Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1041 lines
36 KiB
1041 lines
36 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// http://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
// Utilities for testing exception-safety |
|
|
|
#ifndef ABSL_BASE_INTERNAL_EXCEPTION_SAFETY_TESTING_H_ |
|
#define ABSL_BASE_INTERNAL_EXCEPTION_SAFETY_TESTING_H_ |
|
|
|
#include <cstddef> |
|
#include <cstdint> |
|
#include <functional> |
|
#include <initializer_list> |
|
#include <iosfwd> |
|
#include <string> |
|
#include <tuple> |
|
#include <unordered_map> |
|
|
|
#include "gtest/gtest.h" |
|
#include "absl/base/config.h" |
|
#include "absl/base/internal/pretty_function.h" |
|
#include "absl/memory/memory.h" |
|
#include "absl/meta/type_traits.h" |
|
#include "absl/strings/string_view.h" |
|
#include "absl/strings/substitute.h" |
|
#include "absl/types/optional.h" |
|
|
|
namespace testing { |
|
|
|
enum class TypeSpec; |
|
enum class AllocSpec; |
|
|
|
constexpr TypeSpec operator|(TypeSpec a, TypeSpec b) { |
|
using T = absl::underlying_type_t<TypeSpec>; |
|
return static_cast<TypeSpec>(static_cast<T>(a) | static_cast<T>(b)); |
|
} |
|
|
|
constexpr TypeSpec operator&(TypeSpec a, TypeSpec b) { |
|
using T = absl::underlying_type_t<TypeSpec>; |
|
return static_cast<TypeSpec>(static_cast<T>(a) & static_cast<T>(b)); |
|
} |
|
|
|
constexpr AllocSpec operator|(AllocSpec a, AllocSpec b) { |
|
using T = absl::underlying_type_t<AllocSpec>; |
|
return static_cast<AllocSpec>(static_cast<T>(a) | static_cast<T>(b)); |
|
} |
|
|
|
constexpr AllocSpec operator&(AllocSpec a, AllocSpec b) { |
|
using T = absl::underlying_type_t<AllocSpec>; |
|
return static_cast<AllocSpec>(static_cast<T>(a) & static_cast<T>(b)); |
|
} |
|
|
|
namespace exceptions_internal { |
|
|
|
struct NoThrowTag {}; |
|
struct StrongGuaranteeTagType {}; |
|
|
|
// A simple exception class. We throw this so that test code can catch |
|
// exceptions specifically thrown by ThrowingValue. |
|
class TestException { |
|
public: |
|
explicit TestException(absl::string_view msg) : msg_(msg) {} |
|
virtual ~TestException() {} |
|
virtual const char* what() const noexcept { return msg_.c_str(); } |
|
|
|
private: |
|
std::string msg_; |
|
}; |
|
|
|
// TestBadAllocException exists because allocation functions must throw an |
|
// exception which can be caught by a handler of std::bad_alloc. We use a child |
|
// class of std::bad_alloc so we can customise the error message, and also |
|
// derive from TestException so we don't accidentally end up catching an actual |
|
// bad_alloc exception in TestExceptionSafety. |
|
class TestBadAllocException : public std::bad_alloc, public TestException { |
|
public: |
|
explicit TestBadAllocException(absl::string_view msg) : TestException(msg) {} |
|
using TestException::what; |
|
}; |
|
|
|
extern int countdown; |
|
|
|
// Allows the countdown variable to be set manually (defaulting to the initial |
|
// value of 0) |
|
inline void SetCountdown(int i = 0) { countdown = i; } |
|
// Sets the countdown to the terminal value -1 |
|
inline void UnsetCountdown() { SetCountdown(-1); } |
|
|
|
void MaybeThrow(absl::string_view msg, bool throw_bad_alloc = false); |
|
|
|
testing::AssertionResult FailureMessage(const TestException& e, |
|
int countdown) noexcept; |
|
|
|
class ConstructorTracker; |
|
|
|
class TrackedObject { |
|
public: |
|
TrackedObject(const TrackedObject&) = delete; |
|
TrackedObject(TrackedObject&&) = delete; |
|
|
|
protected: |
|
explicit TrackedObject(const char* child_ctor) { |
|
if (!GetInstanceMap().emplace(this, child_ctor).second) { |
|
ADD_FAILURE() << "Object at address " << static_cast<void*>(this) |
|
<< " re-constructed in ctor " << child_ctor; |
|
} |
|
} |
|
|
|
~TrackedObject() noexcept { |
|
if (GetInstanceMap().erase(this) == 0) { |
|
ADD_FAILURE() << "Object at address " << static_cast<void*>(this) |
|
<< " destroyed improperly"; |
|
} |
|
} |
|
|
|
private: |
|
using InstanceMap = std::unordered_map<TrackedObject*, absl::string_view>; |
|
static InstanceMap& GetInstanceMap() { |
|
static auto* instance_map = new InstanceMap(); |
|
return *instance_map; |
|
} |
|
|
|
friend class ConstructorTracker; |
|
}; |
|
|
|
// Inspects the constructions and destructions of anything inheriting from |
|
// TrackedObject. This allows us to safely "leak" TrackedObjects, as |
|
// ConstructorTracker will destroy everything left over in its destructor. |
|
class ConstructorTracker { |
|
public: |
|
explicit ConstructorTracker(int c) |
|
: init_count_(c), init_instances_(TrackedObject::GetInstanceMap()) {} |
|
~ConstructorTracker() { |
|
auto& cur_instances = TrackedObject::GetInstanceMap(); |
|
for (auto it = cur_instances.begin(); it != cur_instances.end();) { |
|
if (init_instances_.count(it->first) == 0) { |
|
ADD_FAILURE() << "Object at address " << static_cast<void*>(it->first) |
|
<< " constructed from " << it->second |
|
<< " where the exception countdown was set to " |
|
<< init_count_ << " was not destroyed"; |
|
// Erasing an item inside an unordered_map invalidates the existing |
|
// iterator. A new one is returned for iteration to continue. |
|
it = cur_instances.erase(it); |
|
} else { |
|
++it; |
|
} |
|
} |
|
} |
|
|
|
private: |
|
int init_count_; |
|
TrackedObject::InstanceMap init_instances_; |
|
}; |
|
|
|
template <typename Factory, typename Operation, typename Invariant> |
|
absl::optional<testing::AssertionResult> TestSingleInvariantAtCountdownImpl( |
|
const Factory& factory, Operation operation, int count, |
|
const Invariant& invariant) { |
|
auto t_ptr = factory(); |
|
absl::optional<testing::AssertionResult> current_res; |
|
SetCountdown(count); |
|
try { |
|
operation(t_ptr.get()); |
|
} catch (const exceptions_internal::TestException& e) { |
|
current_res.emplace(invariant(t_ptr.get())); |
|
if (!current_res.value()) { |
|
*current_res << e.what() << " failed invariant check"; |
|
} |
|
} |
|
UnsetCountdown(); |
|
return current_res; |
|
} |
|
|
|
template <typename Factory, typename Operation> |
|
absl::optional<testing::AssertionResult> TestSingleInvariantAtCountdownImpl( |
|
const Factory& factory, const Operation& operation, int count, |
|
StrongGuaranteeTagType) { |
|
using TPtr = typename decltype(factory())::pointer; |
|
auto t_is_strong = [&](TPtr t) { return *t == *factory(); }; |
|
return TestSingleInvariantAtCountdownImpl(factory, operation, count, |
|
t_is_strong); |
|
} |
|
|
|
template <typename Factory, typename Operation, typename Invariant> |
|
int TestSingleInvariantAtCountdown( |
|
const Factory& factory, const Operation& operation, int count, |
|
const Invariant& invariant, |
|
absl::optional<testing::AssertionResult>* reduced_res) { |
|
// If reduced_res is empty, it means the current call to |
|
// TestSingleInvariantAtCountdown(...) is the first test being run so we do |
|
// want to run it. Alternatively, if it's not empty (meaning a previous test |
|
// has run) we want to check if it passed. If the previous test did pass, we |
|
// want to contine running tests so we do want to run the current one. If it |
|
// failed, we want to short circuit so as not to overwrite the AssertionResult |
|
// output. If that's the case, we do not run the current test and instead we |
|
// simply return. |
|
if (!reduced_res->has_value() || reduced_res->value()) { |
|
*reduced_res = TestSingleInvariantAtCountdownImpl(factory, operation, count, |
|
invariant); |
|
} |
|
return 0; |
|
} |
|
|
|
template <typename Factory, typename Operation, typename... Invariants> |
|
inline absl::optional<testing::AssertionResult> TestAllInvariantsAtCountdown( |
|
const Factory& factory, const Operation& operation, int count, |
|
const Invariants&... invariants) { |
|
absl::optional<testing::AssertionResult> reduced_res; |
|
|
|
// Run each checker, short circuiting after the first failure |
|
int dummy[] = { |
|
0, (TestSingleInvariantAtCountdown(factory, operation, count, invariants, |
|
&reduced_res))...}; |
|
static_cast<void>(dummy); |
|
return reduced_res; |
|
} |
|
|
|
} // namespace exceptions_internal |
|
|
|
extern exceptions_internal::NoThrowTag nothrow_ctor; |
|
|
|
bool nothrow_guarantee(const void*); |
|
extern exceptions_internal::StrongGuaranteeTagType strong_guarantee; |
|
|
|
// A test class which is convertible to bool. The conversion can be |
|
// instrumented to throw at a controlled time. |
|
class ThrowingBool { |
|
public: |
|
ThrowingBool(bool b) noexcept : b_(b) {} // NOLINT(runtime/explicit) |
|
operator bool() const { // NOLINT |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return b_; |
|
} |
|
|
|
private: |
|
bool b_; |
|
}; |
|
|
|
/* |
|
* Configuration enum for the ThrowingValue type that defines behavior for the |
|
* lifetime of the instance. Use testing::nothrow_ctor to prevent the integer |
|
* constructor from throwing. |
|
* |
|
* kEverythingThrows: Every operation can throw an exception |
|
* kNoThrowCopy: Copy construction and copy assignment will not throw |
|
* kNoThrowMove: Move construction and move assignment will not throw |
|
* kNoThrowNew: Overloaded operators new and new[] will not throw |
|
*/ |
|
enum class TypeSpec { |
|
kEverythingThrows = 0, |
|
kNoThrowCopy = 1, |
|
kNoThrowMove = 1 << 1, |
|
kNoThrowNew = 1 << 2, |
|
}; |
|
|
|
/* |
|
* A testing class instrumented to throw an exception at a controlled time. |
|
* |
|
* ThrowingValue implements a slightly relaxed version of the Regular concept -- |
|
* that is it's a value type with the expected semantics. It also implements |
|
* arithmetic operations. It doesn't implement member and pointer operators |
|
* like operator-> or operator[]. |
|
* |
|
* ThrowingValue can be instrumented to have certain operations be noexcept by |
|
* using compile-time bitfield template arguments. That is, to make an |
|
* ThrowingValue which has noexcept move construction/assignment and noexcept |
|
* copy construction/assignment, use the following: |
|
* ThrowingValue<testing::kNoThrowMove | testing::kNoThrowCopy> my_thrwr{val}; |
|
*/ |
|
template <TypeSpec Spec = TypeSpec::kEverythingThrows> |
|
class ThrowingValue : private exceptions_internal::TrackedObject { |
|
static constexpr bool IsSpecified(TypeSpec spec) { |
|
return static_cast<bool>(Spec & spec); |
|
} |
|
|
|
static constexpr int kBadValue = 938550620; |
|
|
|
public: |
|
ThrowingValue() : TrackedObject(ABSL_PRETTY_FUNCTION) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
dummy_ = 0; |
|
} |
|
|
|
ThrowingValue(const ThrowingValue& other) noexcept( |
|
IsSpecified(TypeSpec::kNoThrowCopy)) |
|
: TrackedObject(ABSL_PRETTY_FUNCTION) { |
|
if (!IsSpecified(TypeSpec::kNoThrowCopy)) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
} |
|
dummy_ = other.dummy_; |
|
} |
|
|
|
ThrowingValue(ThrowingValue&& other) noexcept( |
|
IsSpecified(TypeSpec::kNoThrowMove)) |
|
: TrackedObject(ABSL_PRETTY_FUNCTION) { |
|
if (!IsSpecified(TypeSpec::kNoThrowMove)) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
} |
|
dummy_ = other.dummy_; |
|
} |
|
|
|
explicit ThrowingValue(int i) : TrackedObject(ABSL_PRETTY_FUNCTION) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
dummy_ = i; |
|
} |
|
|
|
ThrowingValue(int i, exceptions_internal::NoThrowTag) noexcept |
|
: TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(i) {} |
|
|
|
// absl expects nothrow destructors |
|
~ThrowingValue() noexcept = default; |
|
|
|
ThrowingValue& operator=(const ThrowingValue& other) noexcept( |
|
IsSpecified(TypeSpec::kNoThrowCopy)) { |
|
dummy_ = kBadValue; |
|
if (!IsSpecified(TypeSpec::kNoThrowCopy)) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
} |
|
dummy_ = other.dummy_; |
|
return *this; |
|
} |
|
|
|
ThrowingValue& operator=(ThrowingValue&& other) noexcept( |
|
IsSpecified(TypeSpec::kNoThrowMove)) { |
|
dummy_ = kBadValue; |
|
if (!IsSpecified(TypeSpec::kNoThrowMove)) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
} |
|
dummy_ = other.dummy_; |
|
return *this; |
|
} |
|
|
|
// Arithmetic Operators |
|
ThrowingValue operator+(const ThrowingValue& other) const { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return ThrowingValue(dummy_ + other.dummy_, nothrow_ctor); |
|
} |
|
|
|
ThrowingValue operator+() const { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return ThrowingValue(dummy_, nothrow_ctor); |
|
} |
|
|
|
ThrowingValue operator-(const ThrowingValue& other) const { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return ThrowingValue(dummy_ - other.dummy_, nothrow_ctor); |
|
} |
|
|
|
ThrowingValue operator-() const { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return ThrowingValue(-dummy_, nothrow_ctor); |
|
} |
|
|
|
ThrowingValue& operator++() { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
++dummy_; |
|
return *this; |
|
} |
|
|
|
ThrowingValue operator++(int) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
auto out = ThrowingValue(dummy_, nothrow_ctor); |
|
++dummy_; |
|
return out; |
|
} |
|
|
|
ThrowingValue& operator--() { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
--dummy_; |
|
return *this; |
|
} |
|
|
|
ThrowingValue operator--(int) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
auto out = ThrowingValue(dummy_, nothrow_ctor); |
|
--dummy_; |
|
return out; |
|
} |
|
|
|
ThrowingValue operator*(const ThrowingValue& other) const { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return ThrowingValue(dummy_ * other.dummy_, nothrow_ctor); |
|
} |
|
|
|
ThrowingValue operator/(const ThrowingValue& other) const { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return ThrowingValue(dummy_ / other.dummy_, nothrow_ctor); |
|
} |
|
|
|
ThrowingValue operator%(const ThrowingValue& other) const { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return ThrowingValue(dummy_ % other.dummy_, nothrow_ctor); |
|
} |
|
|
|
ThrowingValue operator<<(int shift) const { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return ThrowingValue(dummy_ << shift, nothrow_ctor); |
|
} |
|
|
|
ThrowingValue operator>>(int shift) const { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return ThrowingValue(dummy_ >> shift, nothrow_ctor); |
|
} |
|
|
|
// Comparison Operators |
|
// NOTE: We use `ThrowingBool` instead of `bool` because most STL |
|
// types/containers requires T to be convertible to bool. |
|
friend ThrowingBool operator==(const ThrowingValue& a, |
|
const ThrowingValue& b) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return a.dummy_ == b.dummy_; |
|
} |
|
friend ThrowingBool operator!=(const ThrowingValue& a, |
|
const ThrowingValue& b) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return a.dummy_ != b.dummy_; |
|
} |
|
friend ThrowingBool operator<(const ThrowingValue& a, |
|
const ThrowingValue& b) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return a.dummy_ < b.dummy_; |
|
} |
|
friend ThrowingBool operator<=(const ThrowingValue& a, |
|
const ThrowingValue& b) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return a.dummy_ <= b.dummy_; |
|
} |
|
friend ThrowingBool operator>(const ThrowingValue& a, |
|
const ThrowingValue& b) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return a.dummy_ > b.dummy_; |
|
} |
|
friend ThrowingBool operator>=(const ThrowingValue& a, |
|
const ThrowingValue& b) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return a.dummy_ >= b.dummy_; |
|
} |
|
|
|
// Logical Operators |
|
ThrowingBool operator!() const { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return !dummy_; |
|
} |
|
|
|
ThrowingBool operator&&(const ThrowingValue& other) const { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return dummy_ && other.dummy_; |
|
} |
|
|
|
ThrowingBool operator||(const ThrowingValue& other) const { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return dummy_ || other.dummy_; |
|
} |
|
|
|
// Bitwise Logical Operators |
|
ThrowingValue operator~() const { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return ThrowingValue(~dummy_, nothrow_ctor); |
|
} |
|
|
|
ThrowingValue operator&(const ThrowingValue& other) const { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return ThrowingValue(dummy_ & other.dummy_, nothrow_ctor); |
|
} |
|
|
|
ThrowingValue operator|(const ThrowingValue& other) const { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return ThrowingValue(dummy_ | other.dummy_, nothrow_ctor); |
|
} |
|
|
|
ThrowingValue operator^(const ThrowingValue& other) const { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return ThrowingValue(dummy_ ^ other.dummy_, nothrow_ctor); |
|
} |
|
|
|
// Compound Assignment operators |
|
ThrowingValue& operator+=(const ThrowingValue& other) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
dummy_ += other.dummy_; |
|
return *this; |
|
} |
|
|
|
ThrowingValue& operator-=(const ThrowingValue& other) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
dummy_ -= other.dummy_; |
|
return *this; |
|
} |
|
|
|
ThrowingValue& operator*=(const ThrowingValue& other) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
dummy_ *= other.dummy_; |
|
return *this; |
|
} |
|
|
|
ThrowingValue& operator/=(const ThrowingValue& other) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
dummy_ /= other.dummy_; |
|
return *this; |
|
} |
|
|
|
ThrowingValue& operator%=(const ThrowingValue& other) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
dummy_ %= other.dummy_; |
|
return *this; |
|
} |
|
|
|
ThrowingValue& operator&=(const ThrowingValue& other) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
dummy_ &= other.dummy_; |
|
return *this; |
|
} |
|
|
|
ThrowingValue& operator|=(const ThrowingValue& other) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
dummy_ |= other.dummy_; |
|
return *this; |
|
} |
|
|
|
ThrowingValue& operator^=(const ThrowingValue& other) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
dummy_ ^= other.dummy_; |
|
return *this; |
|
} |
|
|
|
ThrowingValue& operator<<=(int shift) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
dummy_ <<= shift; |
|
return *this; |
|
} |
|
|
|
ThrowingValue& operator>>=(int shift) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
dummy_ >>= shift; |
|
return *this; |
|
} |
|
|
|
// Pointer operators |
|
void operator&() const = delete; // NOLINT(runtime/operator) |
|
|
|
// Stream operators |
|
friend std::ostream& operator<<(std::ostream& os, const ThrowingValue&) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return os; |
|
} |
|
|
|
friend std::istream& operator>>(std::istream& is, const ThrowingValue&) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return is; |
|
} |
|
|
|
// Memory management operators |
|
// Args.. allows us to overload regular and placement new in one shot |
|
template <typename... Args> |
|
static void* operator new(size_t s, Args&&... args) noexcept( |
|
IsSpecified(TypeSpec::kNoThrowNew)) { |
|
if (!IsSpecified(TypeSpec::kNoThrowNew)) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION, true); |
|
} |
|
return ::operator new(s, std::forward<Args>(args)...); |
|
} |
|
|
|
template <typename... Args> |
|
static void* operator new[](size_t s, Args&&... args) noexcept( |
|
IsSpecified(TypeSpec::kNoThrowNew)) { |
|
if (!IsSpecified(TypeSpec::kNoThrowNew)) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION, true); |
|
} |
|
return ::operator new[](s, std::forward<Args>(args)...); |
|
} |
|
|
|
// Abseil doesn't support throwing overloaded operator delete. These are |
|
// provided so a throwing operator-new can clean up after itself. |
|
// |
|
// We provide both regular and templated operator delete because if only the |
|
// templated version is provided as we did with operator new, the compiler has |
|
// no way of knowing which overload of operator delete to call. See |
|
// http://en.cppreference.com/w/cpp/memory/new/operator_delete and |
|
// http://en.cppreference.com/w/cpp/language/delete for the gory details. |
|
void operator delete(void* p) noexcept { ::operator delete(p); } |
|
|
|
template <typename... Args> |
|
void operator delete(void* p, Args&&... args) noexcept { |
|
::operator delete(p, std::forward<Args>(args)...); |
|
} |
|
|
|
void operator delete[](void* p) noexcept { return ::operator delete[](p); } |
|
|
|
template <typename... Args> |
|
void operator delete[](void* p, Args&&... args) noexcept { |
|
return ::operator delete[](p, std::forward<Args>(args)...); |
|
} |
|
|
|
// Non-standard access to the actual contained value. No need for this to |
|
// throw. |
|
int& Get() noexcept { return dummy_; } |
|
const int& Get() const noexcept { return dummy_; } |
|
|
|
private: |
|
int dummy_; |
|
}; |
|
// While not having to do with exceptions, explicitly delete comma operator, to |
|
// make sure we don't use it on user-supplied types. |
|
template <TypeSpec Spec, typename T> |
|
void operator,(const ThrowingValue<Spec>&, T&&) = delete; |
|
template <TypeSpec Spec, typename T> |
|
void operator,(T&&, const ThrowingValue<Spec>&) = delete; |
|
|
|
/* |
|
* Configuration enum for the ThrowingAllocator type that defines behavior for |
|
* the lifetime of the instance. |
|
* |
|
* kEverythingThrows: Calls to the member functions may throw |
|
* kNoThrowAllocate: Calls to the member functions will not throw |
|
*/ |
|
enum class AllocSpec { |
|
kEverythingThrows = 0, |
|
kNoThrowAllocate = 1, |
|
}; |
|
|
|
/* |
|
* An allocator type which is instrumented to throw at a controlled time, or not |
|
* to throw, using AllocSpec. The supported settings are the default of every |
|
* function which is allowed to throw in a conforming allocator possibly |
|
* throwing, or nothing throws, in line with the ABSL_ALLOCATOR_THROWS |
|
* configuration macro. |
|
*/ |
|
template <typename T, AllocSpec Spec = AllocSpec::kEverythingThrows> |
|
class ThrowingAllocator : private exceptions_internal::TrackedObject { |
|
static constexpr bool IsSpecified(AllocSpec spec) { |
|
return static_cast<bool>(Spec & spec); |
|
} |
|
|
|
public: |
|
using pointer = T*; |
|
using const_pointer = const T*; |
|
using reference = T&; |
|
using const_reference = const T&; |
|
using void_pointer = void*; |
|
using const_void_pointer = const void*; |
|
using value_type = T; |
|
using size_type = size_t; |
|
using difference_type = ptrdiff_t; |
|
|
|
using is_nothrow = |
|
std::integral_constant<bool, Spec == AllocSpec::kNoThrowAllocate>; |
|
using propagate_on_container_copy_assignment = std::true_type; |
|
using propagate_on_container_move_assignment = std::true_type; |
|
using propagate_on_container_swap = std::true_type; |
|
using is_always_equal = std::false_type; |
|
|
|
ThrowingAllocator() : TrackedObject(ABSL_PRETTY_FUNCTION) { |
|
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION); |
|
dummy_ = std::make_shared<const int>(next_id_++); |
|
} |
|
|
|
template <typename U> |
|
ThrowingAllocator(const ThrowingAllocator<U, Spec>& other) noexcept // NOLINT |
|
: TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(other.State()) {} |
|
|
|
// According to C++11 standard [17.6.3.5], Table 28, the move/copy ctors of |
|
// allocator shall not exit via an exception, thus they are marked noexcept. |
|
ThrowingAllocator(const ThrowingAllocator& other) noexcept |
|
: TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(other.State()) {} |
|
|
|
template <typename U> |
|
ThrowingAllocator(ThrowingAllocator<U, Spec>&& other) noexcept // NOLINT |
|
: TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(std::move(other.State())) {} |
|
|
|
ThrowingAllocator(ThrowingAllocator&& other) noexcept |
|
: TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(std::move(other.State())) {} |
|
|
|
~ThrowingAllocator() noexcept = default; |
|
|
|
ThrowingAllocator& operator=(const ThrowingAllocator& other) noexcept { |
|
dummy_ = other.State(); |
|
return *this; |
|
} |
|
|
|
template <typename U> |
|
ThrowingAllocator& operator=( |
|
const ThrowingAllocator<U, Spec>& other) noexcept { |
|
dummy_ = other.State(); |
|
return *this; |
|
} |
|
|
|
template <typename U> |
|
ThrowingAllocator& operator=(ThrowingAllocator<U, Spec>&& other) noexcept { |
|
dummy_ = std::move(other.State()); |
|
return *this; |
|
} |
|
|
|
template <typename U> |
|
struct rebind { |
|
using other = ThrowingAllocator<U, Spec>; |
|
}; |
|
|
|
pointer allocate(size_type n) noexcept( |
|
IsSpecified(AllocSpec::kNoThrowAllocate)) { |
|
ReadStateAndMaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return static_cast<pointer>(::operator new(n * sizeof(T))); |
|
} |
|
|
|
pointer allocate(size_type n, const_void_pointer) noexcept( |
|
IsSpecified(AllocSpec::kNoThrowAllocate)) { |
|
return allocate(n); |
|
} |
|
|
|
void deallocate(pointer ptr, size_type) noexcept { |
|
ReadState(); |
|
::operator delete(static_cast<void*>(ptr)); |
|
} |
|
|
|
template <typename U, typename... Args> |
|
void construct(U* ptr, Args&&... args) noexcept( |
|
IsSpecified(AllocSpec::kNoThrowAllocate)) { |
|
ReadStateAndMaybeThrow(ABSL_PRETTY_FUNCTION); |
|
::new (static_cast<void*>(ptr)) U(std::forward<Args>(args)...); |
|
} |
|
|
|
template <typename U> |
|
void destroy(U* p) noexcept { |
|
ReadState(); |
|
p->~U(); |
|
} |
|
|
|
size_type max_size() const noexcept { |
|
return std::numeric_limits<difference_type>::max() / sizeof(value_type); |
|
} |
|
|
|
ThrowingAllocator select_on_container_copy_construction() noexcept( |
|
IsSpecified(AllocSpec::kNoThrowAllocate)) { |
|
auto& out = *this; |
|
ReadStateAndMaybeThrow(ABSL_PRETTY_FUNCTION); |
|
return out; |
|
} |
|
|
|
template <typename U> |
|
bool operator==(const ThrowingAllocator<U, Spec>& other) const noexcept { |
|
return dummy_ == other.dummy_; |
|
} |
|
|
|
template <typename U> |
|
bool operator!=(const ThrowingAllocator<U, Spec>& other) const noexcept { |
|
return dummy_ != other.dummy_; |
|
} |
|
|
|
template <typename, AllocSpec> |
|
friend class ThrowingAllocator; |
|
|
|
private: |
|
const std::shared_ptr<const int>& State() const { return dummy_; } |
|
std::shared_ptr<const int>& State() { return dummy_; } |
|
|
|
void ReadState() { |
|
// we know that this will never be true, but the compiler doesn't, so this |
|
// should safely force a read of the value. |
|
if (*dummy_ < 0) std::abort(); |
|
} |
|
|
|
void ReadStateAndMaybeThrow(absl::string_view msg) const { |
|
if (!IsSpecified(AllocSpec::kNoThrowAllocate)) { |
|
exceptions_internal::MaybeThrow( |
|
absl::Substitute("Allocator id $0 threw from $1", *dummy_, msg)); |
|
} |
|
} |
|
|
|
static int next_id_; |
|
std::shared_ptr<const int> dummy_; |
|
}; |
|
|
|
template <typename T, AllocSpec Spec> |
|
int ThrowingAllocator<T, Spec>::next_id_ = 0; |
|
|
|
// Tests for resource leaks by attempting to construct a T using args repeatedly |
|
// until successful, using the countdown method. Side effects can then be |
|
// tested for resource leaks. |
|
template <typename T, typename... Args> |
|
void TestThrowingCtor(Args&&... args) { |
|
struct Cleanup { |
|
~Cleanup() { exceptions_internal::UnsetCountdown(); } |
|
} c; |
|
for (int count = 0;; ++count) { |
|
exceptions_internal::ConstructorTracker ct(count); |
|
exceptions_internal::SetCountdown(count); |
|
try { |
|
T temp(std::forward<Args>(args)...); |
|
static_cast<void>(temp); |
|
break; |
|
} catch (const exceptions_internal::TestException&) { |
|
} |
|
} |
|
} |
|
|
|
namespace exceptions_internal { |
|
|
|
// Dummy struct for ExceptionSafetyTester<> partial state. |
|
struct UninitializedT {}; |
|
|
|
template <typename T> |
|
class DefaultFactory { |
|
public: |
|
explicit DefaultFactory(const T& t) : t_(t) {} |
|
std::unique_ptr<T> operator()() const { return absl::make_unique<T>(t_); } |
|
|
|
private: |
|
T t_; |
|
}; |
|
|
|
template <size_t LazyInvariantsCount, typename LazyFactory, |
|
typename LazyOperation> |
|
using EnableIfTestable = typename absl::enable_if_t< |
|
LazyInvariantsCount != 0 && |
|
!std::is_same<LazyFactory, UninitializedT>::value && |
|
!std::is_same<LazyOperation, UninitializedT>::value>; |
|
|
|
template <typename Factory = UninitializedT, |
|
typename Operation = UninitializedT, typename... Invariants> |
|
class ExceptionSafetyTester; |
|
|
|
} // namespace exceptions_internal |
|
|
|
exceptions_internal::ExceptionSafetyTester<> MakeExceptionSafetyTester(); |
|
|
|
namespace exceptions_internal { |
|
|
|
/* |
|
* Builds a tester object that tests if performing a operation on a T follows |
|
* exception safety guarantees. Verification is done via invariant assertion |
|
* callbacks applied to T instances post-throw. |
|
* |
|
* Template parameters for ExceptionSafetyTester: |
|
* |
|
* - Factory: The factory object (passed in via tester.WithFactory(...) or |
|
* tester.WithInitialValue(...)) must be invocable with the signature |
|
* `std::unique_ptr<T> operator()() const` where T is the type being tested. |
|
* It is used for reliably creating identical T instances to test on. |
|
* |
|
* - Operation: The operation object (passsed in via tester.WithOperation(...) |
|
* or tester.Test(...)) must be invocable with the signature |
|
* `void operator()(T*) const` where T is the type being tested. It is used |
|
* for performing steps on a T instance that may throw and that need to be |
|
* checked for exception safety. Each call to the operation will receive a |
|
* fresh T instance so it's free to modify and destroy the T instances as it |
|
* pleases. |
|
* |
|
* - Invariants...: The invariant assertion callback objects (passed in via |
|
* tester.WithInvariants(...)) must be invocable with the signature |
|
* `testing::AssertionResult operator()(T*) const` where T is the type being |
|
* tested. Invariant assertion callbacks are provided T instances post-throw. |
|
* They must return testing::AssertionSuccess when the type invariants of the |
|
* provided T instance hold. If the type invariants of the T instance do not |
|
* hold, they must return testing::AssertionFailure. Execution order of |
|
* Invariants... is unspecified. They will each individually get a fresh T |
|
* instance so they are free to modify and destroy the T instances as they |
|
* please. |
|
*/ |
|
template <typename Factory, typename Operation, typename... Invariants> |
|
class ExceptionSafetyTester { |
|
public: |
|
/* |
|
* Returns a new ExceptionSafetyTester with an included T factory based on the |
|
* provided T instance. The existing factory will not be included in the newly |
|
* created tester instance. The created factory returns a new T instance by |
|
* copy-constructing the provided const T& t. |
|
* |
|
* Preconditions for tester.WithInitialValue(const T& t): |
|
* |
|
* - The const T& t object must be copy-constructible where T is the type |
|
* being tested. For non-copy-constructible objects, use the method |
|
* tester.WithFactory(...). |
|
*/ |
|
template <typename T> |
|
ExceptionSafetyTester<DefaultFactory<T>, Operation, Invariants...> |
|
WithInitialValue(const T& t) const { |
|
return WithFactory(DefaultFactory<T>(t)); |
|
} |
|
|
|
/* |
|
* Returns a new ExceptionSafetyTester with the provided T factory included. |
|
* The existing factory will not be included in the newly-created tester |
|
* instance. This method is intended for use with types lacking a copy |
|
* constructor. Types that can be copy-constructed should instead use the |
|
* method tester.WithInitialValue(...). |
|
*/ |
|
template <typename NewFactory> |
|
ExceptionSafetyTester<absl::decay_t<NewFactory>, Operation, Invariants...> |
|
WithFactory(const NewFactory& new_factory) const { |
|
return {new_factory, operation_, invariants_}; |
|
} |
|
|
|
/* |
|
* Returns a new ExceptionSafetyTester with the provided testable operation |
|
* included. The existing operation will not be included in the newly created |
|
* tester. |
|
*/ |
|
template <typename NewOperation> |
|
ExceptionSafetyTester<Factory, absl::decay_t<NewOperation>, Invariants...> |
|
WithOperation(const NewOperation& new_operation) const { |
|
return {factory_, new_operation, invariants_}; |
|
} |
|
|
|
/* |
|
* Returns a new ExceptionSafetyTester with the provided MoreInvariants... |
|
* combined with the Invariants... that were already included in the instance |
|
* on which the method was called. Invariants... cannot be removed or replaced |
|
* once added to an ExceptionSafetyTester instance. A fresh object must be |
|
* created in order to get an empty Invariants... list. |
|
* |
|
* In addition to passing in custom invariant assertion callbacks, this method |
|
* accepts `testing::strong_guarantee` as an argument which checks T instances |
|
* post-throw against freshly created T instances via operator== to verify |
|
* that any state changes made during the execution of the operation were |
|
* properly rolled back. |
|
*/ |
|
template <typename... MoreInvariants> |
|
ExceptionSafetyTester<Factory, Operation, Invariants..., |
|
absl::decay_t<MoreInvariants>...> |
|
WithInvariants(const MoreInvariants&... more_invariants) const { |
|
return {factory_, operation_, |
|
std::tuple_cat(invariants_, |
|
std::tuple<absl::decay_t<MoreInvariants>...>( |
|
more_invariants...))}; |
|
} |
|
|
|
/* |
|
* Returns a testing::AssertionResult that is the reduced result of the |
|
* exception safety algorithm. The algorithm short circuits and returns |
|
* AssertionFailure after the first invariant callback returns an |
|
* AssertionFailure. Otherwise, if all invariant callbacks return an |
|
* AssertionSuccess, the reduced result is AssertionSuccess. |
|
* |
|
* The passed-in testable operation will not be saved in a new tester instance |
|
* nor will it modify/replace the existing tester instance. This is useful |
|
* when each operation being tested is unique and does not need to be reused. |
|
* |
|
* Preconditions for tester.Test(const NewOperation& new_operation): |
|
* |
|
* - May only be called after at least one invariant assertion callback and a |
|
* factory or initial value have been provided. |
|
*/ |
|
template < |
|
typename NewOperation, |
|
typename = EnableIfTestable<sizeof...(Invariants), Factory, NewOperation>> |
|
testing::AssertionResult Test(const NewOperation& new_operation) const { |
|
return TestImpl(new_operation, absl::index_sequence_for<Invariants...>()); |
|
} |
|
|
|
/* |
|
* Returns a testing::AssertionResult that is the reduced result of the |
|
* exception safety algorithm. The algorithm short circuits and returns |
|
* AssertionFailure after the first invariant callback returns an |
|
* AssertionFailure. Otherwise, if all invariant callbacks return an |
|
* AssertionSuccess, the reduced result is AssertionSuccess. |
|
* |
|
* Preconditions for tester.Test(): |
|
* |
|
* - May only be called after at least one invariant assertion callback, a |
|
* factory or initial value and a testable operation have been provided. |
|
*/ |
|
template <typename LazyOperation = Operation, |
|
typename = |
|
EnableIfTestable<sizeof...(Invariants), Factory, LazyOperation>> |
|
testing::AssertionResult Test() const { |
|
return TestImpl(operation_, absl::index_sequence_for<Invariants...>()); |
|
} |
|
|
|
private: |
|
template <typename, typename, typename...> |
|
friend class ExceptionSafetyTester; |
|
|
|
friend ExceptionSafetyTester<> testing::MakeExceptionSafetyTester(); |
|
|
|
ExceptionSafetyTester() {} |
|
|
|
ExceptionSafetyTester(const Factory& f, const Operation& o, |
|
const std::tuple<Invariants...>& i) |
|
: factory_(f), operation_(o), invariants_(i) {} |
|
|
|
template <typename SelectedOperation, size_t... Indices> |
|
testing::AssertionResult TestImpl(const SelectedOperation& selected_operation, |
|
absl::index_sequence<Indices...>) const { |
|
// Starting from 0 and counting upwards until one of the exit conditions is |
|
// hit... |
|
for (int count = 0;; ++count) { |
|
exceptions_internal::ConstructorTracker ct(count); |
|
|
|
// Run the full exception safety test algorithm for the current countdown |
|
auto reduced_res = |
|
TestAllInvariantsAtCountdown(factory_, selected_operation, count, |
|
std::get<Indices>(invariants_)...); |
|
// If there is no value in the optional, no invariants were run because no |
|
// exception was thrown. This means that the test is complete and the loop |
|
// can exit successfully. |
|
if (!reduced_res.has_value()) { |
|
return testing::AssertionSuccess(); |
|
} |
|
// If the optional is not empty and the value is falsy, an invariant check |
|
// failed so the test must exit to propegate the failure. |
|
if (!reduced_res.value()) { |
|
return reduced_res.value(); |
|
} |
|
// If the optional is not empty and the value is not falsy, it means |
|
// exceptions were thrown but the invariants passed so the test must |
|
// continue to run. |
|
} |
|
} |
|
|
|
Factory factory_; |
|
Operation operation_; |
|
std::tuple<Invariants...> invariants_; |
|
}; |
|
|
|
} // namespace exceptions_internal |
|
|
|
/* |
|
* Constructs an empty ExceptionSafetyTester. All ExceptionSafetyTester |
|
* objects are immutable and all With[thing] mutation methods return new |
|
* instances of ExceptionSafetyTester. |
|
* |
|
* In order to test a T for exception safety, a factory for that T, a testable |
|
* operation, and at least one invariant callback returning an assertion |
|
* result must be applied using the respective methods. |
|
*/ |
|
inline exceptions_internal::ExceptionSafetyTester<> |
|
MakeExceptionSafetyTester() { |
|
return {}; |
|
} |
|
|
|
} // namespace testing |
|
|
|
#endif // ABSL_BASE_INTERNAL_EXCEPTION_SAFETY_TESTING_H_
|
|
|