
} |
|
// Grow |
|
reserve(n); |
|
std::fill_n(begin(), size(), elem); |
|
if (allocated()) { |
|
UninitializedFill(allocated_space() + size(), allocated_space() + n, |
|
elem); |
|
tag().set_allocated_size(n); |
|
} else { |
|
UninitializedFill(inlined_space() + size(), inlined_space() + n, elem); |
|
tag().set_inline_size(n); |
|
} |
|
} |
|
|
|
// InlinedVector::size() |
|
// |
|
// Returns the number of elements in the inlined vector. |
|
size_type size() const noexcept { return tag().size(); } |
|
|
|
// InlinedVector::empty() |
|
// |
|
// Checks if the inlined vector has no elements. |
|
bool empty() const noexcept { return (size() == 0); } |
|
|
|
// InlinedVector::capacity() |
|
// |
|
// Returns the number of elements that can be stored in an inlined vector |
|
// without requiring a reallocation of underlying memory. Note that for |
|
// most inlined vectors, `capacity()` should equal its initial size `N`; for |
|
// inlined vectors which exceed this capacity, they will no longer be inlined, |
|
// and `capacity()` will equal its capacity on the allocated heap. |
|
size_type capacity() const noexcept { |
|
return allocated() ? allocation().capacity() : N; |
|
} |
|
|
|
// InlinedVector::max_size() |
|
// |
|
// Returns the maximum number of elements the vector can hold. |
|
size_type max_size() const noexcept { |
|
// One bit of the size storage is used to indicate whether the inlined |
|
// vector is allocated; as a result, the maximum size of the container that |
|
// we can express is half of the max for our size type. |
|
return std::numeric_limits<size_type>::max() / 2; |
|
} |
|
|
|
// InlinedVector::data() |
|
// |
|
// Returns a const T* pointer to elements of the inlined vector. This pointer |
|
// can be used to access (but not modify) the contained elements. |
|
// Only results within the range `[0,size())` are defined. |
|
const_pointer data() const noexcept { |
|
return allocated() ? allocated_space() : inlined_space(); |
|
} |
|
|
|
// Overload of InlinedVector::data() to return a T* pointer to elements of the |
|
// inlined vector. This pointer can be used to access and modify the contained |
|
// elements. |
|
pointer data() noexcept { |
|
return allocated() ? allocated_space() : inlined_space(); |
|
} |
|
|
|
// InlinedVector::clear() |
|
// |
|
// Removes all elements from the inlined vector. |
|
void clear() noexcept { |
|
size_type s = size(); |
|
if (allocated()) { |
|
Destroy(allocated_space(), allocated_space() + s); |
|
allocation().Dealloc(allocator()); |
|
} else if (s != 0) { // do nothing for empty vectors |
|
Destroy(inlined_space(), inlined_space() + s); |
|
} |
|
tag() = Tag(); |
|
} |
|
|
|
// InlinedVector::at() |
|
// |
|
// Returns the ith element of an inlined vector. |
|
const value_type& at(size_type i) const { |
|
if (ABSL_PREDICT_FALSE(i >= size())) { |
|
base_internal::ThrowStdOutOfRange( |
|
"InlinedVector::at failed bounds check"); |
|
} |
|
return data()[i]; |
|
} |
|
|
|
// InlinedVector::operator[] |
|
// |
|
// Returns the ith element of an inlined vector using the array operator. |
|
const value_type& operator[](size_type i) const { |
|
assert(i < size()); |
|
return data()[i]; |
|
} |
|
|
|
// Overload of InlinedVector::at() to return the ith element of an inlined |
|
// vector. |
|
value_type& at(size_type i) { |
|
if (i >= size()) { |
|
base_internal::ThrowStdOutOfRange( |
|
"InlinedVector::at failed bounds check"); |
|
} |
|
return data()[i]; |
|
} |
|
|
|
// Overload of InlinedVector::operator[] to return the ith element of an |
|
// inlined vector. |
|
value_type& operator[](size_type i) { |
|
assert(i < size()); |
|
return data()[i]; |
|
} |
|
|
|
// InlinedVector::back() |
|
// |
|
// Returns a reference to the last element of an inlined vector. |
|
value_type& back() { |
|
assert(!empty()); |
|
return at(size() - 1); |
|
} |
|
|
|
// Overload of InlinedVector::back() returns a reference to the last element |
|
// of an inlined vector of const values. |
|
const value_type& back() const { |
|
assert(!empty()); |
|
return at(size() - 1); |
|
} |
|
|
|
// InlinedVector::front() |
|
// |
|
// Returns a reference to the first element of an inlined vector. |
|
value_type& front() { |
|
assert(!empty()); |
|
return at(0); |
|
} |
|
|
|
// Overload of InlinedVector::front() returns a reference to the first element |
|
// of an inlined vector of const values. |
|
const value_type& front() const { |
|
assert(!empty()); |
|
return at(0); |
|
} |
|
|
|
// InlinedVector::emplace_back() |
|
// |
|
// Constructs and appends an object to the inlined vector. |
|
// |
|
// Returns a reference to the inserted element. |
|
template <typename... Args> |
|
value_type& emplace_back(Args&&... args) { |
|
size_type s = size(); |
|
assert(s <= capacity()); |
|
if (ABSL_PREDICT_FALSE(s == capacity())) { |
|
return GrowAndEmplaceBack(std::forward<Args>(args)...); |
|
} |
|
assert(s < capacity()); |
|
|
|
value_type* space; |
|
if (allocated()) { |
|
tag().set_allocated_size(s + 1); |
|
space = allocated_space(); |
|
} else { |
|
tag().set_inline_size(s + 1); |
|
space = inlined_space(); |
|
} |
|
return Construct(space + s, std::forward<Args>(args)...); |
|
} |
|
|
|
// InlinedVector::push_back() |
|
// |
|
// Appends a const element to the inlined vector. |
|
void push_back(const value_type& t) { emplace_back(t); } |
|
|
|
// Overload of InlinedVector::push_back() to append a move-only element to the |
|
// inlined vector. |
|
void push_back(value_type&& t) { emplace_back(std::move(t)); } |
|
|
|
// InlinedVector::pop_back() |
|
// |
|
// Removes the last element (which is destroyed) in the inlined vector. |
|
void pop_back() { |
|
assert(!empty()); |
|
size_type s = size(); |
|
if (allocated()) { |
|
Destroy(allocated_space() + s - 1, allocated_space() + s); |
|
tag().set_allocated_size(s - 1); |
|
} else { |
|
Destroy(inlined_space() + s - 1, inlined_space() + s); |
|
tag().set_inline_size(s - 1); |
|
} |
|
} |
|
|
|
// InlinedVector::resize() |
|
// |
|
// Resizes the inlined vector to contain `n` elements. If `n` is smaller than |
|
// the inlined vector's current size, extra elements are destroyed. If `n` is |
|
// larger than the initial size, new elements are value-initialized. |
|
void resize(size_type n); |
|
|
|
// Overload of InlinedVector::resize() to resize the inlined vector to contain |
|
// `n` elements. If `n` is larger than the current size, enough copies of |
|
// `elem` are appended to increase its size to `n`. |
|
void resize(size_type n, const value_type& elem); |
|
|
|
// InlinedVector::begin() |
|
// |
|
// Returns an iterator to the beginning of the inlined vector. |
|
iterator begin() noexcept { return data(); } |
|
|
|
// Overload of InlinedVector::begin() for returning a const iterator to the |
|
// beginning of the inlined vector. |
|
const_iterator begin() const noexcept { return data(); } |
|
|
|
// InlinedVector::cbegin() |
|
// |
|
// Returns a const iterator to the beginning of the inlined vector. |
|
const_iterator cbegin() const noexcept { return begin(); } |
|
|
|
// InlinedVector::end() |
|
// |
|
// Returns an iterator to the end of the inlined vector. |
|
iterator end() noexcept { return data() + size(); } |
|
|
|
// Overload of InlinedVector::end() for returning a const iterator to the end |
|
// of the inlined vector. |
|
const_iterator end() const noexcept { return data() + size(); } |
|
|
|
// InlinedVector::cend() |
|
// |
|
// Returns a const iterator to the end of the inlined vector. |
|
const_iterator cend() const noexcept { return end(); } |
|
|
|
// InlinedVector::rbegin() |
|
// |
|
// Returns a reverse iterator from the end of the inlined vector. |
|
reverse_iterator rbegin() noexcept { return reverse_iterator(end()); } |
|
|
|
// Overload of InlinedVector::rbegin() for returning a const reverse iterator |
|
// from the end of the inlined vector. |
|
const_reverse_iterator rbegin() const noexcept { |
|
return const_reverse_iterator(end()); |
|
} |
|
|
|
// InlinedVector::crbegin() |
|
// |
|
// Returns a const reverse iterator from the end of the inlined vector. |
|
const_reverse_iterator crbegin() const noexcept { return rbegin(); } |
|
|
|
// InlinedVector::rend() |
|
// |
|
// Returns a reverse iterator from the beginning of the inlined vector. |
|
reverse_iterator rend() noexcept { return reverse_iterator(begin()); } |
|
|
|
// Overload of InlinedVector::rend() for returning a const reverse iterator |
|
// from the beginning of the inlined vector. |
|
const_reverse_iterator rend() const noexcept { |
|
return const_reverse_iterator(begin()); |
|
} |
|
|
|
// InlinedVector::crend() |
|
// |
|
// Returns a reverse iterator from the beginning of the inlined vector. |
|
const_reverse_iterator crend() const noexcept { return rend(); } |
|
|
|
// InlinedVector::emplace() |
|
// |
|
// Constructs and inserts an object to the inlined vector at the given |
|
// `position`, returning an iterator pointing to the newly emplaced element. |
|
template <typename... Args> |
|
iterator emplace(const_iterator position, Args&&... args); |
|
|
|
// InlinedVector::insert() |
|
// |
|
// Inserts an element of the specified value at `position`, returning an |
|
// iterator pointing to the newly inserted element. |
|
iterator insert(const_iterator position, const value_type& v) { |
|
return emplace(position, v); |
|
} |
|
|
|
// Overload of InlinedVector::insert() for inserting an element of the |
|
// specified rvalue, returning an iterator pointing to the newly inserted |
|
// element. |
|
iterator insert(const_iterator position, value_type&& v) { |
|
return emplace(position, std::move(v)); |
|
} |
|
|
|
// Overload of InlinedVector::insert() for inserting `n` elements of the |
|
// specified value at `position`, returning an iterator pointing to the first |
|
// of the newly inserted elements. |
|
iterator insert(const_iterator position, size_type n, const value_type& v) { |
|
return InsertWithCount(position, n, v); |
|
} |
|
|
|
// Overload of `InlinedVector::insert()` to disambiguate the two |
|
// three-argument overloads of `insert()`, returning an iterator pointing to |
|
// the first of the newly inserted elements. |
|
template <typename InputIterator, |
|
typename = typename std::enable_if<std::is_convertible< |
|
typename std::iterator_traits<InputIterator>::iterator_category, |
|
std::input_iterator_tag>::value>::type> |
|
iterator insert(const_iterator position, InputIterator first, |
|
InputIterator last) { |
|
using IterType = |
|
typename std::iterator_traits<InputIterator>::iterator_category; |
|
return InsertWithRange(position, first, last, IterType()); |
|
} |
|
|
|
// Overload of InlinedVector::insert() for inserting a list of elements at |
|
// `position`, returning an iterator pointing to the first of the newly |
|
// inserted elements. |
|
iterator insert(const_iterator position, |
|
std::initializer_list<value_type> init) { |
|
return insert(position, init.begin(), init.end()); |
|
} |
|
|
|
// InlinedVector::erase() |
|
// |
|
// Erases the element at `position` of the inlined vector, returning an |
|
// iterator pointing to the following element or the container's end if the |
|
// last element was erased. |
|
iterator erase(const_iterator position) { |
|
assert(position >= begin()); |
|
assert(position < end()); |
|
|
|
iterator pos = const_cast<iterator>(position); |
|
std::move(pos + 1, end(), pos); |
|
pop_back(); |
|
return pos; |
|
} |
|
|
|
// Overload of InlinedVector::erase() for erasing all elements in the |
|
// iterator range [first, last) in the inlined vector, returning an iterator |
|
// pointing to the first element following the range erased, or the |
|
// container's end if range included the container's last element. |
|
iterator erase(const_iterator first, const_iterator last); |
|
|
|
// InlinedVector::reserve() |
|
// |
|
// Enlarges the underlying representation of the inlined vector so it can hold |
|
// at least `n` elements. This method does not change `size()` or the actual |
|
// contents of the vector. |
|
// |
|
// Note that if `n` does not exceed the inlined vector's initial size `N`, |
|
// `reserve()` will have no effect; if it does exceed its initial size, |
|
// `reserve()` will trigger an initial allocation and move the inlined vector |
|
// onto the heap. If the vector already exists on the heap and the requested |
|
// size exceeds it, a reallocation will be performed. |
|
void reserve(size_type n) { |
|
if (n > capacity()) { |
|
// Make room for new elements |
|
EnlargeBy(n - size()); |
|
} |
|
} |
|
|
|
// InlinedVector::shrink_to_fit() |
|
// |
|
// Reduces memory usage by freeing unused memory. |
|
// After this call `capacity()` will be equal to `max(N, size())`. |
|
// |
|
// If `size() <= N` and the elements are currently stored on the heap, they |
|
// will be moved to the inlined storage and the heap memory deallocated. |
|
// If `size() > N` and `size() < capacity()` the elements will be moved to |
|
// a reallocated storage on heap. |
|
void shrink_to_fit() { |
|
const auto s = size(); |
|
if (!allocated() || s == capacity()) { |
|
// There's nothing to deallocate. |
|
return; |
|
} |
|
|
|
if (s <= N) { |
|
// Move the elements to the inlined storage. |
|
// We have to do this using a temporary, because inlined_storage and |
|
// allocation_storage are in a union field. |
|
auto temp = std::move(*this); |
|
assign(std::make_move_iterator(temp.begin()), |
|
std::make_move_iterator(temp.end())); |
|
return; |
|
} |
|
|
|
// Reallocate storage and move elements. |
|
// We can't simply use the same approach as above, because assign() would |
|
// call into reserve() internally and reserve larger capacity than we need. |
|
Allocation new_allocation(allocator(), s); |
|
UninitializedCopy(std::make_move_iterator(allocated_space()), |
|
std::make_move_iterator(allocated_space() + s), |
|
new_allocation.buffer()); |
|
ResetAllocation(new_allocation, s); |
|
} |
|
|
|
// InlinedVector::swap() |
|
// |
|
// Swaps the contents of this inlined vector with the contents of `other`. |
|
void swap(InlinedVector& other); |
|
|
|
// InlinedVector::get_allocator() |
|
// |
|
// Returns the allocator of this inlined vector. |
|
allocator_type get_allocator() const { return allocator(); } |
|
|
|
private: |
|
static_assert(N > 0, "inlined vector with nonpositive size"); |
|
|
|
// It holds whether the vector is allocated or not in the lowest bit. |
|
// The size is held in the high bits: |
|
// size_ = (size << 1) | is_allocated; |
|
// |
|
// Maintainer's Note: size_type is user defined. The contract is limited to |
|
// arithmetic operators to avoid depending on compliant overloaded bitwise |
|
// operators. |
|
class Tag { |
|
public: |
|
Tag() : size_(0) {} |
|
size_type size() const { return size_ / 2; } |
|
void add_size(size_type n) { size_ += n * 2; } |
|
void set_inline_size(size_type n) { size_ = n * 2; } |
|
void set_allocated_size(size_type n) { size_ = (n * 2) + 1; } |
|
bool allocated() const { return size_ % 2; } |
|
|
|
private: |
|
size_type size_; |
|
}; |
|
|
|
// Derives from allocator_type to use the empty base class optimization. |
|
// If the allocator_type is stateless, we can 'store' |
|
// our instance of it for free. |
|
class AllocatorAndTag : private allocator_type { |
|
public: |
|
explicit AllocatorAndTag(const allocator_type& a) : allocator_type(a) {} |
|
Tag& tag() { return tag_; } |
|
const Tag& tag() const { return tag_; } |
|
allocator_type& allocator() { return *this; } |
|
const allocator_type& allocator() const { return *this; } |
|
|
|
private: |
|
Tag tag_; |
|
}; |
|
|
|
class Allocation { |
|
public: |
|
Allocation(allocator_type& a, // NOLINT(runtime/references) |
|
size_type capacity) |
|
: capacity_(capacity), |
|
buffer_(AllocatorTraits::allocate(a, capacity_)) {} |
|
|
|
void Dealloc(allocator_type& a) { // NOLINT(runtime/references) |
|
AllocatorTraits::deallocate(a, buffer(), capacity()); |
|
} |
|
|
|
size_type capacity() const { return capacity_; } |
|
const value_type* buffer() const { return buffer_; } |
|
value_type* buffer() { return buffer_; } |
|
|
|
private: |
|
size_type capacity_; |
|
value_type* buffer_; |
|
}; |
|
|
|
const Tag& tag() const { return allocator_and_tag_.tag(); } |
|
Tag& tag() { return allocator_and_tag_.tag(); } |
|
|
|
Allocation& allocation() { |
|
return reinterpret_cast<Allocation&>(rep_.allocation_storage.allocation); |
|
} |
|
const Allocation& allocation() const { |
|
return reinterpret_cast<const Allocation&>( |
|
rep_.allocation_storage.allocation); |
|
} |
|
void init_allocation(const Allocation& allocation) { |
|
new (&rep_.allocation_storage.allocation) Allocation(allocation); |
|
} |
|
|
|
// TODO(absl-team): investigate whether the reinterpret_cast is appropriate. |
|
value_type* inlined_space() { |
|
return reinterpret_cast<value_type*>( |
|
std::addressof(rep_.inlined_storage.inlined[0])); |
|
} |
|
const value_type* inlined_space() const { |
|
return reinterpret_cast<const value_type*>( |
|
std::addressof(rep_.inlined_storage.inlined[0])); |
|
} |
|
|
|
value_type* allocated_space() { return allocation().buffer(); } |
|
const value_type* allocated_space() const { return allocation().buffer(); } |
|
|
|
const allocator_type& allocator() const { |
|
return allocator_and_tag_.allocator(); |
|
} |
|
allocator_type& allocator() { return allocator_and_tag_.allocator(); } |
|
|
|
bool allocated() const { return tag().allocated(); } |
|
|
|
// Enlarge the underlying representation so we can store size_ + delta elems. |
|
// The size is not changed, and any newly added memory is not initialized. |
|
void EnlargeBy(size_type delta); |
|
|
|
// Shift all elements from position to end() n places to the right. |
|
// If the vector needs to be enlarged, memory will be allocated. |
|
// Returns iterators pointing to the start of the previously-initialized |
|
// portion and the start of the uninitialized portion of the created gap. |
|
// The number of initialized spots is pair.second - pair.first; |
|
// the number of raw spots is n - (pair.second - pair.first). |
|
// |
|
// Updates the size of the InlinedVector internally. |
|
std::pair<iterator, iterator> ShiftRight(const_iterator position, |
|
size_type n); |
|
|
|
void ResetAllocation(Allocation new_allocation, size_type new_size) { |
|
if (allocated()) { |
|
Destroy(allocated_space(), allocated_space() + size()); |
|
assert(begin() == allocated_space()); |
|
allocation().Dealloc(allocator()); |
|
allocation() = new_allocation; |
|
} else { |
|
Destroy(inlined_space(), inlined_space() + size()); |
|
init_allocation(new_allocation); // bug: only init once |
|
} |
|
tag().set_allocated_size(new_size); |
|
} |
|
|
|
template <typename... Args> |
|
value_type& GrowAndEmplaceBack(Args&&... args) { |
|
assert(size() == capacity()); |
|
const size_type s = size(); |
|
|
|
Allocation new_allocation(allocator(), 2 * capacity()); |
|
|
|
value_type& new_element = |
|
Construct(new_allocation.buffer() + s, std::forward<Args>(args)...); |
|
UninitializedCopy(std::make_move_iterator(data()), |
|
std::make_move_iterator(data() + s), |
|
new_allocation.buffer()); |
|
|
|
ResetAllocation(new_allocation, s + 1); |
|
|
|
return new_element; |
|
} |
|
|
|
void InitAssign(size_type n); |
|
void InitAssign(size_type n, const value_type& t); |
|
|
|
template <typename... Args> |
|
value_type& Construct(pointer p, Args&&... args) { |
|
AllocatorTraits::construct(allocator(), p, std::forward<Args>(args)...); |
|
return *p; |
|
} |
|
|
|
template <typename Iter> |
|
void UninitializedCopy(Iter src, Iter src_last, value_type* dst) { |
|
for (; src != src_last; ++dst, ++src) Construct(dst, *src); |
|
} |
|
|
|
template <typename... Args> |
|
void UninitializedFill(value_type* dst, value_type* dst_last, |
|
const Args&... args) { |
|
for (; dst != dst_last; ++dst) Construct(dst, args...); |
|
} |
|
|
|
// Destroy [ptr, ptr_last) in place. |
|
void Destroy(value_type* ptr, value_type* ptr_last); |
|
|
|
template <typename Iter> |
|
void AppendRange(Iter first, Iter last, std::input_iterator_tag) { |
|
std::copy(first, last, std::back_inserter(*this)); |
|
} |
|
|
|
// Faster path for forward iterators. |
|
template <typename Iter> |
|
void AppendRange(Iter first, Iter last, std::forward_iterator_tag); |
|
|
|
template <typename Iter> |
|
void AppendRange(Iter first, Iter last) { |
|
using IterTag = typename std::iterator_traits<Iter>::iterator_category; |
|
AppendRange(first, last, IterTag()); |
|
} |
|
|
|
template <typename Iter> |
|
void AssignRange(Iter first, Iter last, std::input_iterator_tag); |
|
|
|
// Faster path for forward iterators. |
|
template <typename Iter> |
|
void AssignRange(Iter first, Iter last, std::forward_iterator_tag); |
|
|
|
template <typename Iter> |
|
void AssignRange(Iter first, Iter last) { |
|
using IterTag = typename std::iterator_traits<Iter>::iterator_category; |
|
AssignRange(first, last, IterTag()); |
|
} |
|
|
|
iterator InsertWithCount(const_iterator position, size_type n, |
|
const value_type& v); |
|
|
|
template <typename InputIter> |
|
iterator InsertWithRange(const_iterator position, InputIter first, |
|
InputIter last, std::input_iterator_tag); |
|
template <typename ForwardIter> |
|
iterator InsertWithRange(const_iterator position, ForwardIter first, |
|
ForwardIter last, std::forward_iterator_tag); |
|
|
|
AllocatorAndTag allocator_and_tag_; |
|
|
|
// Either the inlined or allocated representation |
|
union Rep { |
|
// Use struct to perform indirection that solves a bizarre compilation |
|
// error on Visual Studio (all known versions). |
|
struct { |
|
typename std::aligned_storage<sizeof(value_type), |
|
alignof(value_type)>::type inlined[N]; |
|
} inlined_storage; |
|
struct { |
|
typename std::aligned_storage<sizeof(Allocation), |
|
alignof(Allocation)>::type allocation; |
|
} allocation_storage; |
|
} rep_; |
|
}; |
|
|
|
// ----------------------------------------------------------------------------- |
|
// InlinedVector Non-Member Functions |
|
// ----------------------------------------------------------------------------- |
|
|
|
// swap() |
|
// |
|
// Swaps the contents of two inlined vectors. This convenience function |
|
// simply calls InlinedVector::swap(other_inlined_vector). |
|
template <typename T, size_t N, typename A> |
|
void swap(InlinedVector<T, N, A>& a, |
|
InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) { |
|
a.swap(b); |
|
} |
|
|
|
// operator==() |
|
// |
|
// Tests the equivalency of the contents of two inlined vectors. |
|
template <typename T, size_t N, typename A> |
|
bool operator==(const InlinedVector<T, N, A>& a, |
|
const InlinedVector<T, N, A>& b) { |
|
return absl::equal(a.begin(), a.end(), b.begin(), b.end()); |
|
} |
|
|
|
// operator!=() |
|
// |
|
// Tests the inequality of the contents of two inlined vectors. |
|
template <typename T, size_t N, typename A> |
|
bool operator!=(const InlinedVector<T, N, A>& a, |
|
const InlinedVector<T, N, A>& b) { |
|
return !(a == b); |
|
} |
|
|
|
// operator<() |
|
// |
|
// Tests whether the contents of one inlined vector are less than the contents |
|
// of another through a lexicographical comparison operation. |
|
template <typename T, size_t N, typename A> |
|
bool operator<(const InlinedVector<T, N, A>& a, |
|
const InlinedVector<T, N, A>& b) { |
|
return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end()); |
|
} |
|
|
|
// operator>() |
|
// |
|
// Tests whether the contents of one inlined vector are greater than the |
|
// contents of another through a lexicographical comparison operation. |
|
template <typename T, size_t N, typename A> |
|
bool operator>(const InlinedVector<T, N, A>& a, |
|
const InlinedVector<T, N, A>& b) { |
|
return b < a; |
|
} |
|
|
|
// operator<=() |
|
// |
|
// Tests whether the contents of one inlined vector are less than or equal to |
|
// the contents of another through a lexicographical comparison operation. |
|
template <typename T, size_t N, typename A> |
|
bool operator<=(const InlinedVector<T, N, A>& a, |
|
const InlinedVector<T, N, A>& b) { |
|
return !(b < a); |
|
} |
|
|
|
// operator>=() |
|
// |
|
// Tests whether the contents of one inlined vector are greater than or equal to |
|
// the contents of another through a lexicographical comparison operation. |
|
template <typename T, size_t N, typename A> |
|
bool operator>=(const InlinedVector<T, N, A>& a, |
|
const InlinedVector<T, N, A>& b) { |
|
return !(a < b); |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Implementation of InlinedVector |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// Do not depend on any implementation details below this line. |
|
|
|
template <typename T, size_t N, typename A> |
|
InlinedVector<T, N, A>::InlinedVector(const InlinedVector& v) |
|
: allocator_and_tag_(v.allocator()) { |
|
reserve(v.size()); |
|
if (allocated()) { |
|
UninitializedCopy(v.begin(), v.end(), allocated_space()); |
|
tag().set_allocated_size(v.size()); |
|
} else { |
|
UninitializedCopy(v.begin(), v.end(), inlined_space()); |
|
tag().set_inline_size(v.size()); |
|
} |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
InlinedVector<T, N, A>::InlinedVector(const InlinedVector& v, |
|
const allocator_type& alloc) |
|
: allocator_and_tag_(alloc) { |
|
reserve(v.size()); |
|
if (allocated()) { |
|
UninitializedCopy(v.begin(), v.end(), allocated_space()); |
|
tag().set_allocated_size(v.size()); |
|
} else { |
|
UninitializedCopy(v.begin(), v.end(), inlined_space()); |
|
tag().set_inline_size(v.size()); |
|
} |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
InlinedVector<T, N, A>::InlinedVector(InlinedVector&& v) noexcept( |
|
absl::allocator_is_nothrow<allocator_type>::value || |
|
std::is_nothrow_move_constructible<value_type>::value) |
|
: allocator_and_tag_(v.allocator_and_tag_) { |
|
if (v.allocated()) { |
|
// We can just steal the underlying buffer from the source. |
|
// That leaves the source empty, so we clear its size. |
|
init_allocation(v.allocation()); |
|
v.tag() = Tag(); |
|
} else { |
|
UninitializedCopy(std::make_move_iterator(v.inlined_space()), |
|
std::make_move_iterator(v.inlined_space() + v.size()), |
|
inlined_space()); |
|
} |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
InlinedVector<T, N, A>::InlinedVector( |
|
InlinedVector&& v, |
|
const allocator_type& |
|
alloc) noexcept(absl::allocator_is_nothrow<allocator_type>::value) |
|
: allocator_and_tag_(alloc) { |
|
if (v.allocated()) { |
|
if (alloc == v.allocator()) { |
|
// We can just steal the allocation from the source. |
|
tag() = v.tag(); |
|
init_allocation(v.allocation()); |
|
v.tag() = Tag(); |
|
} else { |
|
// We need to use our own allocator |
|
reserve(v.size()); |
|
UninitializedCopy(std::make_move_iterator(v.begin()), |
|
std::make_move_iterator(v.end()), allocated_space()); |
|
tag().set_allocated_size(v.size()); |
|
} |
|
} else { |
|
UninitializedCopy(std::make_move_iterator(v.inlined_space()), |
|
std::make_move_iterator(v.inlined_space() + v.size()), |
|
inlined_space()); |
|
tag().set_inline_size(v.size()); |
|
} |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
void InlinedVector<T, N, A>::InitAssign(size_type n, const value_type& t) { |
|
if (n > static_cast<size_type>(N)) { |
|
Allocation new_allocation(allocator(), n); |
|
init_allocation(new_allocation); |
|
UninitializedFill(allocated_space(), allocated_space() + n, t); |
|
tag().set_allocated_size(n); |
|
} else { |
|
UninitializedFill(inlined_space(), inlined_space() + n, t); |
|
tag().set_inline_size(n); |
|
} |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
void InlinedVector<T, N, A>::InitAssign(size_type n) { |
|
if (n > static_cast<size_type>(N)) { |
|
Allocation new_allocation(allocator(), n); |
|
init_allocation(new_allocation); |
|
UninitializedFill(allocated_space(), allocated_space() + n); |
|
tag().set_allocated_size(n); |
|
} else { |
|
UninitializedFill(inlined_space(), inlined_space() + n); |
|
tag().set_inline_size(n); |
|
} |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
void InlinedVector<T, N, A>::resize(size_type n) { |
|
size_type s = size(); |
|
if (n < s) { |
|
erase(begin() + n, end()); |
|
return; |
|
} |
|
reserve(n); |
|
assert(capacity() >= n); |
|
|
|
// Fill new space with elements constructed in-place. |
|
if (allocated()) { |
|
UninitializedFill(allocated_space() + s, allocated_space() + n); |
|
tag().set_allocated_size(n); |
|
} else { |
|
UninitializedFill(inlined_space() + s, inlined_space() + n); |
|
tag().set_inline_size(n); |
|
} |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
void InlinedVector<T, N, A>::resize(size_type n, const value_type& elem) { |
|
size_type s = size(); |
|
if (n < s) { |
|
erase(begin() + n, end()); |
|
return; |
|
} |
|
reserve(n); |
|
assert(capacity() >= n); |
|
|
|
// Fill new space with copies of 'elem'. |
|
if (allocated()) { |
|
UninitializedFill(allocated_space() + s, allocated_space() + n, elem); |
|
tag().set_allocated_size(n); |
|
} else { |
|
UninitializedFill(inlined_space() + s, inlined_space() + n, elem); |
|
tag().set_inline_size(n); |
|
} |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
template <typename... Args> |
|
typename InlinedVector<T, N, A>::iterator InlinedVector<T, N, A>::emplace( |
|
const_iterator position, Args&&... args) { |
|
assert(position >= begin()); |
|
assert(position <= end()); |
|
if (position == end()) { |
|
emplace_back(std::forward<Args>(args)...); |
|
return end() - 1; |
|
} |
|
|
|
T new_t = T(std::forward<Args>(args)...); |
|
|
|
auto range = ShiftRight(position, 1); |
|
if (range.first == range.second) { |
|
// constructing into uninitialized memory |
|
Construct(range.first, std::move(new_t)); |
|
} else { |
|
// assigning into moved-from object |
|
*range.first = T(std::move(new_t)); |
|
} |
|
|
|
return range.first; |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
typename InlinedVector<T, N, A>::iterator InlinedVector<T, N, A>::erase( |
|
const_iterator first, const_iterator last) { |
|
assert(begin() <= first); |
|
assert(first <= last); |
|
assert(last <= end()); |
|
|
|
iterator range_start = const_cast<iterator>(first); |
|
iterator range_end = const_cast<iterator>(last); |
|
|
|
size_type s = size(); |
|
ptrdiff_t erase_gap = std::distance(range_start, range_end); |
|
if (erase_gap > 0) { |
|
pointer space; |
|
if (allocated()) { |
|
space = allocated_space(); |
|
tag().set_allocated_size(s - erase_gap); |
|
} else { |
|
space = inlined_space(); |
|
tag().set_inline_size(s - erase_gap); |
|
} |
|
std::move(range_end, space + s, range_start); |
|
Destroy(space + s - erase_gap, space + s); |
|
} |
|
return range_start; |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
void InlinedVector<T, N, A>::swap(InlinedVector& other) { |
|
using std::swap; // Augment ADL with std::swap. |
|
if (&other == this) { |
|
return; |
|
} |
|
if (allocated() && other.allocated()) { |
|
// Both out of line, so just swap the tag, allocation, and allocator. |
|
swap(tag(), other.tag()); |
|
swap(allocation(), other.allocation()); |
|
swap(allocator(), other.allocator()); |
|
return; |
|
} |
|
if (!allocated() && !other.allocated()) { |
|
// Both inlined: swap up to smaller size, then move remaining elements. |
|
InlinedVector* a = this; |
|
InlinedVector* b = &other; |
|
if (size() < other.size()) { |
|
swap(a, b); |
|
} |
|
|
|
const size_type a_size = a->size(); |
|
const size_type b_size = b->size(); |
|
assert(a_size >= b_size); |
|
// 'a' is larger. Swap the elements up to the smaller array size. |
|
std::swap_ranges(a->inlined_space(), a->inlined_space() + b_size, |
|
b->inlined_space()); |
|
|
|
// Move the remaining elements: A[b_size,a_size) -> B[b_size,a_size) |
|
b->UninitializedCopy(a->inlined_space() + b_size, |
|
a->inlined_space() + a_size, |
|
b->inlined_space() + b_size); |
|
a->Destroy(a->inlined_space() + b_size, a->inlined_space() + a_size); |
|
|
|
swap(a->tag(), b->tag()); |
|
swap(a->allocator(), b->allocator()); |
|
assert(b->size() == a_size); |
|
assert(a->size() == b_size); |
|
return; |
|
} |
|
// One is out of line, one is inline. |
|
// We first move the elements from the inlined vector into the |
|
// inlined space in the other vector. We then put the other vector's |
|
// pointer/capacity into the originally inlined vector and swap |
|
// the tags. |
|
InlinedVector* a = this; |
|
InlinedVector* b = &other; |
|
if (a->allocated()) { |
|
swap(a, b); |
|
} |
|
assert(!a->allocated()); |
|
assert(b->allocated()); |
|
const size_type a_size = a->size(); |
|
const size_type b_size = b->size(); |
|
// In an optimized build, b_size would be unused. |
|
(void)b_size; |
|
|
|
// Made Local copies of size(), don't need tag() accurate anymore |
|
swap(a->tag(), b->tag()); |
|
|
|
// Copy b_allocation out before b's union gets clobbered by inline_space. |
|
Allocation b_allocation = b->allocation(); |
|
|
|
b->UninitializedCopy(a->inlined_space(), a->inlined_space() + a_size, |
|
b->inlined_space()); |
|
a->Destroy(a->inlined_space(), a->inlined_space() + a_size); |
|
|
|
a->allocation() = b_allocation; |
|
|
|
if (a->allocator() != b->allocator()) { |
|
swap(a->allocator(), b->allocator()); |
|
} |
|
|
|
assert(b->size() == a_size); |
|
assert(a->size() == b_size); |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
void InlinedVector<T, N, A>::EnlargeBy(size_type delta) { |
|
const size_type s = size(); |
|
assert(s <= capacity()); |
|
|
|
size_type target = std::max(static_cast<size_type>(N), s + delta); |
|
|
|
// Compute new capacity by repeatedly doubling current capacity |
|
// TODO(psrc): Check and avoid overflow? |
|
size_type new_capacity = capacity(); |
|
while (new_capacity < target) { |
|
new_capacity <<= 1; |
|
} |
|
|
|
Allocation new_allocation(allocator(), new_capacity); |
|
|
|
UninitializedCopy(std::make_move_iterator(data()), |
|
std::make_move_iterator(data() + s), |
|
new_allocation.buffer()); |
|
|
|
ResetAllocation(new_allocation, s); |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
auto InlinedVector<T, N, A>::ShiftRight(const_iterator position, size_type n) |
|
-> std::pair<iterator, iterator> { |
|
iterator start_used = const_cast<iterator>(position); |
|
iterator start_raw = const_cast<iterator>(position); |
|
size_type s = size(); |
|
size_type required_size = s + n; |
|
|
|
if (required_size > capacity()) { |
|
// Compute new capacity by repeatedly doubling current capacity |
|
size_type new_capacity = capacity(); |
|
while (new_capacity < required_size) { |
|
new_capacity <<= 1; |
|
} |
|
// Move everyone into the new allocation, leaving a gap of n for the |
|
// requested shift. |
|
Allocation new_allocation(allocator(), new_capacity); |
|
size_type index = position - begin(); |
|
UninitializedCopy(std::make_move_iterator(data()), |
|
std::make_move_iterator(data() + index), |
|
new_allocation.buffer()); |
|
UninitializedCopy(std::make_move_iterator(data() + index), |
|
std::make_move_iterator(data() + s), |
|
new_allocation.buffer() + index + n); |
|
ResetAllocation(new_allocation, s); |
|
|
|
// New allocation means our iterator is invalid, so we'll recalculate. |
|
// Since the entire gap is in new space, there's no used space to reuse. |
|
start_raw = begin() + index; |
|
start_used = start_raw; |
|
} else { |
|
// If we had enough space, it's a two-part move. Elements going into |
|
// previously-unoccupied space need an UninitializedCopy. Elements |
|
// going into a previously-occupied space are just a move. |
|
iterator pos = const_cast<iterator>(position); |
|
iterator raw_space = end(); |
|
size_type slots_in_used_space = raw_space - pos; |
|
size_type new_elements_in_used_space = std::min(n, slots_in_used_space); |
|
size_type new_elements_in_raw_space = n - new_elements_in_used_space; |
|
size_type old_elements_in_used_space = |
|
slots_in_used_space - new_elements_in_used_space; |
|
|
|
UninitializedCopy(std::make_move_iterator(pos + old_elements_in_used_space), |
|
std::make_move_iterator(raw_space), |
|
raw_space + new_elements_in_raw_space); |
|
std::move_backward(pos, pos + old_elements_in_used_space, raw_space); |
|
|
|
// If the gap is entirely in raw space, the used space starts where the raw |
|
// space starts, leaving no elements in used space. If the gap is entirely |
|
// in used space, the raw space starts at the end of the gap, leaving all |
|
// elements accounted for within the used space. |
|
start_used = pos; |
|
start_raw = pos + new_elements_in_used_space; |
|
} |
|
tag().add_size(n); |
|
return std::make_pair(start_used, start_raw); |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
void InlinedVector<T, N, A>::Destroy(value_type* ptr, value_type* ptr_last) { |
|
for (value_type* p = ptr; p != ptr_last; ++p) { |
|
AllocatorTraits::destroy(allocator(), p); |
|
} |
|
|
|
// Overwrite unused memory with 0xab so we can catch uninitialized usage. |
|
// Cast to void* to tell the compiler that we don't care that we might be |
|
// scribbling on a vtable pointer. |
|
#ifndef NDEBUG |
|
if (ptr != ptr_last) { |
|
memset(reinterpret_cast<void*>(ptr), 0xab, sizeof(*ptr) * (ptr_last - ptr)); |
|
} |
|
#endif |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
template <typename Iter> |
|
void InlinedVector<T, N, A>::AppendRange(Iter first, Iter last, |
|
std::forward_iterator_tag) { |
|
using Length = typename std::iterator_traits<Iter>::difference_type; |
|
Length length = std::distance(first, last); |
|
reserve(size() + length); |
|
if (allocated()) { |
|
UninitializedCopy(first, last, allocated_space() + size()); |
|
tag().set_allocated_size(size() + length); |
|
} else { |
|
UninitializedCopy(first, last, inlined_space() + size()); |
|
tag().set_inline_size(size() + length); |
|
} |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
template <typename Iter> |
|
void InlinedVector<T, N, A>::AssignRange(Iter first, Iter last, |
|
std::input_iterator_tag) { |
|
// Optimized to avoid reallocation. |
|
// Prefer reassignment to copy construction for elements. |
|
iterator out = begin(); |
|
for (; first != last && out != end(); ++first, ++out) { |
|
*out = *first; |
|
} |
|
erase(out, end()); |
|
std::copy(first, last, std::back_inserter(*this)); |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
template <typename Iter> |
|
void InlinedVector<T, N, A>::AssignRange(Iter first, Iter last, |
|
std::forward_iterator_tag) { |
|
using Length = typename std::iterator_traits<Iter>::difference_type; |
|
Length length = std::distance(first, last); |
|
// Prefer reassignment to copy construction for elements. |
|
if (static_cast<size_type>(length) <= size()) { |
|
erase(std::copy(first, last, begin()), end()); |
|
return; |
|
} |
|
reserve(length); |
|
iterator out = begin(); |
|
for (; out != end(); ++first, ++out) *out = *first; |
|
if (allocated()) { |
|
UninitializedCopy(first, last, out); |
|
tag().set_allocated_size(length); |
|
} else { |
|
UninitializedCopy(first, last, out); |
|
tag().set_inline_size(length); |
|
} |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
auto InlinedVector<T, N, A>::InsertWithCount(const_iterator position, |
|
size_type n, const value_type& v) |
|
-> iterator { |
|
assert(position >= begin() && position <= end()); |
|
if (n == 0) return const_cast<iterator>(position); |
|
|
|
value_type copy = v; |
|
std::pair<iterator, iterator> it_pair = ShiftRight(position, n); |
|
std::fill(it_pair.first, it_pair.second, copy); |
|
UninitializedFill(it_pair.second, it_pair.first + n, copy); |
|
|
|
return it_pair.first; |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
template <typename InputIter> |
|
auto InlinedVector<T, N, A>::InsertWithRange(const_iterator position, |
|
InputIter first, InputIter last, |
|
std::input_iterator_tag) |
|
-> iterator { |
|
assert(position >= begin() && position <= end()); |
|
size_type index = position - cbegin(); |
|
size_type i = index; |
|
while (first != last) insert(begin() + i++, *first++); |
|
return begin() + index; |
|
} |
|
|
|
// Overload of InlinedVector::InsertWithRange() |
|
template <typename T, size_t N, typename A> |
|
template <typename ForwardIter> |
|
auto InlinedVector<T, N, A>::InsertWithRange(const_iterator position, |
|
ForwardIter first, |
|
ForwardIter last, |
|
std::forward_iterator_tag) |
|
-> iterator { |
|
assert(position >= begin() && position <= end()); |
|
if (first == last) { |
|
return const_cast<iterator>(position); |
|
} |
|
using Length = typename std::iterator_traits<ForwardIter>::difference_type; |
|
Length n = std::distance(first, last); |
|
std::pair<iterator, iterator> it_pair = ShiftRight(position, n); |
|
size_type used_spots = it_pair.second - it_pair.first; |
|
ForwardIter open_spot = std::next(first, used_spots); |
|
std::copy(first, open_spot, it_pair.first); |
|
UninitializedCopy(open_spot, last, it_pair.second); |
|
return it_pair.first; |
|
} |
|
|
|
} // namespace absl |
|
|
|
#endif // ABSL_CONTAINER_INLINED_VECTOR_H_
|
|
|