// Copyright 2022 The Abseil Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/strings/internal/damerau_levenshtein_distance.h" #include #include #include #include "absl/strings/string_view.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace strings_internal { // Calculate DamerauLevenshtein (adjacent transpositions) distance // between two strings, // https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance. The // algorithm follows the condition that no substring is edited more than once. // While this can reduce is larger distance, it's a) a much simpler algorithm // and b) more realistic for the case that typographic mistakes should be // detected. // When the distance is larger than cutoff, or one of the strings has more // than MAX_SIZE=100 characters, the code returns min(MAX_SIZE, cutoff) + 1. size_t CappedDamerauLevenshteinDistance(absl::string_view s1, absl::string_view s2, uint8_t cutoff) { const uint8_t MAX_SIZE = 100; const uint8_t _cutoff = std::min(MAX_SIZE, cutoff); const uint8_t cutoff_plus_1 = static_cast(_cutoff + 1); if (s1.size() > s2.size()) std::swap(s1, s2); if (s1.size() + _cutoff < s2.size() || s2.size() > MAX_SIZE) return cutoff_plus_1; if (s1.empty()) return std::min(static_cast(cutoff_plus_1), s2.size()); // Lower diagonal bound: y = x - lower_diag const uint8_t lower_diag = _cutoff - static_cast(s2.size() - s1.size()); // Upper diagonal bound: y = x + upper_diag const uint8_t upper_diag = _cutoff; // d[i][j] is the number of edits required to convert s1[0, i] to s2[0, j] std::array, MAX_SIZE + 2> d; std::iota(d[0].begin(), d[0].begin() + upper_diag + 1, 0); d[0][cutoff_plus_1] = cutoff_plus_1; for (size_t i = 1; i <= s1.size(); ++i) { // Deduce begin of relevant window. size_t j_begin = 1; if (i > lower_diag) { j_begin = i - lower_diag; d[i][j_begin - 1] = cutoff_plus_1; } else { d[i][0] = static_cast(i); } // Deduce end of relevant window. size_t j_end = i + upper_diag; if (j_end > s2.size()) { j_end = s2.size(); } else { d[i][j_end + 1] = cutoff_plus_1; } for (size_t j = j_begin; j <= j_end; ++j) { const uint8_t deletion_distance = d[i - 1][j] + 1; const uint8_t insertion_distance = d[i][j - 1] + 1; const uint8_t mismatched_tail_cost = s1[i - 1] == s2[j - 1] ? 0 : 1; const uint8_t mismatch_distance = d[i - 1][j - 1] + mismatched_tail_cost; uint8_t transposition_distance = _cutoff + 1; if (i > 1 && j > 1 && s1[i - 1] == s2[j - 2] && s1[i - 2] == s2[j - 1]) transposition_distance = d[i - 2][j - 2] + 1; d[i][j] = std::min({cutoff_plus_1, deletion_distance, insertion_distance, mismatch_distance, transposition_distance}); } } return d[s1.size()][s2.size()]; } } // namespace strings_internal ABSL_NAMESPACE_END } // namespace absl