Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
855 lines
31 KiB
855 lines
31 KiB
// Copyright 2018 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
// |
|
// ----------------------------------------------------------------------------- |
|
// File: btree_map.h |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// This header file defines B-tree maps: sorted associative containers mapping |
|
// keys to values. |
|
// |
|
// * `absl::btree_map<>` |
|
// * `absl::btree_multimap<>` |
|
// |
|
// These B-tree types are similar to the corresponding types in the STL |
|
// (`std::map` and `std::multimap`) and generally conform to the STL interfaces |
|
// of those types. However, because they are implemented using B-trees, they |
|
// are more efficient in most situations. |
|
// |
|
// Unlike `std::map` and `std::multimap`, which are commonly implemented using |
|
// red-black tree nodes, B-tree maps use more generic B-tree nodes able to hold |
|
// multiple values per node. Holding multiple values per node often makes |
|
// B-tree maps perform better than their `std::map` counterparts, because |
|
// multiple entries can be checked within the same cache hit. |
|
// |
|
// However, these types should not be considered drop-in replacements for |
|
// `std::map` and `std::multimap` as there are some API differences, which are |
|
// noted in this header file. The most consequential differences with respect to |
|
// migrating to b-tree from the STL types are listed in the next paragraph. |
|
// Other API differences are minor. |
|
// |
|
// Importantly, insertions and deletions may invalidate outstanding iterators, |
|
// pointers, and references to elements. Such invalidations are typically only |
|
// an issue if insertion and deletion operations are interleaved with the use of |
|
// more than one iterator, pointer, or reference simultaneously. For this |
|
// reason, `insert()` and `erase()` return a valid iterator at the current |
|
// position (and `extract()` cannot be used in this way). Another important |
|
// difference is that key-types must be copy-constructible. |
|
// |
|
// Another API difference is that btree iterators can be subtracted, and this |
|
// is faster than using std::distance. |
|
|
|
#ifndef ABSL_CONTAINER_BTREE_MAP_H_ |
|
#define ABSL_CONTAINER_BTREE_MAP_H_ |
|
|
|
#include "absl/container/internal/btree.h" // IWYU pragma: export |
|
#include "absl/container/internal/btree_container.h" // IWYU pragma: export |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
|
|
namespace container_internal { |
|
|
|
template <typename Key, typename Data, typename Compare, typename Alloc, |
|
int TargetNodeSize, bool IsMulti> |
|
struct map_params; |
|
|
|
} // namespace container_internal |
|
|
|
// absl::btree_map<> |
|
// |
|
// An `absl::btree_map<K, V>` is an ordered associative container of |
|
// unique keys and associated values designed to be a more efficient replacement |
|
// for `std::map` (in most cases). |
|
// |
|
// Keys are sorted using an (optional) comparison function, which defaults to |
|
// `std::less<K>`. |
|
// |
|
// An `absl::btree_map<K, V>` uses a default allocator of |
|
// `std::allocator<std::pair<const K, V>>` to allocate (and deallocate) |
|
// nodes, and construct and destruct values within those nodes. You may |
|
// instead specify a custom allocator `A` (which in turn requires specifying a |
|
// custom comparator `C`) as in `absl::btree_map<K, V, C, A>`. |
|
// |
|
template <typename Key, typename Value, typename Compare = std::less<Key>, |
|
typename Alloc = std::allocator<std::pair<const Key, Value>>> |
|
class btree_map |
|
: public container_internal::btree_map_container< |
|
container_internal::btree<container_internal::map_params< |
|
Key, Value, Compare, Alloc, /*TargetNodeSize=*/256, |
|
/*IsMulti=*/false>>> { |
|
using Base = typename btree_map::btree_map_container; |
|
|
|
public: |
|
// Constructors and Assignment Operators |
|
// |
|
// A `btree_map` supports the same overload set as `std::map` |
|
// for construction and assignment: |
|
// |
|
// * Default constructor |
|
// |
|
// absl::btree_map<int, std::string> map1; |
|
// |
|
// * Initializer List constructor |
|
// |
|
// absl::btree_map<int, std::string> map2 = |
|
// {{1, "huey"}, {2, "dewey"}, {3, "louie"},}; |
|
// |
|
// * Copy constructor |
|
// |
|
// absl::btree_map<int, std::string> map3(map2); |
|
// |
|
// * Copy assignment operator |
|
// |
|
// absl::btree_map<int, std::string> map4; |
|
// map4 = map3; |
|
// |
|
// * Move constructor |
|
// |
|
// // Move is guaranteed efficient |
|
// absl::btree_map<int, std::string> map5(std::move(map4)); |
|
// |
|
// * Move assignment operator |
|
// |
|
// // May be efficient if allocators are compatible |
|
// absl::btree_map<int, std::string> map6; |
|
// map6 = std::move(map5); |
|
// |
|
// * Range constructor |
|
// |
|
// std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}}; |
|
// absl::btree_map<int, std::string> map7(v.begin(), v.end()); |
|
btree_map() {} |
|
using Base::Base; |
|
|
|
// btree_map::begin() |
|
// |
|
// Returns an iterator to the beginning of the `btree_map`. |
|
using Base::begin; |
|
|
|
// btree_map::cbegin() |
|
// |
|
// Returns a const iterator to the beginning of the `btree_map`. |
|
using Base::cbegin; |
|
|
|
// btree_map::end() |
|
// |
|
// Returns an iterator to the end of the `btree_map`. |
|
using Base::end; |
|
|
|
// btree_map::cend() |
|
// |
|
// Returns a const iterator to the end of the `btree_map`. |
|
using Base::cend; |
|
|
|
// btree_map::empty() |
|
// |
|
// Returns whether or not the `btree_map` is empty. |
|
using Base::empty; |
|
|
|
// btree_map::max_size() |
|
// |
|
// Returns the largest theoretical possible number of elements within a |
|
// `btree_map` under current memory constraints. This value can be thought |
|
// of as the largest value of `std::distance(begin(), end())` for a |
|
// `btree_map<Key, T>`. |
|
using Base::max_size; |
|
|
|
// btree_map::size() |
|
// |
|
// Returns the number of elements currently within the `btree_map`. |
|
using Base::size; |
|
|
|
// btree_map::clear() |
|
// |
|
// Removes all elements from the `btree_map`. Invalidates any references, |
|
// pointers, or iterators referring to contained elements. |
|
using Base::clear; |
|
|
|
// btree_map::erase() |
|
// |
|
// Erases elements within the `btree_map`. If an erase occurs, any references, |
|
// pointers, or iterators are invalidated. |
|
// Overloads are listed below. |
|
// |
|
// iterator erase(iterator position): |
|
// iterator erase(const_iterator position): |
|
// |
|
// Erases the element at `position` of the `btree_map`, returning |
|
// the iterator pointing to the element after the one that was erased |
|
// (or end() if none exists). |
|
// |
|
// iterator erase(const_iterator first, const_iterator last): |
|
// |
|
// Erases the elements in the open interval [`first`, `last`), returning |
|
// the iterator pointing to the element after the interval that was erased |
|
// (or end() if none exists). |
|
// |
|
// template <typename K> size_type erase(const K& key): |
|
// |
|
// Erases the element with the matching key, if it exists, returning the |
|
// number of elements erased (0 or 1). |
|
using Base::erase; |
|
|
|
// btree_map::insert() |
|
// |
|
// Inserts an element of the specified value into the `btree_map`, |
|
// returning an iterator pointing to the newly inserted element, provided that |
|
// an element with the given key does not already exist. If an insertion |
|
// occurs, any references, pointers, or iterators are invalidated. |
|
// Overloads are listed below. |
|
// |
|
// std::pair<iterator,bool> insert(const value_type& value): |
|
// |
|
// Inserts a value into the `btree_map`. Returns a pair consisting of an |
|
// iterator to the inserted element (or to the element that prevented the |
|
// insertion) and a bool denoting whether the insertion took place. |
|
// |
|
// std::pair<iterator,bool> insert(value_type&& value): |
|
// |
|
// Inserts a moveable value into the `btree_map`. Returns a pair |
|
// consisting of an iterator to the inserted element (or to the element that |
|
// prevented the insertion) and a bool denoting whether the insertion took |
|
// place. |
|
// |
|
// iterator insert(const_iterator hint, const value_type& value): |
|
// iterator insert(const_iterator hint, value_type&& value): |
|
// |
|
// Inserts a value, using the position of `hint` as a non-binding suggestion |
|
// for where to begin the insertion search. Returns an iterator to the |
|
// inserted element, or to the existing element that prevented the |
|
// insertion. |
|
// |
|
// void insert(InputIterator first, InputIterator last): |
|
// |
|
// Inserts a range of values [`first`, `last`). |
|
// |
|
// void insert(std::initializer_list<init_type> ilist): |
|
// |
|
// Inserts the elements within the initializer list `ilist`. |
|
using Base::insert; |
|
|
|
// btree_map::insert_or_assign() |
|
// |
|
// Inserts an element of the specified value into the `btree_map` provided |
|
// that a value with the given key does not already exist, or replaces the |
|
// corresponding mapped type with the forwarded `obj` argument if a key for |
|
// that value already exists, returning an iterator pointing to the newly |
|
// inserted element. Overloads are listed below. |
|
// |
|
// pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj): |
|
// pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj): |
|
// |
|
// Inserts/Assigns (or moves) the element of the specified key into the |
|
// `btree_map`. If the returned bool is true, insertion took place, and if |
|
// it's false, assignment took place. |
|
// |
|
// iterator insert_or_assign(const_iterator hint, |
|
// const key_type& k, M&& obj): |
|
// iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj): |
|
// |
|
// Inserts/Assigns (or moves) the element of the specified key into the |
|
// `btree_map` using the position of `hint` as a non-binding suggestion |
|
// for where to begin the insertion search. |
|
using Base::insert_or_assign; |
|
|
|
// btree_map::emplace() |
|
// |
|
// Inserts an element of the specified value by constructing it in-place |
|
// within the `btree_map`, provided that no element with the given key |
|
// already exists. |
|
// |
|
// The element may be constructed even if there already is an element with the |
|
// key in the container, in which case the newly constructed element will be |
|
// destroyed immediately. Prefer `try_emplace()` unless your key is not |
|
// copyable or moveable. |
|
// |
|
// If an insertion occurs, any references, pointers, or iterators are |
|
// invalidated. |
|
using Base::emplace; |
|
|
|
// btree_map::emplace_hint() |
|
// |
|
// Inserts an element of the specified value by constructing it in-place |
|
// within the `btree_map`, using the position of `hint` as a non-binding |
|
// suggestion for where to begin the insertion search, and only inserts |
|
// provided that no element with the given key already exists. |
|
// |
|
// The element may be constructed even if there already is an element with the |
|
// key in the container, in which case the newly constructed element will be |
|
// destroyed immediately. Prefer `try_emplace()` unless your key is not |
|
// copyable or moveable. |
|
// |
|
// If an insertion occurs, any references, pointers, or iterators are |
|
// invalidated. |
|
using Base::emplace_hint; |
|
|
|
// btree_map::try_emplace() |
|
// |
|
// Inserts an element of the specified value by constructing it in-place |
|
// within the `btree_map`, provided that no element with the given key |
|
// already exists. Unlike `emplace()`, if an element with the given key |
|
// already exists, we guarantee that no element is constructed. |
|
// |
|
// If an insertion occurs, any references, pointers, or iterators are |
|
// invalidated. |
|
// |
|
// Overloads are listed below. |
|
// |
|
// std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args): |
|
// std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args): |
|
// |
|
// Inserts (via copy or move) the element of the specified key into the |
|
// `btree_map`. |
|
// |
|
// iterator try_emplace(const_iterator hint, |
|
// const key_type& k, Args&&... args): |
|
// iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args): |
|
// |
|
// Inserts (via copy or move) the element of the specified key into the |
|
// `btree_map` using the position of `hint` as a non-binding suggestion |
|
// for where to begin the insertion search. |
|
using Base::try_emplace; |
|
|
|
// btree_map::extract() |
|
// |
|
// Extracts the indicated element, erasing it in the process, and returns it |
|
// as a C++17-compatible node handle. Any references, pointers, or iterators |
|
// are invalidated. Overloads are listed below. |
|
// |
|
// node_type extract(const_iterator position): |
|
// |
|
// Extracts the element at the indicated position and returns a node handle |
|
// owning that extracted data. |
|
// |
|
// template <typename K> node_type extract(const K& k): |
|
// |
|
// Extracts the element with the key matching the passed key value and |
|
// returns a node handle owning that extracted data. If the `btree_map` |
|
// does not contain an element with a matching key, this function returns an |
|
// empty node handle. |
|
// |
|
// NOTE: when compiled in an earlier version of C++ than C++17, |
|
// `node_type::key()` returns a const reference to the key instead of a |
|
// mutable reference. We cannot safely return a mutable reference without |
|
// std::launder (which is not available before C++17). |
|
// |
|
// NOTE: In this context, `node_type` refers to the C++17 concept of a |
|
// move-only type that owns and provides access to the elements in associative |
|
// containers (https://en.cppreference.com/w/cpp/container/node_handle). |
|
// It does NOT refer to the data layout of the underlying btree. |
|
using Base::extract; |
|
|
|
// btree_map::merge() |
|
// |
|
// Extracts elements from a given `source` btree_map into this |
|
// `btree_map`. If the destination `btree_map` already contains an |
|
// element with an equivalent key, that element is not extracted. |
|
using Base::merge; |
|
|
|
// btree_map::swap(btree_map& other) |
|
// |
|
// Exchanges the contents of this `btree_map` with those of the `other` |
|
// btree_map, avoiding invocation of any move, copy, or swap operations on |
|
// individual elements. |
|
// |
|
// All iterators and references on the `btree_map` remain valid, excepting |
|
// for the past-the-end iterator, which is invalidated. |
|
using Base::swap; |
|
|
|
// btree_map::at() |
|
// |
|
// Returns a reference to the mapped value of the element with key equivalent |
|
// to the passed key. |
|
using Base::at; |
|
|
|
// btree_map::contains() |
|
// |
|
// template <typename K> bool contains(const K& key) const: |
|
// |
|
// Determines whether an element comparing equal to the given `key` exists |
|
// within the `btree_map`, returning `true` if so or `false` otherwise. |
|
// |
|
// Supports heterogeneous lookup, provided that the map has a compatible |
|
// heterogeneous comparator. |
|
using Base::contains; |
|
|
|
// btree_map::count() |
|
// |
|
// template <typename K> size_type count(const K& key) const: |
|
// |
|
// Returns the number of elements comparing equal to the given `key` within |
|
// the `btree_map`. Note that this function will return either `1` or `0` |
|
// since duplicate elements are not allowed within a `btree_map`. |
|
// |
|
// Supports heterogeneous lookup, provided that the map has a compatible |
|
// heterogeneous comparator. |
|
using Base::count; |
|
|
|
// btree_map::equal_range() |
|
// |
|
// Returns a half-open range [first, last), defined by a `std::pair` of two |
|
// iterators, containing all elements with the passed key in the `btree_map`. |
|
using Base::equal_range; |
|
|
|
// btree_map::find() |
|
// |
|
// template <typename K> iterator find(const K& key): |
|
// template <typename K> const_iterator find(const K& key) const: |
|
// |
|
// Finds an element with the passed `key` within the `btree_map`. |
|
// |
|
// Supports heterogeneous lookup, provided that the map has a compatible |
|
// heterogeneous comparator. |
|
using Base::find; |
|
|
|
// btree_map::lower_bound() |
|
// |
|
// template <typename K> iterator lower_bound(const K& key): |
|
// template <typename K> const_iterator lower_bound(const K& key) const: |
|
// |
|
// Finds the first element with a key that is not less than `key` within the |
|
// `btree_map`. |
|
// |
|
// Supports heterogeneous lookup, provided that the map has a compatible |
|
// heterogeneous comparator. |
|
using Base::lower_bound; |
|
|
|
// btree_map::upper_bound() |
|
// |
|
// template <typename K> iterator upper_bound(const K& key): |
|
// template <typename K> const_iterator upper_bound(const K& key) const: |
|
// |
|
// Finds the first element with a key that is greater than `key` within the |
|
// `btree_map`. |
|
// |
|
// Supports heterogeneous lookup, provided that the map has a compatible |
|
// heterogeneous comparator. |
|
using Base::upper_bound; |
|
|
|
// btree_map::operator[]() |
|
// |
|
// Returns a reference to the value mapped to the passed key within the |
|
// `btree_map`, performing an `insert()` if the key does not already |
|
// exist. |
|
// |
|
// If an insertion occurs, any references, pointers, or iterators are |
|
// invalidated. Otherwise iterators are not affected and references are not |
|
// invalidated. Overloads are listed below. |
|
// |
|
// T& operator[](key_type&& key): |
|
// T& operator[](const key_type& key): |
|
// |
|
// Inserts a value_type object constructed in-place if the element with the |
|
// given key does not exist. |
|
using Base::operator[]; |
|
|
|
// btree_map::get_allocator() |
|
// |
|
// Returns the allocator function associated with this `btree_map`. |
|
using Base::get_allocator; |
|
|
|
// btree_map::key_comp(); |
|
// |
|
// Returns the key comparator associated with this `btree_map`. |
|
using Base::key_comp; |
|
|
|
// btree_map::value_comp(); |
|
// |
|
// Returns the value comparator associated with this `btree_map`. |
|
using Base::value_comp; |
|
}; |
|
|
|
// absl::swap(absl::btree_map<>, absl::btree_map<>) |
|
// |
|
// Swaps the contents of two `absl::btree_map` containers. |
|
template <typename K, typename V, typename C, typename A> |
|
void swap(btree_map<K, V, C, A> &x, btree_map<K, V, C, A> &y) { |
|
return x.swap(y); |
|
} |
|
|
|
// absl::erase_if(absl::btree_map<>, Pred) |
|
// |
|
// Erases all elements that satisfy the predicate pred from the container. |
|
// Returns the number of erased elements. |
|
template <typename K, typename V, typename C, typename A, typename Pred> |
|
typename btree_map<K, V, C, A>::size_type erase_if( |
|
btree_map<K, V, C, A> &map, Pred pred) { |
|
return container_internal::btree_access::erase_if(map, std::move(pred)); |
|
} |
|
|
|
// absl::btree_multimap |
|
// |
|
// An `absl::btree_multimap<K, V>` is an ordered associative container of |
|
// keys and associated values designed to be a more efficient replacement for |
|
// `std::multimap` (in most cases). Unlike `absl::btree_map`, a B-tree multimap |
|
// allows multiple elements with equivalent keys. |
|
// |
|
// Keys are sorted using an (optional) comparison function, which defaults to |
|
// `std::less<K>`. |
|
// |
|
// An `absl::btree_multimap<K, V>` uses a default allocator of |
|
// `std::allocator<std::pair<const K, V>>` to allocate (and deallocate) |
|
// nodes, and construct and destruct values within those nodes. You may |
|
// instead specify a custom allocator `A` (which in turn requires specifying a |
|
// custom comparator `C`) as in `absl::btree_multimap<K, V, C, A>`. |
|
// |
|
template <typename Key, typename Value, typename Compare = std::less<Key>, |
|
typename Alloc = std::allocator<std::pair<const Key, Value>>> |
|
class btree_multimap |
|
: public container_internal::btree_multimap_container< |
|
container_internal::btree<container_internal::map_params< |
|
Key, Value, Compare, Alloc, /*TargetNodeSize=*/256, |
|
/*IsMulti=*/true>>> { |
|
using Base = typename btree_multimap::btree_multimap_container; |
|
|
|
public: |
|
// Constructors and Assignment Operators |
|
// |
|
// A `btree_multimap` supports the same overload set as `std::multimap` |
|
// for construction and assignment: |
|
// |
|
// * Default constructor |
|
// |
|
// absl::btree_multimap<int, std::string> map1; |
|
// |
|
// * Initializer List constructor |
|
// |
|
// absl::btree_multimap<int, std::string> map2 = |
|
// {{1, "huey"}, {2, "dewey"}, {3, "louie"},}; |
|
// |
|
// * Copy constructor |
|
// |
|
// absl::btree_multimap<int, std::string> map3(map2); |
|
// |
|
// * Copy assignment operator |
|
// |
|
// absl::btree_multimap<int, std::string> map4; |
|
// map4 = map3; |
|
// |
|
// * Move constructor |
|
// |
|
// // Move is guaranteed efficient |
|
// absl::btree_multimap<int, std::string> map5(std::move(map4)); |
|
// |
|
// * Move assignment operator |
|
// |
|
// // May be efficient if allocators are compatible |
|
// absl::btree_multimap<int, std::string> map6; |
|
// map6 = std::move(map5); |
|
// |
|
// * Range constructor |
|
// |
|
// std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}}; |
|
// absl::btree_multimap<int, std::string> map7(v.begin(), v.end()); |
|
btree_multimap() {} |
|
using Base::Base; |
|
|
|
// btree_multimap::begin() |
|
// |
|
// Returns an iterator to the beginning of the `btree_multimap`. |
|
using Base::begin; |
|
|
|
// btree_multimap::cbegin() |
|
// |
|
// Returns a const iterator to the beginning of the `btree_multimap`. |
|
using Base::cbegin; |
|
|
|
// btree_multimap::end() |
|
// |
|
// Returns an iterator to the end of the `btree_multimap`. |
|
using Base::end; |
|
|
|
// btree_multimap::cend() |
|
// |
|
// Returns a const iterator to the end of the `btree_multimap`. |
|
using Base::cend; |
|
|
|
// btree_multimap::empty() |
|
// |
|
// Returns whether or not the `btree_multimap` is empty. |
|
using Base::empty; |
|
|
|
// btree_multimap::max_size() |
|
// |
|
// Returns the largest theoretical possible number of elements within a |
|
// `btree_multimap` under current memory constraints. This value can be |
|
// thought of as the largest value of `std::distance(begin(), end())` for a |
|
// `btree_multimap<Key, T>`. |
|
using Base::max_size; |
|
|
|
// btree_multimap::size() |
|
// |
|
// Returns the number of elements currently within the `btree_multimap`. |
|
using Base::size; |
|
|
|
// btree_multimap::clear() |
|
// |
|
// Removes all elements from the `btree_multimap`. Invalidates any references, |
|
// pointers, or iterators referring to contained elements. |
|
using Base::clear; |
|
|
|
// btree_multimap::erase() |
|
// |
|
// Erases elements within the `btree_multimap`. If an erase occurs, any |
|
// references, pointers, or iterators are invalidated. |
|
// Overloads are listed below. |
|
// |
|
// iterator erase(iterator position): |
|
// iterator erase(const_iterator position): |
|
// |
|
// Erases the element at `position` of the `btree_multimap`, returning |
|
// the iterator pointing to the element after the one that was erased |
|
// (or end() if none exists). |
|
// |
|
// iterator erase(const_iterator first, const_iterator last): |
|
// |
|
// Erases the elements in the open interval [`first`, `last`), returning |
|
// the iterator pointing to the element after the interval that was erased |
|
// (or end() if none exists). |
|
// |
|
// template <typename K> size_type erase(const K& key): |
|
// |
|
// Erases the elements matching the key, if any exist, returning the |
|
// number of elements erased. |
|
using Base::erase; |
|
|
|
// btree_multimap::insert() |
|
// |
|
// Inserts an element of the specified value into the `btree_multimap`, |
|
// returning an iterator pointing to the newly inserted element. |
|
// Any references, pointers, or iterators are invalidated. Overloads are |
|
// listed below. |
|
// |
|
// iterator insert(const value_type& value): |
|
// |
|
// Inserts a value into the `btree_multimap`, returning an iterator to the |
|
// inserted element. |
|
// |
|
// iterator insert(value_type&& value): |
|
// |
|
// Inserts a moveable value into the `btree_multimap`, returning an iterator |
|
// to the inserted element. |
|
// |
|
// iterator insert(const_iterator hint, const value_type& value): |
|
// iterator insert(const_iterator hint, value_type&& value): |
|
// |
|
// Inserts a value, using the position of `hint` as a non-binding suggestion |
|
// for where to begin the insertion search. Returns an iterator to the |
|
// inserted element. |
|
// |
|
// void insert(InputIterator first, InputIterator last): |
|
// |
|
// Inserts a range of values [`first`, `last`). |
|
// |
|
// void insert(std::initializer_list<init_type> ilist): |
|
// |
|
// Inserts the elements within the initializer list `ilist`. |
|
using Base::insert; |
|
|
|
// btree_multimap::emplace() |
|
// |
|
// Inserts an element of the specified value by constructing it in-place |
|
// within the `btree_multimap`. Any references, pointers, or iterators are |
|
// invalidated. |
|
using Base::emplace; |
|
|
|
// btree_multimap::emplace_hint() |
|
// |
|
// Inserts an element of the specified value by constructing it in-place |
|
// within the `btree_multimap`, using the position of `hint` as a non-binding |
|
// suggestion for where to begin the insertion search. |
|
// |
|
// Any references, pointers, or iterators are invalidated. |
|
using Base::emplace_hint; |
|
|
|
// btree_multimap::extract() |
|
// |
|
// Extracts the indicated element, erasing it in the process, and returns it |
|
// as a C++17-compatible node handle. Overloads are listed below. |
|
// |
|
// node_type extract(const_iterator position): |
|
// |
|
// Extracts the element at the indicated position and returns a node handle |
|
// owning that extracted data. |
|
// |
|
// template <typename K> node_type extract(const K& k): |
|
// |
|
// Extracts the element with the key matching the passed key value and |
|
// returns a node handle owning that extracted data. If the `btree_multimap` |
|
// does not contain an element with a matching key, this function returns an |
|
// empty node handle. |
|
// |
|
// NOTE: when compiled in an earlier version of C++ than C++17, |
|
// `node_type::key()` returns a const reference to the key instead of a |
|
// mutable reference. We cannot safely return a mutable reference without |
|
// std::launder (which is not available before C++17). |
|
// |
|
// NOTE: In this context, `node_type` refers to the C++17 concept of a |
|
// move-only type that owns and provides access to the elements in associative |
|
// containers (https://en.cppreference.com/w/cpp/container/node_handle). |
|
// It does NOT refer to the data layout of the underlying btree. |
|
using Base::extract; |
|
|
|
// btree_multimap::merge() |
|
// |
|
// Extracts all elements from a given `source` btree_multimap into this |
|
// `btree_multimap`. |
|
using Base::merge; |
|
|
|
// btree_multimap::swap(btree_multimap& other) |
|
// |
|
// Exchanges the contents of this `btree_multimap` with those of the `other` |
|
// btree_multimap, avoiding invocation of any move, copy, or swap operations |
|
// on individual elements. |
|
// |
|
// All iterators and references on the `btree_multimap` remain valid, |
|
// excepting for the past-the-end iterator, which is invalidated. |
|
using Base::swap; |
|
|
|
// btree_multimap::contains() |
|
// |
|
// template <typename K> bool contains(const K& key) const: |
|
// |
|
// Determines whether an element comparing equal to the given `key` exists |
|
// within the `btree_multimap`, returning `true` if so or `false` otherwise. |
|
// |
|
// Supports heterogeneous lookup, provided that the map has a compatible |
|
// heterogeneous comparator. |
|
using Base::contains; |
|
|
|
// btree_multimap::count() |
|
// |
|
// template <typename K> size_type count(const K& key) const: |
|
// |
|
// Returns the number of elements comparing equal to the given `key` within |
|
// the `btree_multimap`. |
|
// |
|
// Supports heterogeneous lookup, provided that the map has a compatible |
|
// heterogeneous comparator. |
|
using Base::count; |
|
|
|
// btree_multimap::equal_range() |
|
// |
|
// Returns a half-open range [first, last), defined by a `std::pair` of two |
|
// iterators, containing all elements with the passed key in the |
|
// `btree_multimap`. |
|
using Base::equal_range; |
|
|
|
// btree_multimap::find() |
|
// |
|
// template <typename K> iterator find(const K& key): |
|
// template <typename K> const_iterator find(const K& key) const: |
|
// |
|
// Finds an element with the passed `key` within the `btree_multimap`. |
|
// |
|
// Supports heterogeneous lookup, provided that the map has a compatible |
|
// heterogeneous comparator. |
|
using Base::find; |
|
|
|
// btree_multimap::lower_bound() |
|
// |
|
// template <typename K> iterator lower_bound(const K& key): |
|
// template <typename K> const_iterator lower_bound(const K& key) const: |
|
// |
|
// Finds the first element with a key that is not less than `key` within the |
|
// `btree_multimap`. |
|
// |
|
// Supports heterogeneous lookup, provided that the map has a compatible |
|
// heterogeneous comparator. |
|
using Base::lower_bound; |
|
|
|
// btree_multimap::upper_bound() |
|
// |
|
// template <typename K> iterator upper_bound(const K& key): |
|
// template <typename K> const_iterator upper_bound(const K& key) const: |
|
// |
|
// Finds the first element with a key that is greater than `key` within the |
|
// `btree_multimap`. |
|
// |
|
// Supports heterogeneous lookup, provided that the map has a compatible |
|
// heterogeneous comparator. |
|
using Base::upper_bound; |
|
|
|
// btree_multimap::get_allocator() |
|
// |
|
// Returns the allocator function associated with this `btree_multimap`. |
|
using Base::get_allocator; |
|
|
|
// btree_multimap::key_comp(); |
|
// |
|
// Returns the key comparator associated with this `btree_multimap`. |
|
using Base::key_comp; |
|
|
|
// btree_multimap::value_comp(); |
|
// |
|
// Returns the value comparator associated with this `btree_multimap`. |
|
using Base::value_comp; |
|
}; |
|
|
|
// absl::swap(absl::btree_multimap<>, absl::btree_multimap<>) |
|
// |
|
// Swaps the contents of two `absl::btree_multimap` containers. |
|
template <typename K, typename V, typename C, typename A> |
|
void swap(btree_multimap<K, V, C, A> &x, btree_multimap<K, V, C, A> &y) { |
|
return x.swap(y); |
|
} |
|
|
|
// absl::erase_if(absl::btree_multimap<>, Pred) |
|
// |
|
// Erases all elements that satisfy the predicate pred from the container. |
|
// Returns the number of erased elements. |
|
template <typename K, typename V, typename C, typename A, typename Pred> |
|
typename btree_multimap<K, V, C, A>::size_type erase_if( |
|
btree_multimap<K, V, C, A> &map, Pred pred) { |
|
return container_internal::btree_access::erase_if(map, std::move(pred)); |
|
} |
|
|
|
namespace container_internal { |
|
|
|
// A parameters structure for holding the type parameters for a btree_map. |
|
// Compare and Alloc should be nothrow copy-constructible. |
|
template <typename Key, typename Data, typename Compare, typename Alloc, |
|
int TargetNodeSize, bool IsMulti> |
|
struct map_params : common_params<Key, Compare, Alloc, TargetNodeSize, IsMulti, |
|
/*IsMap=*/true, map_slot_policy<Key, Data>> { |
|
using super_type = typename map_params::common_params; |
|
using mapped_type = Data; |
|
// This type allows us to move keys when it is safe to do so. It is safe |
|
// for maps in which value_type and mutable_value_type are layout compatible. |
|
using slot_policy = typename super_type::slot_policy; |
|
using slot_type = typename super_type::slot_type; |
|
using value_type = typename super_type::value_type; |
|
using init_type = typename super_type::init_type; |
|
|
|
template <typename V> |
|
static auto key(const V &value) -> decltype(value.first) { |
|
return value.first; |
|
} |
|
static const Key &key(const slot_type *s) { return slot_policy::key(s); } |
|
static const Key &key(slot_type *s) { return slot_policy::key(s); } |
|
// For use in node handle. |
|
static auto mutable_key(slot_type *s) |
|
-> decltype(slot_policy::mutable_key(s)) { |
|
return slot_policy::mutable_key(s); |
|
} |
|
static mapped_type &value(value_type *value) { return value->second; } |
|
}; |
|
|
|
} // namespace container_internal |
|
|
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
|
|
#endif // ABSL_CONTAINER_BTREE_MAP_H_
|
|
|