Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

575 lines
22 KiB

// Copyright 2021 The Abseil Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: cord_buffer.h
// -----------------------------------------------------------------------------
//
// This file defines an `absl::CordBuffer` data structure to hold data for
// eventual inclusion within an existing `Cord` data structure. Cord buffers are
// useful for building large Cords that may require custom allocation of its
// associated memory.
//
#ifndef ABSL_STRINGS_CORD_BUFFER_H_
#define ABSL_STRINGS_CORD_BUFFER_H_
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <utility>
#include "absl/base/config.h"
#include "absl/base/macros.h"
#include "absl/numeric/bits.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_flat.h"
#include "absl/types/span.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
class Cord;
class CordBufferTestPeer;
// CordBuffer
//
// CordBuffer manages memory buffers for purposes such as zero-copy APIs as well
// as applications building cords with large data requiring granular control
// over the allocation and size of cord data. For example, a function creating
// a cord of random data could use a CordBuffer as follows:
//
// absl::Cord CreateRandomCord(size_t length) {
// absl::Cord cord;
// while (length > 0) {
// CordBuffer buffer = CordBuffer::CreateWithDefaultLimit(length);
// absl::Span<char> data = buffer.available_up_to(length);
// FillRandomValues(data.data(), data.size());
// buffer.IncreaseLengthBy(data.size());
// cord.Append(std::move(buffer));
// length -= data.size();
// }
// return cord;
// }
//
// CordBuffer instances are by default limited to a capacity of `kDefaultLimit`
// bytes. `kDefaultLimit` is currently just under 4KiB, but this default may
// change in the future and/or for specific architectures. The default limit is
// aimed to provide a good trade-off between performance and memory overhead.
// Smaller buffers typically incur more compute cost while larger buffers are
// more CPU efficient but create significant memory overhead because of such
// allocations being less granular. Using larger buffers may also increase the
// risk of memory fragmentation.
//
// Applications create a buffer using one of the `CreateWithDefaultLimit()` or
// `CreateWithCustomLimit()` methods. The returned instance will have a non-zero
// capacity and a zero length. Applications use the `data()` method to set the
// contents of the managed memory, and once done filling the buffer, use the
// `IncreaseLengthBy()` or 'SetLength()' method to specify the length of the
// initialized data before adding the buffer to a Cord.
//
// The `CreateWithCustomLimit()` method is intended for applications needing
// larger buffers than the default memory limit, allowing the allocation of up
// to a capacity of `kCustomLimit` bytes minus some minimum internal overhead.
// The usage of `CreateWithCustomLimit()` should be limited to only those use
// cases where the distribution of the input is relatively well known, and/or
// where the trade-off between the efficiency gains outweigh the risk of memory
// fragmentation. See the documentation for `CreateWithCustomLimit()` for more
// information on using larger custom limits.
//
// The capacity of a `CordBuffer` returned by one of the `Create` methods may
// be larger than the requested capacity due to rounding, alignment and
// granularity of the memory allocator. Applications should use the `capacity`
// method to obtain the effective capacity of the returned instance as
// demonstrated in the provided example above.
//
// CordBuffer is a move-only class. All references into the managed memory are
// invalidated when an instance is moved into either another CordBuffer instance
// or a Cord. Writing to a location obtained by a previous call to `data()`
// after an instance was moved will lead to undefined behavior.
//
// A `moved from` CordBuffer instance will have a valid, but empty state.
// CordBuffer is thread compatible.
class CordBuffer {
public:
// kDefaultLimit
//
// Default capacity limits of allocated CordBuffers.
// See the class comments for more information on allocation limits.
static constexpr size_t kDefaultLimit = cord_internal::kMaxFlatLength;
// kCustomLimit
//
// Maximum size for CreateWithCustomLimit() allocated buffers.
// Note that the effective capacity may be slightly less
// because of internal overhead of internal cord buffers.
static constexpr size_t kCustomLimit = 64U << 10;
// Constructors, Destructors and Assignment Operators
// Creates an empty CordBuffer.
CordBuffer() = default;
// Destroys this CordBuffer instance and, if not empty, releases any memory
// managed by this instance, invalidating previously returned references.
~CordBuffer();
// CordBuffer is move-only
CordBuffer(CordBuffer&& rhs) noexcept;
CordBuffer& operator=(CordBuffer&&) noexcept;
CordBuffer(const CordBuffer&) = delete;
CordBuffer& operator=(const CordBuffer&) = delete;
// CordBuffer::MaximumPayload()
//
// Returns the guaranteed maximum payload for a CordBuffer returned by the
// `CreateWithDefaultLimit()` method. While small, each internal buffer inside
// a Cord incurs an overhead to manage the length, type and reference count
// for the buffer managed inside the cord tree. Applications can use this
// method to get approximate number of buffers required for a given byte
// size, etc.
//
// For example:
// const size_t payload = absl::CordBuffer::MaximumPayload();
// const size_t buffer_count = (total_size + payload - 1) / payload;
// buffers.reserve(buffer_count);
static constexpr size_t MaximumPayload();
// Overload to the above `MaximumPayload()` except that it returns the
// maximum payload for a CordBuffer returned by the `CreateWithCustomLimit()`
// method given the provided `block_size`.
static constexpr size_t MaximumPayload(size_t block_size);
// CordBuffer::CreateWithDefaultLimit()
//
// Creates a CordBuffer instance of the desired `capacity`, capped at the
// default limit `kDefaultLimit`. The returned buffer has a guaranteed
// capacity of at least `min(kDefaultLimit, capacity)`. See the class comments
// for more information on buffer capacities and intended usage.
static CordBuffer CreateWithDefaultLimit(size_t capacity);
// CordBuffer::CreateWithCustomLimit()
//
// Creates a CordBuffer instance of the desired `capacity` rounded to an
// appropriate power of 2 size less than, or equal to `block_size`.
// Requires `block_size` to be a power of 2.
//
// If `capacity` is less than or equal to `kDefaultLimit`, then this method
// behaves identical to `CreateWithDefaultLimit`, which means that the caller
// is guaranteed to get a buffer of at least the requested capacity.
//
// If `capacity` is greater than or equal to `block_size`, then this method
// returns a buffer with an `allocated size` of `block_size` bytes. Otherwise,
// this methods returns a buffer with a suitable smaller power of 2 block size
// to satisfy the request. The actual size depends on a number of factors, and
// is typically (but not necessarily) the highest or second highest power of 2
// value less than or equal to `capacity`.
//
// The 'allocated size' includes a small amount of overhead required for
// internal state, which is currently 13 bytes on 64-bit platforms. For
// example: a buffer created with `block_size` and `capacity' set to 8KiB
// will have an allocated size of 8KiB, and an effective internal `capacity`
// of 8KiB - 13 = 8179 bytes.
//
// To demonstrate this in practice, let's assume we want to read data from
// somewhat larger files using approximately 64KiB buffers:
//
// absl::Cord ReadFromFile(int fd, size_t n) {
// absl::Cord cord;
// while (n > 0) {
// CordBuffer buffer = CordBuffer::CreateWithCustomLimit(64 << 10, n);
// absl::Span<char> data = buffer.available_up_to(n);
// ReadFileDataOrDie(fd, data.data(), data.size());
// buffer.IncreaseLengthBy(data.size());
// cord.Append(std::move(buffer));
// n -= data.size();
// }
// return cord;
// }
//
// If we'd use this function to read a file of 659KiB, we may get the
// following pattern of allocated cord buffer sizes:
//
// CreateWithCustomLimit(64KiB, 674816) --> ~64KiB (65523)
// CreateWithCustomLimit(64KiB, 674816) --> ~64KiB (65523)
// ...
// CreateWithCustomLimit(64KiB, 19586) --> ~16KiB (16371)
// CreateWithCustomLimit(64KiB, 3215) --> 3215 (at least 3215)
//
// The reason the method returns a 16K buffer instead of a roughly 19K buffer
// is to reduce memory overhead and fragmentation risks. Using carefully
// chosen power of 2 values reduces the entropy of allocated memory sizes.
//
// Additionally, let's assume we'd use the above function on files that are
// generally smaller than 64K. If we'd use 'precise' sized buffers for such
// files, than we'd get a very wide distribution of allocated memory sizes
// rounded to 4K page sizes, and we'd end up with a lot of unused capacity.
//
// In general, application should only use custom sizes if the data they are
// consuming or storing is expected to be many times the chosen block size,
// and be based on objective data and performance metrics. For example, a
// compress function may work faster and consume less CPU when using larger
// buffers. Such an application should pick a size offering a reasonable
// trade-off between expected data size, compute savings with larger buffers,
// and the cost or fragmentation effect of larger buffers.
// Applications must pick a reasonable spot on that curve, and make sure their
// data meets their expectations in size distributions such as "mostly large".
static CordBuffer CreateWithCustomLimit(size_t block_size, size_t capacity);
// CordBuffer::available()
//
// Returns the span delineating the available capacity in this buffer
// which is defined as `{ data() + length(), capacity() - length() }`.
absl::Span<char> available();
// CordBuffer::available_up_to()
//
// Returns the span delineating the available capacity in this buffer limited
// to `size` bytes. This is equivalent to `available().subspan(0, size)`.
absl::Span<char> available_up_to(size_t size);
// CordBuffer::data()
//
// Returns a non-null reference to the data managed by this instance.
// Applications are allowed to write up to `capacity` bytes of instance data.
// CordBuffer data is uninitialized by default. Reading data from an instance
// that has not yet been initialized will lead to undefined behavior.
char* data();
const char* data() const;
// CordBuffer::length()
//
// Returns the length of this instance. The default length of a CordBuffer is
// 0, indicating an 'empty' CordBuffer. Applications must specify the length
// of the data in a CordBuffer before adding it to a Cord.
size_t length() const;
// CordBuffer::capacity()
//
// Returns the capacity of this instance. All instances have a non-zero
// capacity: default and `moved from` instances have a small internal buffer.
size_t capacity() const;
// CordBuffer::IncreaseLengthBy()
//
// Increases the length of this buffer by the specified 'n' bytes.
// Applications must make sure all data in this buffer up to the new length
// has been initialized before adding a CordBuffer to a Cord: failure to do so
// will lead to undefined behavior. Requires `length() + n <= capacity()`.
// Typically, applications will use 'available_up_to()` to get a span of the
// desired capacity, and use `span.size()` to increase the length as in:
// absl::Span<char> span = buffer.available_up_to(desired);
// buffer.IncreaseLengthBy(span.size());
// memcpy(span.data(), src, span.size());
// etc...
void IncreaseLengthBy(size_t n);
// CordBuffer::SetLength()
//
// Sets the data length of this instance. Applications must make sure all data
// of the specified length has been initialized before adding a CordBuffer to
// a Cord: failure to do so will lead to undefined behavior.
// Setting the length to a small value or zero does not release any memory
// held by this CordBuffer instance. Requires `length <= capacity()`.
// Applications should preferably use the `IncreaseLengthBy()` method above
// in combination with the 'available()` or `available_up_to()` methods.
void SetLength(size_t length);
private:
// Make sure we don't accidentally over promise.
static_assert(kCustomLimit <= cord_internal::kMaxLargeFlatSize, "");
// Assume the cost of an 'uprounded' allocation to CeilPow2(size) versus
// the cost of allocating at least 1 extra flat <= 4KB:
// - Flat overhead = 13 bytes
// - Btree amortized cost / node =~ 13 bytes
// - 64 byte granularity of tcmalloc at 4K =~ 32 byte average
// CPU cost and efficiency requires we should at least 'save' something by
// splitting, as a poor man's measure, we say the slop needs to be
// at least double the cost offset to make it worth splitting: ~128 bytes.
static constexpr size_t kMaxPageSlop = 128;
// Overhead for allocation a flat.
static constexpr size_t kOverhead = cord_internal::kFlatOverhead;
using CordRepFlat = cord_internal::CordRepFlat;
// `Rep` is the internal data representation of a CordBuffer. The internal
// representation has an internal small size optimization similar to
// std::string (SSO).
struct Rep {
// Inline SSO size of a CordBuffer
static constexpr size_t kInlineCapacity = sizeof(intptr_t) * 2 - 1;
// Creates a default instance with kInlineCapacity.
Rep() : short_rep{} {}
// Creates an instance managing an allocated non zero CordRep.
explicit Rep(cord_internal::CordRepFlat* rep) : long_rep{rep} {
assert(rep != nullptr);
}
// Returns true if this instance manages the SSO internal buffer.
bool is_short() const {
constexpr size_t offset = offsetof(Short, raw_size);
return (reinterpret_cast<const char*>(this)[offset] & 1) != 0;
}
// Returns the available area of the internal SSO data
absl::Span<char> short_available() {
const size_t length = short_length();
return absl::Span<char>(short_rep.data + length,
kInlineCapacity - length);
}
// Returns the available area of the internal SSO data
absl::Span<char> long_available() {
assert(!is_short());
const size_t length = long_rep.rep->length;
return absl::Span<char>(long_rep.rep->Data() + length,
long_rep.rep->Capacity() - length);
}
// Returns the length of the internal SSO data.
size_t short_length() const {
assert(is_short());
return static_cast<size_t>(short_rep.raw_size >> 1);
}
// Sets the length of the internal SSO data.
// Disregards any previously set CordRep instance.
void set_short_length(size_t length) {
short_rep.raw_size = static_cast<char>((length << 1) + 1);
}
// Adds `n` to the current short length.
void add_short_length(size_t n) {
assert(is_short());
short_rep.raw_size += static_cast<char>(n << 1);
}
// Returns reference to the internal SSO data buffer.
char* data() {
assert(is_short());
return short_rep.data;
}
const char* data() const {
assert(is_short());
return short_rep.data;
}
// Returns a pointer the external CordRep managed by this instance.
cord_internal::CordRepFlat* rep() const {
assert(!is_short());
return long_rep.rep;
}
// The internal representation takes advantage of the fact that allocated
// memory is always on an even address, and uses the least significant bit
// of the first or last byte (depending on endianness) as the inline size
// indicator overlapping with the least significant byte of the CordRep*.
#if defined(ABSL_IS_BIG_ENDIAN)
struct Long {
explicit Long(cord_internal::CordRepFlat* rep_arg) : rep(rep_arg) {}
void* padding;
cord_internal::CordRepFlat* rep;
};
struct Short {
char data[sizeof(Long) - 1];
char raw_size = 1;
};
#else
struct Long {
explicit Long(cord_internal::CordRepFlat* rep_arg) : rep(rep_arg) {}
cord_internal::CordRepFlat* rep;
void* padding;
};
struct Short {
char raw_size = 1;
char data[sizeof(Long) - 1];
};
#endif
union {
Long long_rep;
Short short_rep;
};
};
// Power2 functions
static bool IsPow2(size_t size) { return absl::has_single_bit(size); }
static size_t Log2Floor(size_t size) {
return static_cast<size_t>(absl::bit_width(size) - 1);
}
static size_t Log2Ceil(size_t size) {
return static_cast<size_t>(absl::bit_width(size - 1));
}
// Implementation of `CreateWithCustomLimit()`.
// This implementation allows for future memory allocation hints to
// be passed down into the CordRepFlat allocation function.
template <typename... AllocationHints>
static CordBuffer CreateWithCustomLimitImpl(size_t block_size,
size_t capacity,
AllocationHints... hints);
// Consumes the value contained in this instance and resets the instance.
// This method returns a non-null Cordrep* if the current instances manages a
// CordRep*, and resets the instance to an empty SSO instance. If the current
// instance is an SSO instance, then this method returns nullptr and sets
// `short_value` to the inlined data value. In either case, the current
// instance length is reset to zero.
// This method is intended to be used by Cord internal functions only.
cord_internal::CordRep* ConsumeValue(absl::string_view& short_value) {
cord_internal::CordRep* rep = nullptr;
if (rep_.is_short()) {
short_value = absl::string_view(rep_.data(), rep_.short_length());
} else {
rep = rep_.rep();
}
rep_.set_short_length(0);
return rep;
}
// Internal constructor.
explicit CordBuffer(cord_internal::CordRepFlat* rep) : rep_(rep) {
assert(rep != nullptr);
}
Rep rep_;
friend class Cord;
friend class CordBufferTestPeer;
};
inline constexpr size_t CordBuffer::MaximumPayload() {
return cord_internal::kMaxFlatLength;
}
inline constexpr size_t CordBuffer::MaximumPayload(size_t block_size) {
// TODO(absl-team): Use std::min when C++11 support is dropped.
return (kCustomLimit < block_size ? kCustomLimit : block_size) -
cord_internal::kFlatOverhead;
}
inline CordBuffer CordBuffer::CreateWithDefaultLimit(size_t capacity) {
if (capacity > Rep::kInlineCapacity) {
auto* rep = cord_internal::CordRepFlat::New(capacity);
rep->length = 0;
return CordBuffer(rep);
}
return CordBuffer();
}
template <typename... AllocationHints>
inline CordBuffer CordBuffer::CreateWithCustomLimitImpl(
size_t block_size, size_t capacity, AllocationHints... hints) {
assert(IsPow2(block_size));
capacity = (std::min)(capacity, kCustomLimit);
block_size = (std::min)(block_size, kCustomLimit);
if (capacity + kOverhead >= block_size) {
capacity = block_size;
} else if (capacity <= kDefaultLimit) {
capacity = capacity + kOverhead;
} else if (!IsPow2(capacity)) {
// Check if rounded up to next power 2 is a good enough fit
// with limited waste making it an acceptable direct fit.
const size_t rounded_up = size_t{1} << Log2Ceil(capacity);
const size_t slop = rounded_up - capacity;
if (slop >= kOverhead && slop <= kMaxPageSlop + kOverhead) {
capacity = rounded_up;
} else {
// Round down to highest power of 2 <= capacity.
// Consider a more aggressive step down if that may reduce the
// risk of fragmentation where 'people are holding it wrong'.
const size_t rounded_down = size_t{1} << Log2Floor(capacity);
capacity = rounded_down;
}
}
const size_t length = capacity - kOverhead;
auto* rep = CordRepFlat::New(CordRepFlat::Large(), length, hints...);
rep->length = 0;
return CordBuffer(rep);
}
inline CordBuffer CordBuffer::CreateWithCustomLimit(size_t block_size,
size_t capacity) {
return CreateWithCustomLimitImpl(block_size, capacity);
}
inline CordBuffer::~CordBuffer() {
if (!rep_.is_short()) {
cord_internal::CordRepFlat::Delete(rep_.rep());
}
}
inline CordBuffer::CordBuffer(CordBuffer&& rhs) noexcept : rep_(rhs.rep_) {
rhs.rep_.set_short_length(0);
}
inline CordBuffer& CordBuffer::operator=(CordBuffer&& rhs) noexcept {
if (!rep_.is_short()) cord_internal::CordRepFlat::Delete(rep_.rep());
rep_ = rhs.rep_;
rhs.rep_.set_short_length(0);
return *this;
}
inline absl::Span<char> CordBuffer::available() {
return rep_.is_short() ? rep_.short_available() : rep_.long_available();
}
inline absl::Span<char> CordBuffer::available_up_to(size_t size) {
return available().subspan(0, size);
}
inline char* CordBuffer::data() {
return rep_.is_short() ? rep_.data() : rep_.rep()->Data();
}
inline const char* CordBuffer::data() const {
return rep_.is_short() ? rep_.data() : rep_.rep()->Data();
}
inline size_t CordBuffer::capacity() const {
return rep_.is_short() ? Rep::kInlineCapacity : rep_.rep()->Capacity();
}
inline size_t CordBuffer::length() const {
return rep_.is_short() ? rep_.short_length() : rep_.rep()->length;
}
inline void CordBuffer::SetLength(size_t length) {
ABSL_HARDENING_ASSERT(length <= capacity());
if (rep_.is_short()) {
rep_.set_short_length(length);
} else {
rep_.rep()->length = length;
}
}
inline void CordBuffer::IncreaseLengthBy(size_t n) {
ABSL_HARDENING_ASSERT(n <= capacity() && length() + n <= capacity());
if (rep_.is_short()) {
rep_.add_short_length(n);
} else {
rep_.rep()->length += n;
}
}
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_STRINGS_CORD_BUFFER_H_