Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1111 lines
40 KiB
1111 lines
40 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// http://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#include "absl/strings/escaping.h" |
|
|
|
#include <algorithm> |
|
#include <cassert> |
|
#include <cstdint> |
|
#include <cstring> |
|
#include <iterator> |
|
#include <limits> |
|
#include <string> |
|
|
|
#include "absl/base/internal/endian.h" |
|
#include "absl/base/internal/raw_logging.h" |
|
#include "absl/base/internal/unaligned_access.h" |
|
#include "absl/strings/internal/char_map.h" |
|
#include "absl/strings/internal/resize_uninitialized.h" |
|
#include "absl/strings/internal/utf8.h" |
|
#include "absl/strings/str_cat.h" |
|
#include "absl/strings/str_join.h" |
|
#include "absl/strings/string_view.h" |
|
|
|
namespace absl { |
|
namespace { |
|
|
|
// Digit conversion. |
|
constexpr char kHexChar[] = "0123456789abcdef"; |
|
|
|
constexpr char kHexTable[513] = |
|
"000102030405060708090a0b0c0d0e0f" |
|
"101112131415161718191a1b1c1d1e1f" |
|
"202122232425262728292a2b2c2d2e2f" |
|
"303132333435363738393a3b3c3d3e3f" |
|
"404142434445464748494a4b4c4d4e4f" |
|
"505152535455565758595a5b5c5d5e5f" |
|
"606162636465666768696a6b6c6d6e6f" |
|
"707172737475767778797a7b7c7d7e7f" |
|
"808182838485868788898a8b8c8d8e8f" |
|
"909192939495969798999a9b9c9d9e9f" |
|
"a0a1a2a3a4a5a6a7a8a9aaabacadaeaf" |
|
"b0b1b2b3b4b5b6b7b8b9babbbcbdbebf" |
|
"c0c1c2c3c4c5c6c7c8c9cacbcccdcecf" |
|
"d0d1d2d3d4d5d6d7d8d9dadbdcdddedf" |
|
"e0e1e2e3e4e5e6e7e8e9eaebecedeeef" |
|
"f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff"; |
|
|
|
// These are used for the leave_nulls_escaped argument to CUnescapeInternal(). |
|
constexpr bool kUnescapeNulls = false; |
|
|
|
inline bool is_octal_digit(char c) { return ('0' <= c) && (c <= '7'); } |
|
|
|
inline int hex_digit_to_int(char c) { |
|
static_assert('0' == 0x30 && 'A' == 0x41 && 'a' == 0x61, |
|
"Character set must be ASCII."); |
|
assert(absl::ascii_isxdigit(c)); |
|
int x = static_cast<unsigned char>(c); |
|
if (x > '9') { |
|
x += 9; |
|
} |
|
return x & 0xf; |
|
} |
|
|
|
inline bool IsSurrogate(char32_t c, absl::string_view src, std::string* error) { |
|
if (c >= 0xD800 && c <= 0xDFFF) { |
|
if (error) { |
|
*error = absl::StrCat("invalid surrogate character (0xD800-DFFF): \\", |
|
src); |
|
} |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
// ---------------------------------------------------------------------- |
|
// CUnescapeInternal() |
|
// Implements both CUnescape() and CUnescapeForNullTerminatedString(). |
|
// |
|
// Unescapes C escape sequences and is the reverse of CEscape(). |
|
// |
|
// If 'source' is valid, stores the unescaped string and its size in |
|
// 'dest' and 'dest_len' respectively, and returns true. Otherwise |
|
// returns false and optionally stores the error description in |
|
// 'error'. Set 'error' to nullptr to disable error reporting. |
|
// |
|
// 'dest' should point to a buffer that is at least as big as 'source'. |
|
// 'source' and 'dest' may be the same. |
|
// |
|
// NOTE: any changes to this function must also be reflected in the older |
|
// UnescapeCEscapeSequences(). |
|
// ---------------------------------------------------------------------- |
|
bool CUnescapeInternal(absl::string_view source, bool leave_nulls_escaped, |
|
char* dest, ptrdiff_t* dest_len, std::string* error) { |
|
char* d = dest; |
|
const char* p = source.data(); |
|
const char* end = p + source.size(); |
|
const char* last_byte = end - 1; |
|
|
|
// Small optimization for case where source = dest and there's no escaping |
|
while (p == d && p < end && *p != '\\') p++, d++; |
|
|
|
while (p < end) { |
|
if (*p != '\\') { |
|
*d++ = *p++; |
|
} else { |
|
if (++p > last_byte) { // skip past the '\\' |
|
if (error) *error = "String cannot end with \\"; |
|
return false; |
|
} |
|
switch (*p) { |
|
case 'a': *d++ = '\a'; break; |
|
case 'b': *d++ = '\b'; break; |
|
case 'f': *d++ = '\f'; break; |
|
case 'n': *d++ = '\n'; break; |
|
case 'r': *d++ = '\r'; break; |
|
case 't': *d++ = '\t'; break; |
|
case 'v': *d++ = '\v'; break; |
|
case '\\': *d++ = '\\'; break; |
|
case '?': *d++ = '\?'; break; // \? Who knew? |
|
case '\'': *d++ = '\''; break; |
|
case '"': *d++ = '\"'; break; |
|
case '0': |
|
case '1': |
|
case '2': |
|
case '3': |
|
case '4': |
|
case '5': |
|
case '6': |
|
case '7': { |
|
// octal digit: 1 to 3 digits |
|
const char* octal_start = p; |
|
unsigned int ch = *p - '0'; |
|
if (p < last_byte && is_octal_digit(p[1])) ch = ch * 8 + *++p - '0'; |
|
if (p < last_byte && is_octal_digit(p[1])) |
|
ch = ch * 8 + *++p - '0'; // now points at last digit |
|
if (ch > 0xff) { |
|
if (error) { |
|
*error = "Value of \\" + |
|
std::string(octal_start, p + 1 - octal_start) + |
|
" exceeds 0xff"; |
|
} |
|
return false; |
|
} |
|
if ((ch == 0) && leave_nulls_escaped) { |
|
// Copy the escape sequence for the null character |
|
const ptrdiff_t octal_size = p + 1 - octal_start; |
|
*d++ = '\\'; |
|
memcpy(d, octal_start, octal_size); |
|
d += octal_size; |
|
break; |
|
} |
|
*d++ = ch; |
|
break; |
|
} |
|
case 'x': |
|
case 'X': { |
|
if (p >= last_byte) { |
|
if (error) *error = "String cannot end with \\x"; |
|
return false; |
|
} else if (!absl::ascii_isxdigit(p[1])) { |
|
if (error) *error = "\\x cannot be followed by a non-hex digit"; |
|
return false; |
|
} |
|
unsigned int ch = 0; |
|
const char* hex_start = p; |
|
while (p < last_byte && absl::ascii_isxdigit(p[1])) |
|
// Arbitrarily many hex digits |
|
ch = (ch << 4) + hex_digit_to_int(*++p); |
|
if (ch > 0xFF) { |
|
if (error) { |
|
*error = "Value of \\" + std::string(hex_start, p + 1 - hex_start) + |
|
" exceeds 0xff"; |
|
} |
|
return false; |
|
} |
|
if ((ch == 0) && leave_nulls_escaped) { |
|
// Copy the escape sequence for the null character |
|
const ptrdiff_t hex_size = p + 1 - hex_start; |
|
*d++ = '\\'; |
|
memcpy(d, hex_start, hex_size); |
|
d += hex_size; |
|
break; |
|
} |
|
*d++ = ch; |
|
break; |
|
} |
|
case 'u': { |
|
// \uhhhh => convert 4 hex digits to UTF-8 |
|
char32_t rune = 0; |
|
const char* hex_start = p; |
|
if (p + 4 >= end) { |
|
if (error) { |
|
*error = "\\u must be followed by 4 hex digits: \\" + |
|
std::string(hex_start, p + 1 - hex_start); |
|
} |
|
return false; |
|
} |
|
for (int i = 0; i < 4; ++i) { |
|
// Look one char ahead. |
|
if (absl::ascii_isxdigit(p[1])) { |
|
rune = (rune << 4) + hex_digit_to_int(*++p); // Advance p. |
|
} else { |
|
if (error) { |
|
*error = "\\u must be followed by 4 hex digits: \\" + |
|
std::string(hex_start, p + 1 - hex_start); |
|
} |
|
return false; |
|
} |
|
} |
|
if ((rune == 0) && leave_nulls_escaped) { |
|
// Copy the escape sequence for the null character |
|
*d++ = '\\'; |
|
memcpy(d, hex_start, 5); // u0000 |
|
d += 5; |
|
break; |
|
} |
|
if (IsSurrogate(rune, absl::string_view(hex_start, 5), error)) { |
|
return false; |
|
} |
|
d += strings_internal::EncodeUTF8Char(d, rune); |
|
break; |
|
} |
|
case 'U': { |
|
// \Uhhhhhhhh => convert 8 hex digits to UTF-8 |
|
char32_t rune = 0; |
|
const char* hex_start = p; |
|
if (p + 8 >= end) { |
|
if (error) { |
|
*error = "\\U must be followed by 8 hex digits: \\" + |
|
std::string(hex_start, p + 1 - hex_start); |
|
} |
|
return false; |
|
} |
|
for (int i = 0; i < 8; ++i) { |
|
// Look one char ahead. |
|
if (absl::ascii_isxdigit(p[1])) { |
|
// Don't change rune until we're sure this |
|
// is within the Unicode limit, but do advance p. |
|
uint32_t newrune = (rune << 4) + hex_digit_to_int(*++p); |
|
if (newrune > 0x10FFFF) { |
|
if (error) { |
|
*error = "Value of \\" + |
|
std::string(hex_start, p + 1 - hex_start) + |
|
" exceeds Unicode limit (0x10FFFF)"; |
|
} |
|
return false; |
|
} else { |
|
rune = newrune; |
|
} |
|
} else { |
|
if (error) { |
|
*error = "\\U must be followed by 8 hex digits: \\" + |
|
std::string(hex_start, p + 1 - hex_start); |
|
} |
|
return false; |
|
} |
|
} |
|
if ((rune == 0) && leave_nulls_escaped) { |
|
// Copy the escape sequence for the null character |
|
*d++ = '\\'; |
|
memcpy(d, hex_start, 9); // U00000000 |
|
d += 9; |
|
break; |
|
} |
|
if (IsSurrogate(rune, absl::string_view(hex_start, 9), error)) { |
|
return false; |
|
} |
|
d += strings_internal::EncodeUTF8Char(d, rune); |
|
break; |
|
} |
|
default: { |
|
if (error) *error = std::string("Unknown escape sequence: \\") + *p; |
|
return false; |
|
} |
|
} |
|
p++; // read past letter we escaped |
|
} |
|
} |
|
*dest_len = d - dest; |
|
return true; |
|
} |
|
|
|
// ---------------------------------------------------------------------- |
|
// CUnescapeInternal() |
|
// |
|
// Same as above but uses a C++ string for output. 'source' and 'dest' |
|
// may be the same. |
|
// ---------------------------------------------------------------------- |
|
bool CUnescapeInternal(absl::string_view source, bool leave_nulls_escaped, |
|
std::string* dest, std::string* error) { |
|
strings_internal::STLStringResizeUninitialized(dest, source.size()); |
|
|
|
ptrdiff_t dest_size; |
|
if (!CUnescapeInternal(source, |
|
leave_nulls_escaped, |
|
&(*dest)[0], |
|
&dest_size, |
|
error)) { |
|
return false; |
|
} |
|
dest->erase(dest_size); |
|
return true; |
|
} |
|
|
|
// ---------------------------------------------------------------------- |
|
// CEscape() |
|
// CHexEscape() |
|
// Utf8SafeCEscape() |
|
// Utf8SafeCHexEscape() |
|
// Escapes 'src' using C-style escape sequences. This is useful for |
|
// preparing query flags. The 'Hex' version uses hexadecimal rather than |
|
// octal sequences. The 'Utf8Safe' version does not touch UTF-8 bytes. |
|
// |
|
// Escaped chars: \n, \r, \t, ", ', \, and !absl::ascii_isprint(). |
|
// ---------------------------------------------------------------------- |
|
std::string CEscapeInternal(absl::string_view src, bool use_hex, bool utf8_safe) { |
|
std::string dest; |
|
bool last_hex_escape = false; // true if last output char was \xNN. |
|
|
|
for (unsigned char c : src) { |
|
bool is_hex_escape = false; |
|
switch (c) { |
|
case '\n': dest.append("\\" "n"); break; |
|
case '\r': dest.append("\\" "r"); break; |
|
case '\t': dest.append("\\" "t"); break; |
|
case '\"': dest.append("\\" "\""); break; |
|
case '\'': dest.append("\\" "'"); break; |
|
case '\\': dest.append("\\" "\\"); break; |
|
default: |
|
// Note that if we emit \xNN and the src character after that is a hex |
|
// digit then that digit must be escaped too to prevent it being |
|
// interpreted as part of the character code by C. |
|
if ((!utf8_safe || c < 0x80) && |
|
(!absl::ascii_isprint(c) || |
|
(last_hex_escape && absl::ascii_isxdigit(c)))) { |
|
if (use_hex) { |
|
dest.append("\\" "x"); |
|
dest.push_back(kHexChar[c / 16]); |
|
dest.push_back(kHexChar[c % 16]); |
|
is_hex_escape = true; |
|
} else { |
|
dest.append("\\"); |
|
dest.push_back(kHexChar[c / 64]); |
|
dest.push_back(kHexChar[(c % 64) / 8]); |
|
dest.push_back(kHexChar[c % 8]); |
|
} |
|
} else { |
|
dest.push_back(c); |
|
break; |
|
} |
|
} |
|
last_hex_escape = is_hex_escape; |
|
} |
|
|
|
return dest; |
|
} |
|
|
|
/* clang-format off */ |
|
constexpr char c_escaped_len[256] = { |
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 4, 4, 2, 4, 4, // \t, \n, \r |
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
|
1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, // ", ' |
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // '0'..'9' |
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 'A'..'O' |
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, // 'P'..'Z', '\' |
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 'a'..'o' |
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, // 'p'..'z', DEL |
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
|
}; |
|
/* clang-format on */ |
|
|
|
// Calculates the length of the C-style escaped version of 'src'. |
|
// Assumes that non-printable characters are escaped using octal sequences, and |
|
// that UTF-8 bytes are not handled specially. |
|
inline size_t CEscapedLength(absl::string_view src) { |
|
size_t escaped_len = 0; |
|
for (unsigned char c : src) escaped_len += c_escaped_len[c]; |
|
return escaped_len; |
|
} |
|
|
|
void CEscapeAndAppendInternal(absl::string_view src, std::string* dest) { |
|
size_t escaped_len = CEscapedLength(src); |
|
if (escaped_len == src.size()) { |
|
dest->append(src.data(), src.size()); |
|
return; |
|
} |
|
|
|
size_t cur_dest_len = dest->size(); |
|
strings_internal::STLStringResizeUninitialized(dest, |
|
cur_dest_len + escaped_len); |
|
char* append_ptr = &(*dest)[cur_dest_len]; |
|
|
|
for (unsigned char c : src) { |
|
int char_len = c_escaped_len[c]; |
|
if (char_len == 1) { |
|
*append_ptr++ = c; |
|
} else if (char_len == 2) { |
|
switch (c) { |
|
case '\n': |
|
*append_ptr++ = '\\'; |
|
*append_ptr++ = 'n'; |
|
break; |
|
case '\r': |
|
*append_ptr++ = '\\'; |
|
*append_ptr++ = 'r'; |
|
break; |
|
case '\t': |
|
*append_ptr++ = '\\'; |
|
*append_ptr++ = 't'; |
|
break; |
|
case '\"': |
|
*append_ptr++ = '\\'; |
|
*append_ptr++ = '\"'; |
|
break; |
|
case '\'': |
|
*append_ptr++ = '\\'; |
|
*append_ptr++ = '\''; |
|
break; |
|
case '\\': |
|
*append_ptr++ = '\\'; |
|
*append_ptr++ = '\\'; |
|
break; |
|
} |
|
} else { |
|
*append_ptr++ = '\\'; |
|
*append_ptr++ = '0' + c / 64; |
|
*append_ptr++ = '0' + (c % 64) / 8; |
|
*append_ptr++ = '0' + c % 8; |
|
} |
|
} |
|
} |
|
|
|
bool Base64UnescapeInternal(const char* src_param, size_t szsrc, char* dest, |
|
size_t szdest, const signed char* unbase64, |
|
size_t* len) { |
|
static const char kPad64Equals = '='; |
|
static const char kPad64Dot = '.'; |
|
|
|
size_t destidx = 0; |
|
int decode = 0; |
|
int state = 0; |
|
unsigned int ch = 0; |
|
unsigned int temp = 0; |
|
|
|
// If "char" is signed by default, using *src as an array index results in |
|
// accessing negative array elements. Treat the input as a pointer to |
|
// unsigned char to avoid this. |
|
const unsigned char* src = reinterpret_cast<const unsigned char*>(src_param); |
|
|
|
// The GET_INPUT macro gets the next input character, skipping |
|
// over any whitespace, and stopping when we reach the end of the |
|
// std::string or when we read any non-data character. The arguments are |
|
// an arbitrary identifier (used as a label for goto) and the number |
|
// of data bytes that must remain in the input to avoid aborting the |
|
// loop. |
|
#define GET_INPUT(label, remain) \ |
|
label: \ |
|
--szsrc; \ |
|
ch = *src++; \ |
|
decode = unbase64[ch]; \ |
|
if (decode < 0) { \ |
|
if (absl::ascii_isspace(ch) && szsrc >= remain) goto label; \ |
|
state = 4 - remain; \ |
|
break; \ |
|
} |
|
|
|
// if dest is null, we're just checking to see if it's legal input |
|
// rather than producing output. (I suspect this could just be done |
|
// with a regexp...). We duplicate the loop so this test can be |
|
// outside it instead of in every iteration. |
|
|
|
if (dest) { |
|
// This loop consumes 4 input bytes and produces 3 output bytes |
|
// per iteration. We can't know at the start that there is enough |
|
// data left in the std::string for a full iteration, so the loop may |
|
// break out in the middle; if so 'state' will be set to the |
|
// number of input bytes read. |
|
|
|
while (szsrc >= 4) { |
|
// We'll start by optimistically assuming that the next four |
|
// bytes of the std::string (src[0..3]) are four good data bytes |
|
// (that is, no nulls, whitespace, padding chars, or illegal |
|
// chars). We need to test src[0..2] for nulls individually |
|
// before constructing temp to preserve the property that we |
|
// never read past a null in the std::string (no matter how long |
|
// szsrc claims the std::string is). |
|
|
|
if (!src[0] || !src[1] || !src[2] || |
|
((temp = ((unsigned(unbase64[src[0]]) << 18) | |
|
(unsigned(unbase64[src[1]]) << 12) | |
|
(unsigned(unbase64[src[2]]) << 6) | |
|
(unsigned(unbase64[src[3]])))) & |
|
0x80000000)) { |
|
// Iff any of those four characters was bad (null, illegal, |
|
// whitespace, padding), then temp's high bit will be set |
|
// (because unbase64[] is -1 for all bad characters). |
|
// |
|
// We'll back up and resort to the slower decoder, which knows |
|
// how to handle those cases. |
|
|
|
GET_INPUT(first, 4); |
|
temp = decode; |
|
GET_INPUT(second, 3); |
|
temp = (temp << 6) | decode; |
|
GET_INPUT(third, 2); |
|
temp = (temp << 6) | decode; |
|
GET_INPUT(fourth, 1); |
|
temp = (temp << 6) | decode; |
|
} else { |
|
// We really did have four good data bytes, so advance four |
|
// characters in the std::string. |
|
|
|
szsrc -= 4; |
|
src += 4; |
|
} |
|
|
|
// temp has 24 bits of input, so write that out as three bytes. |
|
|
|
if (destidx + 3 > szdest) return false; |
|
dest[destidx + 2] = temp; |
|
temp >>= 8; |
|
dest[destidx + 1] = temp; |
|
temp >>= 8; |
|
dest[destidx] = temp; |
|
destidx += 3; |
|
} |
|
} else { |
|
while (szsrc >= 4) { |
|
if (!src[0] || !src[1] || !src[2] || |
|
((temp = ((unsigned(unbase64[src[0]]) << 18) | |
|
(unsigned(unbase64[src[1]]) << 12) | |
|
(unsigned(unbase64[src[2]]) << 6) | |
|
(unsigned(unbase64[src[3]])))) & |
|
0x80000000)) { |
|
GET_INPUT(first_no_dest, 4); |
|
GET_INPUT(second_no_dest, 3); |
|
GET_INPUT(third_no_dest, 2); |
|
GET_INPUT(fourth_no_dest, 1); |
|
} else { |
|
szsrc -= 4; |
|
src += 4; |
|
} |
|
destidx += 3; |
|
} |
|
} |
|
|
|
#undef GET_INPUT |
|
|
|
// if the loop terminated because we read a bad character, return |
|
// now. |
|
if (decode < 0 && ch != kPad64Equals && ch != kPad64Dot && |
|
!absl::ascii_isspace(ch)) |
|
return false; |
|
|
|
if (ch == kPad64Equals || ch == kPad64Dot) { |
|
// if we stopped by hitting an '=' or '.', un-read that character -- we'll |
|
// look at it again when we count to check for the proper number of |
|
// equals signs at the end. |
|
++szsrc; |
|
--src; |
|
} else { |
|
// This loop consumes 1 input byte per iteration. It's used to |
|
// clean up the 0-3 input bytes remaining when the first, faster |
|
// loop finishes. 'temp' contains the data from 'state' input |
|
// characters read by the first loop. |
|
while (szsrc > 0) { |
|
--szsrc; |
|
ch = *src++; |
|
decode = unbase64[ch]; |
|
if (decode < 0) { |
|
if (absl::ascii_isspace(ch)) { |
|
continue; |
|
} else if (ch == kPad64Equals || ch == kPad64Dot) { |
|
// back up one character; we'll read it again when we check |
|
// for the correct number of pad characters at the end. |
|
++szsrc; |
|
--src; |
|
break; |
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
// Each input character gives us six bits of output. |
|
temp = (temp << 6) | decode; |
|
++state; |
|
if (state == 4) { |
|
// If we've accumulated 24 bits of output, write that out as |
|
// three bytes. |
|
if (dest) { |
|
if (destidx + 3 > szdest) return false; |
|
dest[destidx + 2] = temp; |
|
temp >>= 8; |
|
dest[destidx + 1] = temp; |
|
temp >>= 8; |
|
dest[destidx] = temp; |
|
} |
|
destidx += 3; |
|
state = 0; |
|
temp = 0; |
|
} |
|
} |
|
} |
|
|
|
// Process the leftover data contained in 'temp' at the end of the input. |
|
int expected_equals = 0; |
|
switch (state) { |
|
case 0: |
|
// Nothing left over; output is a multiple of 3 bytes. |
|
break; |
|
|
|
case 1: |
|
// Bad input; we have 6 bits left over. |
|
return false; |
|
|
|
case 2: |
|
// Produce one more output byte from the 12 input bits we have left. |
|
if (dest) { |
|
if (destidx + 1 > szdest) return false; |
|
temp >>= 4; |
|
dest[destidx] = temp; |
|
} |
|
++destidx; |
|
expected_equals = 2; |
|
break; |
|
|
|
case 3: |
|
// Produce two more output bytes from the 18 input bits we have left. |
|
if (dest) { |
|
if (destidx + 2 > szdest) return false; |
|
temp >>= 2; |
|
dest[destidx + 1] = temp; |
|
temp >>= 8; |
|
dest[destidx] = temp; |
|
} |
|
destidx += 2; |
|
expected_equals = 1; |
|
break; |
|
|
|
default: |
|
// state should have no other values at this point. |
|
ABSL_RAW_LOG(FATAL, "This can't happen; base64 decoder state = %d", |
|
state); |
|
} |
|
|
|
// The remainder of the std::string should be all whitespace, mixed with |
|
// exactly 0 equals signs, or exactly 'expected_equals' equals |
|
// signs. (Always accepting 0 equals signs is an Abseil extension |
|
// not covered in the RFC, as is accepting dot as the pad character.) |
|
|
|
int equals = 0; |
|
while (szsrc > 0) { |
|
if (*src == kPad64Equals || *src == kPad64Dot) |
|
++equals; |
|
else if (!absl::ascii_isspace(*src)) |
|
return false; |
|
--szsrc; |
|
++src; |
|
} |
|
|
|
const bool ok = (equals == 0 || equals == expected_equals); |
|
if (ok) *len = destidx; |
|
return ok; |
|
} |
|
|
|
// The arrays below were generated by the following code |
|
// #include <sys/time.h> |
|
// #include <stdlib.h> |
|
// #include <string.h> |
|
// main() |
|
// { |
|
// static const char Base64[] = |
|
// "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; |
|
// char* pos; |
|
// int idx, i, j; |
|
// printf(" "); |
|
// for (i = 0; i < 255; i += 8) { |
|
// for (j = i; j < i + 8; j++) { |
|
// pos = strchr(Base64, j); |
|
// if ((pos == nullptr) || (j == 0)) |
|
// idx = -1; |
|
// else |
|
// idx = pos - Base64; |
|
// if (idx == -1) |
|
// printf(" %2d, ", idx); |
|
// else |
|
// printf(" %2d/*%c*/,", idx, j); |
|
// } |
|
// printf("\n "); |
|
// } |
|
// } |
|
// |
|
// where the value of "Base64[]" was replaced by one of the base-64 conversion |
|
// tables from the functions below. |
|
/* clang-format off */ |
|
constexpr signed char kUnBase64[] = { |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, 62/*+*/, -1, -1, -1, 63/*/ */, |
|
52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/, |
|
60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1, |
|
-1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/, |
|
07/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/, |
|
15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/, |
|
23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, -1, |
|
-1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/, |
|
33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/, |
|
41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/, |
|
49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1 |
|
}; |
|
|
|
constexpr signed char kUnWebSafeBase64[] = { |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, 62/*-*/, -1, -1, |
|
52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/, |
|
60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1, |
|
-1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/, |
|
07/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/, |
|
15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/, |
|
23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, 63/*_*/, |
|
-1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/, |
|
33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/, |
|
41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/, |
|
49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1 |
|
}; |
|
/* clang-format on */ |
|
|
|
size_t CalculateBase64EscapedLenInternal(size_t input_len, bool do_padding) { |
|
// Base64 encodes three bytes of input at a time. If the input is not |
|
// divisible by three, we pad as appropriate. |
|
// |
|
// (from http://tools.ietf.org/html/rfc3548) |
|
// Special processing is performed if fewer than 24 bits are available |
|
// at the end of the data being encoded. A full encoding quantum is |
|
// always completed at the end of a quantity. When fewer than 24 input |
|
// bits are available in an input group, zero bits are added (on the |
|
// right) to form an integral number of 6-bit groups. Padding at the |
|
// end of the data is performed using the '=' character. Since all base |
|
// 64 input is an integral number of octets, only the following cases |
|
// can arise: |
|
|
|
// Base64 encodes each three bytes of input into four bytes of output. |
|
size_t len = (input_len / 3) * 4; |
|
|
|
if (input_len % 3 == 0) { |
|
// (from http://tools.ietf.org/html/rfc3548) |
|
// (1) the final quantum of encoding input is an integral multiple of 24 |
|
// bits; here, the final unit of encoded output will be an integral |
|
// multiple of 4 characters with no "=" padding, |
|
} else if (input_len % 3 == 1) { |
|
// (from http://tools.ietf.org/html/rfc3548) |
|
// (2) the final quantum of encoding input is exactly 8 bits; here, the |
|
// final unit of encoded output will be two characters followed by two |
|
// "=" padding characters, or |
|
len += 2; |
|
if (do_padding) { |
|
len += 2; |
|
} |
|
} else { // (input_len % 3 == 2) |
|
// (from http://tools.ietf.org/html/rfc3548) |
|
// (3) the final quantum of encoding input is exactly 16 bits; here, the |
|
// final unit of encoded output will be three characters followed by one |
|
// "=" padding character. |
|
len += 3; |
|
if (do_padding) { |
|
len += 1; |
|
} |
|
} |
|
|
|
assert(len >= input_len); // make sure we didn't overflow |
|
return len; |
|
} |
|
|
|
size_t Base64EscapeInternal(const unsigned char* src, size_t szsrc, char* dest, |
|
size_t szdest, const char* base64, |
|
bool do_padding) { |
|
static const char kPad64 = '='; |
|
|
|
if (szsrc * 4 > szdest * 3) return 0; |
|
|
|
char* cur_dest = dest; |
|
const unsigned char* cur_src = src; |
|
|
|
char* const limit_dest = dest + szdest; |
|
const unsigned char* const limit_src = src + szsrc; |
|
|
|
// Three bytes of data encodes to four characters of cyphertext. |
|
// So we can pump through three-byte chunks atomically. |
|
if (szsrc >= 3) { // "limit_src - 3" is UB if szsrc < 3. |
|
while (cur_src < limit_src - 3) { // While we have >= 32 bits. |
|
uint32_t in = absl::big_endian::Load32(cur_src) >> 8; |
|
|
|
cur_dest[0] = base64[in >> 18]; |
|
in &= 0x3FFFF; |
|
cur_dest[1] = base64[in >> 12]; |
|
in &= 0xFFF; |
|
cur_dest[2] = base64[in >> 6]; |
|
in &= 0x3F; |
|
cur_dest[3] = base64[in]; |
|
|
|
cur_dest += 4; |
|
cur_src += 3; |
|
} |
|
} |
|
// To save time, we didn't update szdest or szsrc in the loop. So do it now. |
|
szdest = limit_dest - cur_dest; |
|
szsrc = limit_src - cur_src; |
|
|
|
/* now deal with the tail (<=3 bytes) */ |
|
switch (szsrc) { |
|
case 0: |
|
// Nothing left; nothing more to do. |
|
break; |
|
case 1: { |
|
// One byte left: this encodes to two characters, and (optionally) |
|
// two pad characters to round out the four-character cypherblock. |
|
if (szdest < 2) return 0; |
|
uint32_t in = cur_src[0]; |
|
cur_dest[0] = base64[in >> 2]; |
|
in &= 0x3; |
|
cur_dest[1] = base64[in << 4]; |
|
cur_dest += 2; |
|
szdest -= 2; |
|
if (do_padding) { |
|
if (szdest < 2) return 0; |
|
cur_dest[0] = kPad64; |
|
cur_dest[1] = kPad64; |
|
cur_dest += 2; |
|
szdest -= 2; |
|
} |
|
break; |
|
} |
|
case 2: { |
|
// Two bytes left: this encodes to three characters, and (optionally) |
|
// one pad character to round out the four-character cypherblock. |
|
if (szdest < 3) return 0; |
|
uint32_t in = absl::big_endian::Load16(cur_src); |
|
cur_dest[0] = base64[in >> 10]; |
|
in &= 0x3FF; |
|
cur_dest[1] = base64[in >> 4]; |
|
in &= 0x00F; |
|
cur_dest[2] = base64[in << 2]; |
|
cur_dest += 3; |
|
szdest -= 3; |
|
if (do_padding) { |
|
if (szdest < 1) return 0; |
|
cur_dest[0] = kPad64; |
|
cur_dest += 1; |
|
szdest -= 1; |
|
} |
|
break; |
|
} |
|
case 3: { |
|
// Three bytes left: same as in the big loop above. We can't do this in |
|
// the loop because the loop above always reads 4 bytes, and the fourth |
|
// byte is past the end of the input. |
|
if (szdest < 4) return 0; |
|
uint32_t in = (cur_src[0] << 16) + absl::big_endian::Load16(cur_src + 1); |
|
cur_dest[0] = base64[in >> 18]; |
|
in &= 0x3FFFF; |
|
cur_dest[1] = base64[in >> 12]; |
|
in &= 0xFFF; |
|
cur_dest[2] = base64[in >> 6]; |
|
in &= 0x3F; |
|
cur_dest[3] = base64[in]; |
|
cur_dest += 4; |
|
szdest -= 4; |
|
break; |
|
} |
|
default: |
|
// Should not be reached: blocks of 4 bytes are handled |
|
// in the while loop before this switch statement. |
|
ABSL_RAW_LOG(FATAL, "Logic problem? szsrc = %zu", szsrc); |
|
break; |
|
} |
|
return (cur_dest - dest); |
|
} |
|
|
|
constexpr char kBase64Chars[] = |
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; |
|
|
|
constexpr char kWebSafeBase64Chars[] = |
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"; |
|
|
|
template <typename String> |
|
void Base64EscapeInternal(const unsigned char* src, size_t szsrc, String* dest, |
|
bool do_padding, const char* base64_chars) { |
|
const size_t calc_escaped_size = |
|
CalculateBase64EscapedLenInternal(szsrc, do_padding); |
|
strings_internal::STLStringResizeUninitialized(dest, calc_escaped_size); |
|
|
|
const size_t escaped_len = Base64EscapeInternal( |
|
src, szsrc, &(*dest)[0], dest->size(), base64_chars, do_padding); |
|
assert(calc_escaped_size == escaped_len); |
|
dest->erase(escaped_len); |
|
} |
|
|
|
template <typename String> |
|
bool Base64UnescapeInternal(const char* src, size_t slen, String* dest, |
|
const signed char* unbase64) { |
|
// Determine the size of the output std::string. Base64 encodes every 3 bytes into |
|
// 4 characters. any leftover chars are added directly for good measure. |
|
// This is documented in the base64 RFC: http://tools.ietf.org/html/rfc3548 |
|
const size_t dest_len = 3 * (slen / 4) + (slen % 4); |
|
|
|
strings_internal::STLStringResizeUninitialized(dest, dest_len); |
|
|
|
// We are getting the destination buffer by getting the beginning of the |
|
// std::string and converting it into a char *. |
|
size_t len; |
|
const bool ok = |
|
Base64UnescapeInternal(src, slen, &(*dest)[0], dest_len, unbase64, &len); |
|
if (!ok) { |
|
dest->clear(); |
|
return false; |
|
} |
|
|
|
// could be shorter if there was padding |
|
assert(len <= dest_len); |
|
dest->erase(len); |
|
|
|
return true; |
|
} |
|
|
|
/* clang-format off */ |
|
constexpr char kHexValue[256] = { |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 0, // '0'..'9' |
|
0, 10, 11, 12, 13, 14, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 'A'..'F' |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
0, 10, 11, 12, 13, 14, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 'a'..'f' |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 |
|
}; |
|
/* clang-format on */ |
|
|
|
// This is a templated function so that T can be either a char* |
|
// or a string. This works because we use the [] operator to access |
|
// individual characters at a time. |
|
template <typename T> |
|
void HexStringToBytesInternal(const char* from, T to, ptrdiff_t num) { |
|
for (int i = 0; i < num; i++) { |
|
to[i] = (kHexValue[from[i * 2] & 0xFF] << 4) + |
|
(kHexValue[from[i * 2 + 1] & 0xFF]); |
|
} |
|
} |
|
|
|
// This is a templated function so that T can be either a char* or a string. |
|
template <typename T> |
|
void BytesToHexStringInternal(const unsigned char* src, T dest, ptrdiff_t num) { |
|
auto dest_ptr = &dest[0]; |
|
for (auto src_ptr = src; src_ptr != (src + num); ++src_ptr, dest_ptr += 2) { |
|
const char* hex_p = &kHexTable[*src_ptr * 2]; |
|
std::copy(hex_p, hex_p + 2, dest_ptr); |
|
} |
|
} |
|
|
|
} // namespace |
|
|
|
// ---------------------------------------------------------------------- |
|
// CUnescape() |
|
// |
|
// See CUnescapeInternal() for implementation details. |
|
// ---------------------------------------------------------------------- |
|
bool CUnescape(absl::string_view source, std::string* dest, std::string* error) { |
|
return CUnescapeInternal(source, kUnescapeNulls, dest, error); |
|
} |
|
|
|
std::string CEscape(absl::string_view src) { |
|
std::string dest; |
|
CEscapeAndAppendInternal(src, &dest); |
|
return dest; |
|
} |
|
|
|
std::string CHexEscape(absl::string_view src) { |
|
return CEscapeInternal(src, true, false); |
|
} |
|
|
|
std::string Utf8SafeCEscape(absl::string_view src) { |
|
return CEscapeInternal(src, false, true); |
|
} |
|
|
|
std::string Utf8SafeCHexEscape(absl::string_view src) { |
|
return CEscapeInternal(src, true, true); |
|
} |
|
|
|
// ---------------------------------------------------------------------- |
|
// ptrdiff_t Base64Unescape() - base64 decoder |
|
// ptrdiff_t Base64Escape() - base64 encoder |
|
// ptrdiff_t WebSafeBase64Unescape() - Google's variation of base64 decoder |
|
// ptrdiff_t WebSafeBase64Escape() - Google's variation of base64 encoder |
|
// |
|
// Check out |
|
// http://tools.ietf.org/html/rfc2045 for formal description, but what we |
|
// care about is that... |
|
// Take the encoded stuff in groups of 4 characters and turn each |
|
// character into a code 0 to 63 thus: |
|
// A-Z map to 0 to 25 |
|
// a-z map to 26 to 51 |
|
// 0-9 map to 52 to 61 |
|
// +(- for WebSafe) maps to 62 |
|
// /(_ for WebSafe) maps to 63 |
|
// There will be four numbers, all less than 64 which can be represented |
|
// by a 6 digit binary number (aaaaaa, bbbbbb, cccccc, dddddd respectively). |
|
// Arrange the 6 digit binary numbers into three bytes as such: |
|
// aaaaaabb bbbbcccc ccdddddd |
|
// Equals signs (one or two) are used at the end of the encoded block to |
|
// indicate that the text was not an integer multiple of three bytes long. |
|
// ---------------------------------------------------------------------- |
|
|
|
bool Base64Unescape(absl::string_view src, std::string* dest) { |
|
return Base64UnescapeInternal(src.data(), src.size(), dest, kUnBase64); |
|
} |
|
|
|
bool WebSafeBase64Unescape(absl::string_view src, std::string* dest) { |
|
return Base64UnescapeInternal(src.data(), src.size(), dest, kUnWebSafeBase64); |
|
} |
|
|
|
void Base64Escape(absl::string_view src, std::string* dest) { |
|
Base64EscapeInternal(reinterpret_cast<const unsigned char*>(src.data()), |
|
src.size(), dest, true, kBase64Chars); |
|
} |
|
|
|
void WebSafeBase64Escape(absl::string_view src, std::string* dest) { |
|
Base64EscapeInternal(reinterpret_cast<const unsigned char*>(src.data()), |
|
src.size(), dest, false, kWebSafeBase64Chars); |
|
} |
|
|
|
std::string HexStringToBytes(absl::string_view from) { |
|
std::string result; |
|
const auto num = from.size() / 2; |
|
strings_internal::STLStringResizeUninitialized(&result, num); |
|
absl::HexStringToBytesInternal<std::string&>(from.data(), result, num); |
|
return result; |
|
} |
|
|
|
std::string BytesToHexString(absl::string_view from) { |
|
std::string result; |
|
strings_internal::STLStringResizeUninitialized(&result, 2 * from.size()); |
|
absl::BytesToHexStringInternal<std::string&>( |
|
reinterpret_cast<const unsigned char*>(from.data()), result, from.size()); |
|
return result; |
|
} |
|
|
|
} // namespace absl
|
|
|