// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/base/internal/exception_safety_testing.h" #include #include #include #include #include #include #include "gtest/gtest-spi.h" #include "gtest/gtest.h" #include "absl/memory/memory.h" namespace absl { namespace { using ::absl::exceptions_internal::TestException; // EXPECT_NO_THROW can't inspect the thrown inspection in general. template void ExpectNoThrow(const F& f) { try { f(); } catch (TestException e) { ADD_FAILURE() << "Unexpected exception thrown from " << e.what(); } } class ThrowingValueTest : public ::testing::Test { protected: void SetUp() override { UnsetCountdown(); } private: ConstructorTracker clouseau_; }; TEST_F(ThrowingValueTest, Throws) { SetCountdown(); EXPECT_THROW(ThrowingValue<> bomb, TestException); // It's not guaranteed that every operator only throws *once*. The default // ctor only throws once, though, so use it to make sure we only throw when // the countdown hits 0 exceptions_internal::countdown = 2; ExpectNoThrow([]() { ThrowingValue<> bomb; }); ExpectNoThrow([]() { ThrowingValue<> bomb; }); EXPECT_THROW(ThrowingValue<> bomb, TestException); } // Tests that an operation throws when the countdown is at 0, doesn't throw when // the countdown doesn't hit 0, and doesn't modify the state of the // ThrowingValue if it throws template void TestOp(const F& f) { UnsetCountdown(); ExpectNoThrow(f); SetCountdown(); EXPECT_THROW(f(), TestException); UnsetCountdown(); } TEST_F(ThrowingValueTest, ThrowingCtors) { ThrowingValue<> bomb; TestOp([]() { ThrowingValue<> bomb(1); }); TestOp([&]() { ThrowingValue<> bomb1 = bomb; }); TestOp([&]() { ThrowingValue<> bomb1 = std::move(bomb); }); } TEST_F(ThrowingValueTest, ThrowingAssignment) { ThrowingValue<> bomb, bomb1; TestOp([&]() { bomb = bomb1; }); TestOp([&]() { bomb = std::move(bomb1); }); } TEST_F(ThrowingValueTest, ThrowingComparisons) { ThrowingValue<> bomb1, bomb2; TestOp([&]() { return bomb1 == bomb2; }); TestOp([&]() { return bomb1 != bomb2; }); TestOp([&]() { return bomb1 < bomb2; }); TestOp([&]() { return bomb1 <= bomb2; }); TestOp([&]() { return bomb1 > bomb2; }); TestOp([&]() { return bomb1 >= bomb2; }); } TEST_F(ThrowingValueTest, ThrowingArithmeticOps) { ThrowingValue<> bomb1(1), bomb2(2); TestOp([&bomb1]() { +bomb1; }); TestOp([&bomb1]() { -bomb1; }); TestOp([&bomb1]() { ++bomb1; }); TestOp([&bomb1]() { bomb1++; }); TestOp([&bomb1]() { --bomb1; }); TestOp([&bomb1]() { bomb1--; }); TestOp([&]() { bomb1 + bomb2; }); TestOp([&]() { bomb1 - bomb2; }); TestOp([&]() { bomb1* bomb2; }); TestOp([&]() { bomb1 / bomb2; }); TestOp([&]() { bomb1 << 1; }); TestOp([&]() { bomb1 >> 1; }); } TEST_F(ThrowingValueTest, ThrowingLogicalOps) { ThrowingValue<> bomb1, bomb2; TestOp([&bomb1]() { !bomb1; }); TestOp([&]() { bomb1&& bomb2; }); TestOp([&]() { bomb1 || bomb2; }); } TEST_F(ThrowingValueTest, ThrowingBitwiseOps) { ThrowingValue<> bomb1, bomb2; TestOp([&bomb1]() { ~bomb1; }); TestOp([&]() { bomb1& bomb2; }); TestOp([&]() { bomb1 | bomb2; }); TestOp([&]() { bomb1 ^ bomb2; }); } TEST_F(ThrowingValueTest, ThrowingCompoundAssignmentOps) { ThrowingValue<> bomb1(1), bomb2(2); TestOp([&]() { bomb1 += bomb2; }); TestOp([&]() { bomb1 -= bomb2; }); TestOp([&]() { bomb1 *= bomb2; }); TestOp([&]() { bomb1 /= bomb2; }); TestOp([&]() { bomb1 %= bomb2; }); TestOp([&]() { bomb1 &= bomb2; }); TestOp([&]() { bomb1 |= bomb2; }); TestOp([&]() { bomb1 ^= bomb2; }); TestOp([&]() { bomb1 *= bomb2; }); } TEST_F(ThrowingValueTest, ThrowingStreamOps) { ThrowingValue<> bomb; TestOp([&]() { std::cin >> bomb; }); TestOp([&]() { std::cout << bomb; }); } template void TestAllocatingOp(const F& f) { UnsetCountdown(); ExpectNoThrow(f); SetCountdown(); EXPECT_THROW(f(), exceptions_internal::TestBadAllocException); UnsetCountdown(); } TEST_F(ThrowingValueTest, ThrowingAllocatingOps) { // make_unique calls unqualified operator new, so these exercise the // ThrowingValue overloads. TestAllocatingOp([]() { return absl::make_unique>(1); }); TestAllocatingOp([]() { return absl::make_unique[]>(2); }); } TEST_F(ThrowingValueTest, NonThrowingMoveCtor) { ThrowingValue nothrow_ctor; SetCountdown(); ExpectNoThrow([¬hrow_ctor]() { ThrowingValue nothrow1 = std::move(nothrow_ctor); }); } TEST_F(ThrowingValueTest, NonThrowingMoveAssign) { ThrowingValue nothrow_assign1, nothrow_assign2; SetCountdown(); ExpectNoThrow([¬hrow_assign1, ¬hrow_assign2]() { nothrow_assign1 = std::move(nothrow_assign2); }); } TEST_F(ThrowingValueTest, ThrowingSwap) { ThrowingValue<> bomb1, bomb2; TestOp([&]() { std::swap(bomb1, bomb2); }); ThrowingValue bomb3, bomb4; TestOp([&]() { std::swap(bomb3, bomb4); }); ThrowingValue bomb5, bomb6; TestOp([&]() { std::swap(bomb5, bomb6); }); } TEST_F(ThrowingValueTest, NonThrowingSwap) { ThrowingValue bomb1, bomb2; ExpectNoThrow([&]() { std::swap(bomb1, bomb2); }); } TEST_F(ThrowingValueTest, NonThrowingAllocation) { ThrowingValue* allocated; ThrowingValue* array; ExpectNoThrow([&allocated]() { allocated = new ThrowingValue(1); delete allocated; }); ExpectNoThrow([&array]() { array = new ThrowingValue[2]; delete[] array; }); } TEST_F(ThrowingValueTest, NonThrowingDelete) { auto* allocated = new ThrowingValue<>(1); auto* array = new ThrowingValue<>[2]; SetCountdown(); ExpectNoThrow([allocated]() { delete allocated; }); SetCountdown(); ExpectNoThrow([array]() { delete[] array; }); } using Storage = absl::aligned_storage_t), alignof(ThrowingValue<>)>; TEST_F(ThrowingValueTest, NonThrowingPlacementDelete) { constexpr int kArrayLen = 2; // We intentionally create extra space to store the tag allocated by placement // new[]. constexpr int kStorageLen = 4; Storage buf; Storage array_buf[kStorageLen]; auto* placed = new (&buf) ThrowingValue<>(1); auto placed_array = new (&array_buf) ThrowingValue<>[kArrayLen]; SetCountdown(); ExpectNoThrow([placed, &buf]() { placed->~ThrowingValue<>(); ThrowingValue<>::operator delete(placed, &buf); }); SetCountdown(); ExpectNoThrow([&, placed_array]() { for (int i = 0; i < kArrayLen; ++i) placed_array[i].~ThrowingValue<>(); ThrowingValue<>::operator delete[](placed_array, &array_buf); }); } TEST_F(ThrowingValueTest, NonThrowingDestructor) { auto* allocated = new ThrowingValue<>(); SetCountdown(); ExpectNoThrow([allocated]() { delete allocated; }); } TEST(ThrowingBoolTest, ThrowingBool) { UnsetCountdown(); ThrowingBool t = true; // Test that it's contextually convertible to bool if (t) { // NOLINT(whitespace/empty_if_body) } EXPECT_TRUE(t); TestOp([&]() { (void)!t; }); } class ThrowingAllocatorTest : public ::testing::Test { protected: void SetUp() override { UnsetCountdown(); } private: ConstructorTracker borlu_; }; TEST_F(ThrowingAllocatorTest, MemoryManagement) { // Just exercise the memory management capabilities under LSan to make sure we // don't leak. ThrowingAllocator int_alloc; int* ip = int_alloc.allocate(1); int_alloc.deallocate(ip, 1); int* i_array = int_alloc.allocate(2); int_alloc.deallocate(i_array, 2); ThrowingAllocator> ef_alloc; ThrowingValue<>* efp = ef_alloc.allocate(1); ef_alloc.deallocate(efp, 1); ThrowingValue<>* ef_array = ef_alloc.allocate(2); ef_alloc.deallocate(ef_array, 2); } TEST_F(ThrowingAllocatorTest, CallsGlobalNew) { ThrowingAllocator, NoThrow::kNoThrow> nothrow_alloc; ThrowingValue<>* ptr; SetCountdown(); // This will only throw if ThrowingValue::new is called. ExpectNoThrow([&]() { ptr = nothrow_alloc.allocate(1); }); nothrow_alloc.deallocate(ptr, 1); } TEST_F(ThrowingAllocatorTest, ThrowingConstructors) { ThrowingAllocator int_alloc; int* ip = nullptr; SetCountdown(); EXPECT_THROW(ip = int_alloc.allocate(1), TestException); ExpectNoThrow([&]() { ip = int_alloc.allocate(1); }); *ip = 1; SetCountdown(); EXPECT_THROW(int_alloc.construct(ip, 2), TestException); EXPECT_EQ(*ip, 1); int_alloc.deallocate(ip, 1); } TEST_F(ThrowingAllocatorTest, NonThrowingConstruction) { { ThrowingAllocator int_alloc; int* ip = nullptr; SetCountdown(); ExpectNoThrow([&]() { ip = int_alloc.allocate(1); }); SetCountdown(); ExpectNoThrow([&]() { int_alloc.construct(ip, 2); }); EXPECT_EQ(*ip, 2); int_alloc.deallocate(ip, 1); } UnsetCountdown(); { ThrowingAllocator int_alloc; int* ip = nullptr; ExpectNoThrow([&]() { ip = int_alloc.allocate(1); }); ExpectNoThrow([&]() { int_alloc.construct(ip, 2); }); EXPECT_EQ(*ip, 2); int_alloc.deallocate(ip, 1); } UnsetCountdown(); { ThrowingAllocator, NoThrow::kNoThrow> ef_alloc; ThrowingValue* efp; SetCountdown(); ExpectNoThrow([&]() { efp = ef_alloc.allocate(1); }); SetCountdown(); ExpectNoThrow([&]() { ef_alloc.construct(efp, 2); }); EXPECT_EQ(efp->Get(), 2); ef_alloc.destroy(efp); ef_alloc.deallocate(efp, 1); } UnsetCountdown(); { ThrowingAllocator a; SetCountdown(); ExpectNoThrow([&]() { ThrowingAllocator a1 = a; }); SetCountdown(); ExpectNoThrow([&]() { ThrowingAllocator a1 = std::move(a); }); } } TEST_F(ThrowingAllocatorTest, ThrowingAllocatorConstruction) { ThrowingAllocator a; TestOp([]() { ThrowingAllocator a; }); TestOp([&]() { a.select_on_container_copy_construction(); }); } TEST_F(ThrowingAllocatorTest, State) { ThrowingAllocator a1, a2; EXPECT_NE(a1, a2); auto a3 = a1; EXPECT_EQ(a3, a1); int* ip = a1.allocate(1); EXPECT_EQ(a3, a1); a3.deallocate(ip, 1); EXPECT_EQ(a3, a1); } TEST_F(ThrowingAllocatorTest, InVector) { std::vector, ThrowingAllocator>> v; for (int i = 0; i < 20; ++i) v.push_back({}); for (int i = 0; i < 20; ++i) v.pop_back(); } TEST_F(ThrowingAllocatorTest, InList) { std::list, ThrowingAllocator>> l; for (int i = 0; i < 20; ++i) l.push_back({}); for (int i = 0; i < 20; ++i) l.pop_back(); for (int i = 0; i < 20; ++i) l.push_front({}); for (int i = 0; i < 20; ++i) l.pop_front(); } template struct NullaryTestValidator : public std::false_type {}; template struct NullaryTestValidator< TesterInstance, absl::void_t().Test())>> : public std::true_type {}; template bool HasNullaryTest(const TesterInstance&) { return NullaryTestValidator::value; } void DummyOp(void*) {} template struct UnaryTestValidator : public std::false_type {}; template struct UnaryTestValidator< TesterInstance, absl::void_t().Test(DummyOp))>> : public std::true_type {}; template bool HasUnaryTest(const TesterInstance&) { return UnaryTestValidator::value; } TEST(ExceptionSafetyTesterTest, IncompleteTypesAreNotTestable) { using T = exceptions_internal::UninitializedT; auto op = [](T* t) {}; auto inv = [](T*) { return testing::AssertionSuccess(); }; auto fac = []() { return absl::make_unique(); }; // Test that providing operation and inveriants still does not allow for the // the invocation of .Test() and .Test(op) because it lacks a factory auto without_fac = absl::MakeExceptionSafetyTester().WithOperation(op).WithInvariants( inv, absl::strong_guarantee); EXPECT_FALSE(HasNullaryTest(without_fac)); EXPECT_FALSE(HasUnaryTest(without_fac)); // Test that providing invariants and factory allows the invocation of // .Test(op) but does not allow for .Test() because it lacks an operation auto without_op = absl::MakeExceptionSafetyTester() .WithInvariants(inv, absl::strong_guarantee) .WithFactory(fac); EXPECT_FALSE(HasNullaryTest(without_op)); EXPECT_TRUE(HasUnaryTest(without_op)); // Test that providing operation and factory still does not allow for the // the invocation of .Test() and .Test(op) because it lacks invariants auto without_inv = absl::MakeExceptionSafetyTester().WithOperation(op).WithFactory(fac); EXPECT_FALSE(HasNullaryTest(without_inv)); EXPECT_FALSE(HasUnaryTest(without_inv)); } struct ExampleStruct {}; std::unique_ptr ExampleFunctionFactory() { return absl::make_unique(); } void ExampleFunctionOperation(ExampleStruct*) {} testing::AssertionResult ExampleFunctionInvariant(ExampleStruct*) { return testing::AssertionSuccess(); } struct { std::unique_ptr operator()() const { return ExampleFunctionFactory(); } } example_struct_factory; struct { void operator()(ExampleStruct*) const {} } example_struct_operation; struct { testing::AssertionResult operator()(ExampleStruct* example_struct) const { return ExampleFunctionInvariant(example_struct); } } example_struct_invariant; auto example_lambda_factory = []() { return ExampleFunctionFactory(); }; auto example_lambda_operation = [](ExampleStruct*) {}; auto example_lambda_invariant = [](ExampleStruct* example_struct) { return ExampleFunctionInvariant(example_struct); }; // Testing that function references, pointers, structs with operator() and // lambdas can all be used with ExceptionSafetyTester TEST(ExceptionSafetyTesterTest, MixedFunctionTypes) { // function reference EXPECT_TRUE(absl::MakeExceptionSafetyTester() .WithFactory(ExampleFunctionFactory) .WithOperation(ExampleFunctionOperation) .WithInvariants(ExampleFunctionInvariant) .Test()); // function pointer EXPECT_TRUE(absl::MakeExceptionSafetyTester() .WithFactory(&ExampleFunctionFactory) .WithOperation(&ExampleFunctionOperation) .WithInvariants(&ExampleFunctionInvariant) .Test()); // struct EXPECT_TRUE(absl::MakeExceptionSafetyTester() .WithFactory(example_struct_factory) .WithOperation(example_struct_operation) .WithInvariants(example_struct_invariant) .Test()); // lambda EXPECT_TRUE(absl::MakeExceptionSafetyTester() .WithFactory(example_lambda_factory) .WithOperation(example_lambda_operation) .WithInvariants(example_lambda_invariant) .Test()); } struct NonNegative { bool operator==(const NonNegative& other) const { return i == other.i; } int i; }; testing::AssertionResult CheckNonNegativeInvariants(NonNegative* g) { if (g->i >= 0) { return testing::AssertionSuccess(); } return testing::AssertionFailure() << "i should be non-negative but is " << g->i; } struct { template void operator()(T* t) const { (*t)(); } } invoker; auto tester = absl::MakeExceptionSafetyTester().WithOperation(invoker).WithInvariants( CheckNonNegativeInvariants); auto strong_tester = tester.WithInvariants(absl::strong_guarantee); struct FailsBasicGuarantee : public NonNegative { void operator()() { --i; ThrowingValue<> bomb; ++i; } }; TEST(ExceptionCheckTest, BasicGuaranteeFailure) { EXPECT_FALSE(tester.WithInitialValue(FailsBasicGuarantee{}).Test()); } struct FollowsBasicGuarantee : public NonNegative { void operator()() { ++i; ThrowingValue<> bomb; } }; TEST(ExceptionCheckTest, BasicGuarantee) { EXPECT_TRUE(tester.WithInitialValue(FollowsBasicGuarantee{}).Test()); } TEST(ExceptionCheckTest, StrongGuaranteeFailure) { EXPECT_FALSE(strong_tester.WithInitialValue(FailsBasicGuarantee{}).Test()); EXPECT_FALSE(strong_tester.WithInitialValue(FollowsBasicGuarantee{}).Test()); } struct BasicGuaranteeWithExtraInvariants : public NonNegative { // After operator(), i is incremented. If operator() throws, i is set to 9999 void operator()() { int old_i = i; i = kExceptionSentinel; ThrowingValue<> bomb; i = ++old_i; } static constexpr int kExceptionSentinel = 9999; }; constexpr int BasicGuaranteeWithExtraInvariants::kExceptionSentinel; TEST(ExceptionCheckTest, BasicGuaranteeWithInvariants) { auto tester_with_val = tester.WithInitialValue(BasicGuaranteeWithExtraInvariants{}); EXPECT_TRUE(tester_with_val.Test()); EXPECT_TRUE( tester_with_val .WithInvariants([](BasicGuaranteeWithExtraInvariants* w) { if (w->i == BasicGuaranteeWithExtraInvariants::kExceptionSentinel) { return testing::AssertionSuccess(); } return testing::AssertionFailure() << "i should be " << BasicGuaranteeWithExtraInvariants::kExceptionSentinel << ", but is " << w->i; }) .Test()); } struct FollowsStrongGuarantee : public NonNegative { void operator()() { ThrowingValue<> bomb; } }; TEST(ExceptionCheckTest, StrongGuarantee) { EXPECT_TRUE(tester.WithInitialValue(FollowsStrongGuarantee{}).Test()); EXPECT_TRUE(strong_tester.WithInitialValue(FollowsStrongGuarantee{}).Test()); } struct HasReset : public NonNegative { void operator()() { i = -1; ThrowingValue<> bomb; i = 1; } void reset() { i = 0; } }; testing::AssertionResult CheckHasResetInvariants(HasReset* h) { h->reset(); return testing::AssertionResult(h->i == 0); } TEST(ExceptionCheckTest, ModifyingChecker) { auto set_to_1000 = [](FollowsBasicGuarantee* g) { g->i = 1000; return testing::AssertionSuccess(); }; auto is_1000 = [](FollowsBasicGuarantee* g) { return testing::AssertionResult(g->i == 1000); }; auto increment = [](FollowsStrongGuarantee* g) { ++g->i; return testing::AssertionSuccess(); }; EXPECT_FALSE(tester.WithInitialValue(FollowsBasicGuarantee{}) .WithInvariants(set_to_1000, is_1000) .Test()); EXPECT_TRUE(strong_tester.WithInitialValue(FollowsStrongGuarantee{}) .WithInvariants(increment) .Test()); EXPECT_TRUE(absl::MakeExceptionSafetyTester() .WithInitialValue(HasReset{}) .WithInvariants(CheckHasResetInvariants) .Test(invoker)); } struct NonCopyable : public NonNegative { NonCopyable(const NonCopyable&) = delete; NonCopyable() : NonNegative{0} {} void operator()() { ThrowingValue<> bomb; } }; TEST(ExceptionCheckTest, NonCopyable) { auto factory = []() { return absl::make_unique(); }; EXPECT_TRUE(tester.WithFactory(factory).Test()); EXPECT_TRUE(strong_tester.WithFactory(factory).Test()); } struct NonEqualityComparable : public NonNegative { void operator()() { ThrowingValue<> bomb; } void ModifyOnThrow() { ++i; ThrowingValue<> bomb; static_cast(bomb); --i; } }; TEST(ExceptionCheckTest, NonEqualityComparable) { auto nec_is_strong = [](NonEqualityComparable* nec) { return testing::AssertionResult(nec->i == NonEqualityComparable().i); }; auto strong_nec_tester = tester.WithInitialValue(NonEqualityComparable{}) .WithInvariants(nec_is_strong); EXPECT_TRUE(strong_nec_tester.Test()); EXPECT_FALSE(strong_nec_tester.Test( [](NonEqualityComparable* n) { n->ModifyOnThrow(); })); } template struct ExhaustivenessTester { void operator()() { successes |= 1; T b1; static_cast(b1); successes |= (1 << 1); T b2; static_cast(b2); successes |= (1 << 2); T b3; static_cast(b3); successes |= (1 << 3); } bool operator==(const ExhaustivenessTester>&) const { return true; } static unsigned char successes; }; struct { template testing::AssertionResult operator()(ExhaustivenessTester*) const { return testing::AssertionSuccess(); } } CheckExhaustivenessTesterInvariants; template unsigned char ExhaustivenessTester::successes = 0; TEST(ExceptionCheckTest, Exhaustiveness) { auto exhaust_tester = absl::MakeExceptionSafetyTester() .WithInvariants(CheckExhaustivenessTesterInvariants) .WithOperation(invoker); EXPECT_TRUE( exhaust_tester.WithInitialValue(ExhaustivenessTester{}).Test()); EXPECT_EQ(ExhaustivenessTester::successes, 0xF); EXPECT_TRUE( exhaust_tester.WithInitialValue(ExhaustivenessTester>{}) .WithInvariants(absl::strong_guarantee) .Test()); EXPECT_EQ(ExhaustivenessTester>::successes, 0xF); } struct LeaksIfCtorThrows : private exceptions_internal::TrackedObject { LeaksIfCtorThrows() : TrackedObject(ABSL_PRETTY_FUNCTION) { ++counter; ThrowingValue<> v; static_cast(v); --counter; } LeaksIfCtorThrows(const LeaksIfCtorThrows&) noexcept : TrackedObject(ABSL_PRETTY_FUNCTION) {} static int counter; }; int LeaksIfCtorThrows::counter = 0; TEST(ExceptionCheckTest, TestLeakyCtor) { absl::TestThrowingCtor(); EXPECT_EQ(LeaksIfCtorThrows::counter, 1); LeaksIfCtorThrows::counter = 0; } struct Tracked : private exceptions_internal::TrackedObject { Tracked() : TrackedObject(ABSL_PRETTY_FUNCTION) {} }; TEST(ConstructorTrackerTest, Pass) { ConstructorTracker javert; Tracked t; } TEST(ConstructorTrackerTest, NotDestroyed) { absl::aligned_storage_t storage; EXPECT_NONFATAL_FAILURE( { ConstructorTracker gadget; new (&storage) Tracked; }, "not destroyed"); } TEST(ConstructorTrackerTest, DestroyedTwice) { EXPECT_NONFATAL_FAILURE( { Tracked t; t.~Tracked(); }, "destroyed improperly"); } TEST(ConstructorTrackerTest, ConstructedTwice) { absl::aligned_storage_t storage; EXPECT_NONFATAL_FAILURE( { new (&storage) Tracked; new (&storage) Tracked; }, "re-constructed"); reinterpret_cast(&storage)->~Tracked(); } TEST(ThrowingValueTraitsTest, RelationalOperators) { ThrowingValue<> a, b; EXPECT_TRUE((std::is_convertible::value)); EXPECT_TRUE((std::is_convertible::value)); EXPECT_TRUE((std::is_convertible::value)); EXPECT_TRUE((std::is_convertible::value)); EXPECT_TRUE((std::is_convertible b), bool>::value)); EXPECT_TRUE((std::is_convertible= b), bool>::value)); } TEST(ThrowingAllocatorTraitsTest, Assignablility) { EXPECT_TRUE(std::is_move_assignable>::value); EXPECT_TRUE(std::is_copy_assignable>::value); EXPECT_TRUE(std::is_nothrow_move_assignable>::value); EXPECT_TRUE(std::is_nothrow_copy_assignable>::value); } } // namespace } // namespace absl