#include "absl/strings/internal/str_format/float_conversion.h" #include #include #include #include #include #include #include "absl/base/attributes.h" #include "absl/base/config.h" #include "absl/base/internal/bits.h" #include "absl/base/optimization.h" #include "absl/functional/function_ref.h" #include "absl/meta/type_traits.h" #include "absl/numeric/int128.h" #include "absl/strings/numbers.h" #include "absl/types/optional.h" #include "absl/types/span.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace str_format_internal { namespace { // The code below wants to avoid heap allocations. // To do so it needs to allocate memory on the stack. // `StackArray` will allocate memory on the stack in the form of a uint32_t // array and call the provided callback with said memory. // It will allocate memory in increments of 512 bytes. We could allocate the // largest needed unconditionally, but that is more than we need in most of // cases. This way we use less stack in the common cases. class StackArray { using Func = absl::FunctionRef)>; static constexpr size_t kStep = 512 / sizeof(uint32_t); // 5 steps is 2560 bytes, which is enough to hold a long double with the // largest/smallest exponents. // The operations below will static_assert their particular maximum. static constexpr size_t kNumSteps = 5; // We do not want this function to be inlined. // Otherwise the caller will allocate the stack space unnecessarily for all // the variants even though it only calls one. template ABSL_ATTRIBUTE_NOINLINE static void RunWithCapacityImpl(Func f) { uint32_t values[steps * kStep]{}; f(absl::MakeSpan(values)); } public: static constexpr size_t kMaxCapacity = kStep * kNumSteps; static void RunWithCapacity(size_t capacity, Func f) { assert(capacity <= kMaxCapacity); const size_t step = (capacity + kStep - 1) / kStep; assert(step <= kNumSteps); switch (step) { case 1: return RunWithCapacityImpl<1>(f); case 2: return RunWithCapacityImpl<2>(f); case 3: return RunWithCapacityImpl<3>(f); case 4: return RunWithCapacityImpl<4>(f); case 5: return RunWithCapacityImpl<5>(f); } assert(false && "Invalid capacity"); } }; // Calculates `10 * (*v) + carry` and stores the result in `*v` and returns // the carry. template inline Int MultiplyBy10WithCarry(Int *v, Int carry) { using BiggerInt = absl::conditional_t; BiggerInt tmp = 10 * static_cast(*v) + carry; *v = static_cast(tmp); return static_cast(tmp >> (sizeof(Int) * 8)); } // Calculates `(2^64 * carry + *v) / 10`. // Stores the quotient in `*v` and returns the remainder. // Requires: `0 <= carry <= 9` inline uint64_t DivideBy10WithCarry(uint64_t *v, uint64_t carry) { constexpr uint64_t divisor = 10; // 2^64 / divisor = chunk_quotient + chunk_remainder / divisor constexpr uint64_t chunk_quotient = (uint64_t{1} << 63) / (divisor / 2); constexpr uint64_t chunk_remainder = uint64_t{} - chunk_quotient * divisor; const uint64_t mod = *v % divisor; const uint64_t next_carry = chunk_remainder * carry + mod; *v = *v / divisor + carry * chunk_quotient + next_carry / divisor; return next_carry % divisor; } // Generates the decimal representation for an integer of the form `v * 2^exp`, // where `v` and `exp` are both positive integers. // It generates the digits from the left (ie the most significant digit first) // to allow for direct printing into the sink. // // Requires `0 <= exp` and `exp <= numeric_limits::max_exponent`. class BinaryToDecimal { static constexpr int ChunksNeeded(int exp) { // We will left shift a uint128 by `exp` bits, so we need `128+exp` total // bits. Round up to 32. // See constructor for details about adding `10%` to the value. return (128 + exp + 31) / 32 * 11 / 10; } public: // Run the conversion for `v * 2^exp` and call `f(binary_to_decimal)`. // This function will allocate enough stack space to perform the conversion. static void RunConversion(uint128 v, int exp, absl::FunctionRef f) { assert(exp > 0); assert(exp <= std::numeric_limits::max_exponent); static_assert( StackArray::kMaxCapacity >= ChunksNeeded(std::numeric_limits::max_exponent), ""); StackArray::RunWithCapacity( ChunksNeeded(exp), [=](absl::Span input) { f(BinaryToDecimal(input, v, exp)); }); } int TotalDigits() const { return static_cast((decimal_end_ - decimal_start_) * kDigitsPerChunk + CurrentDigits().size()); } // See the current block of digits. absl::string_view CurrentDigits() const { return absl::string_view(digits_ + kDigitsPerChunk - size_, size_); } // Advance the current view of digits. // Returns `false` when no more digits are available. bool AdvanceDigits() { if (decimal_start_ >= decimal_end_) return false; uint32_t w = data_[decimal_start_++]; for (size_ = 0; size_ < kDigitsPerChunk; w /= 10) { digits_[kDigitsPerChunk - ++size_] = w % 10 + '0'; } return true; } private: BinaryToDecimal(absl::Span data, uint128 v, int exp) : data_(data) { // We need to print the digits directly into the sink object without // buffering them all first. To do this we need two things: // - to know the total number of digits to do padding when necessary // - to generate the decimal digits from the left. // // In order to do this, we do a two pass conversion. // On the first pass we convert the binary representation of the value into // a decimal representation in which each uint32_t chunk holds up to 9 // decimal digits. In the second pass we take each decimal-holding-uint32_t // value and generate the ascii decimal digits into `digits_`. // // The binary and decimal representations actually share the same memory // region. As we go converting the chunks from binary to decimal we free // them up and reuse them for the decimal representation. One caveat is that // the decimal representation is around 7% less efficient in space than the // binary one. We allocate an extra 10% memory to account for this. See // ChunksNeeded for this calculation. int chunk_index = exp / 32; decimal_start_ = decimal_end_ = ChunksNeeded(exp); const int offset = exp % 32; // Left shift v by exp bits. data_[chunk_index] = static_cast(v << offset); for (v >>= (32 - offset); v; v >>= 32) data_[++chunk_index] = static_cast(v); while (chunk_index >= 0) { // While we have more than one chunk available, go in steps of 1e9. // `data_[chunk_index]` holds the highest non-zero binary chunk, so keep // the variable updated. uint32_t carry = 0; for (int i = chunk_index; i >= 0; --i) { uint64_t tmp = uint64_t{data_[i]} + (uint64_t{carry} << 32); data_[i] = static_cast(tmp / uint64_t{1000000000}); carry = static_cast(tmp % uint64_t{1000000000}); } // If the highest chunk is now empty, remove it from view. if (data_[chunk_index] == 0) --chunk_index; --decimal_start_; assert(decimal_start_ != chunk_index); data_[decimal_start_] = carry; } // Fill the first set of digits. The first chunk might not be complete, so // handle differently. for (uint32_t first = data_[decimal_start_++]; first != 0; first /= 10) { digits_[kDigitsPerChunk - ++size_] = first % 10 + '0'; } } private: static constexpr size_t kDigitsPerChunk = 9; int decimal_start_; int decimal_end_; char digits_[kDigitsPerChunk]; int size_ = 0; absl::Span data_; }; // Converts a value of the form `x * 2^-exp` into a sequence of decimal digits. // Requires `-exp < 0` and // `-exp >= limits::min_exponent - limits::digits`. class FractionalDigitGenerator { public: // Run the conversion for `v * 2^exp` and call `f(generator)`. // This function will allocate enough stack space to perform the conversion. static void RunConversion( uint128 v, int exp, absl::FunctionRef f) { using Limits = std::numeric_limits; assert(-exp < 0); assert(-exp >= Limits::min_exponent - 128); static_assert(StackArray::kMaxCapacity >= (Limits::digits + 128 - Limits::min_exponent + 31) / 32, ""); StackArray::RunWithCapacity((Limits::digits + exp + 31) / 32, [=](absl::Span input) { f(FractionalDigitGenerator(input, v, exp)); }); } // Returns true if there are any more non-zero digits left. bool HasMoreDigits() const { return next_digit_ != 0 || chunk_index_ >= 0; } // Returns true if the remainder digits are greater than 5000... bool IsGreaterThanHalf() const { return next_digit_ > 5 || (next_digit_ == 5 && chunk_index_ >= 0); } // Returns true if the remainder digits are exactly 5000... bool IsExactlyHalf() const { return next_digit_ == 5 && chunk_index_ < 0; } struct Digits { int digit_before_nine; int num_nines; }; // Get the next set of digits. // They are composed by a non-9 digit followed by a runs of zero or more 9s. Digits GetDigits() { Digits digits{next_digit_, 0}; next_digit_ = GetOneDigit(); while (next_digit_ == 9) { ++digits.num_nines; next_digit_ = GetOneDigit(); } return digits; } private: // Return the next digit. int GetOneDigit() { if (chunk_index_ < 0) return 0; uint32_t carry = 0; for (int i = chunk_index_; i >= 0; --i) { carry = MultiplyBy10WithCarry(&data_[i], carry); } // If the lowest chunk is now empty, remove it from view. if (data_[chunk_index_] == 0) --chunk_index_; return carry; } FractionalDigitGenerator(absl::Span data, uint128 v, int exp) : chunk_index_(exp / 32), data_(data) { const int offset = exp % 32; // Right shift `v` by `exp` bits. data_[chunk_index_] = static_cast(v << (32 - offset)); v >>= offset; // Make sure we don't overflow the data. We already calculated that // non-zero bits fit, so we might not have space for leading zero bits. for (int pos = chunk_index_; v; v >>= 32) data_[--pos] = static_cast(v); // Fill next_digit_, as GetDigits expects it to be populated always. next_digit_ = GetOneDigit(); } int next_digit_; int chunk_index_; absl::Span data_; }; // Count the number of leading zero bits. int LeadingZeros(uint64_t v) { return base_internal::CountLeadingZeros64(v); } int LeadingZeros(uint128 v) { auto high = static_cast(v >> 64); auto low = static_cast(v); return high != 0 ? base_internal::CountLeadingZeros64(high) : 64 + base_internal::CountLeadingZeros64(low); } // Round up the text digits starting at `p`. // The buffer must have an extra digit that is known to not need rounding. // This is done below by having an extra '0' digit on the left. void RoundUp(char *p) { while (*p == '9' || *p == '.') { if (*p == '9') *p = '0'; --p; } ++*p; } // Check the previous digit and round up or down to follow the round-to-even // policy. void RoundToEven(char *p) { if (*p == '.') --p; if (*p % 2 == 1) RoundUp(p); } // Simple integral decimal digit printing for values that fit in 64-bits. // Returns the pointer to the last written digit. char *PrintIntegralDigitsFromRightFast(uint64_t v, char *p) { do { *--p = DivideBy10WithCarry(&v, 0) + '0'; } while (v != 0); return p; } // Simple integral decimal digit printing for values that fit in 128-bits. // Returns the pointer to the last written digit. char *PrintIntegralDigitsFromRightFast(uint128 v, char *p) { auto high = static_cast(v >> 64); auto low = static_cast(v); while (high != 0) { uint64_t carry = DivideBy10WithCarry(&high, 0); carry = DivideBy10WithCarry(&low, carry); *--p = carry + '0'; } return PrintIntegralDigitsFromRightFast(low, p); } // Simple fractional decimal digit printing for values that fir in 64-bits after // shifting. // Performs rounding if necessary to fit within `precision`. // Returns the pointer to one after the last character written. char *PrintFractionalDigitsFast(uint64_t v, char *start, int exp, int precision) { char *p = start; v <<= (64 - exp); while (precision > 0) { if (!v) return p; *p++ = MultiplyBy10WithCarry(&v, uint64_t{0}) + '0'; --precision; } // We need to round. if (v < 0x8000000000000000) { // We round down, so nothing to do. } else if (v > 0x8000000000000000) { // We round up. RoundUp(p - 1); } else { RoundToEven(p - 1); } assert(precision == 0); // Precision can only be zero here. return p; } // Simple fractional decimal digit printing for values that fir in 128-bits // after shifting. // Performs rounding if necessary to fit within `precision`. // Returns the pointer to one after the last character written. char *PrintFractionalDigitsFast(uint128 v, char *start, int exp, int precision) { char *p = start; v <<= (128 - exp); auto high = static_cast(v >> 64); auto low = static_cast(v); // While we have digits to print and `low` is not empty, do the long // multiplication. while (precision > 0 && low != 0) { uint64_t carry = MultiplyBy10WithCarry(&low, uint64_t{0}); carry = MultiplyBy10WithCarry(&high, carry); *p++ = carry + '0'; --precision; } // Now `low` is empty, so use a faster approach for the rest of the digits. // This block is pretty much the same as the main loop for the 64-bit case // above. while (precision > 0) { if (!high) return p; *p++ = MultiplyBy10WithCarry(&high, uint64_t{0}) + '0'; --precision; } // We need to round. if (high < 0x8000000000000000) { // We round down, so nothing to do. } else if (high > 0x8000000000000000 || low != 0) { // We round up. RoundUp(p - 1); } else { RoundToEven(p - 1); } assert(precision == 0); // Precision can only be zero here. return p; } struct FormatState { char sign_char; int precision; const FormatConversionSpecImpl &conv; FormatSinkImpl *sink; // In `alt` mode (flag #) we keep the `.` even if there are no fractional // digits. In non-alt mode, we strip it. bool ShouldPrintDot() const { return precision != 0 || conv.has_alt_flag(); } }; struct Padding { int left_spaces; int zeros; int right_spaces; }; Padding ExtraWidthToPadding(size_t total_size, const FormatState &state) { if (state.conv.width() < 0 || state.conv.width() <= total_size) return {0, 0, 0}; int missing_chars = state.conv.width() - total_size; if (state.conv.has_left_flag()) { return {0, 0, missing_chars}; } else if (state.conv.has_zero_flag()) { return {0, missing_chars, 0}; } else { return {missing_chars, 0, 0}; } } void FinalPrint(const FormatState &state, absl::string_view data, int padding_offset, int trailing_zeros, absl::string_view data_postfix) { if (state.conv.width() < 0) { // No width specified. Fast-path. if (state.sign_char != '\0') state.sink->Append(1, state.sign_char); state.sink->Append(data); state.sink->Append(trailing_zeros, '0'); state.sink->Append(data_postfix); return; } auto padding = ExtraWidthToPadding((state.sign_char != '\0' ? 1 : 0) + data.size() + data_postfix.size() + static_cast(trailing_zeros), state); state.sink->Append(padding.left_spaces, ' '); if (state.sign_char != '\0') state.sink->Append(1, state.sign_char); // Padding in general needs to be inserted somewhere in the middle of `data`. state.sink->Append(data.substr(0, padding_offset)); state.sink->Append(padding.zeros, '0'); state.sink->Append(data.substr(padding_offset)); state.sink->Append(trailing_zeros, '0'); state.sink->Append(data_postfix); state.sink->Append(padding.right_spaces, ' '); } // Fastpath %f formatter for when the shifted value fits in a simple integral // type. // Prints `v*2^exp` with the options from `state`. template void FormatFFast(Int v, int exp, const FormatState &state) { constexpr int input_bits = sizeof(Int) * 8; static constexpr size_t integral_size = /* in case we need to round up an extra digit */ 1 + /* decimal digits for uint128 */ 40 + 1; char buffer[integral_size + /* . */ 1 + /* max digits uint128 */ 128]; buffer[integral_size] = '.'; char *const integral_digits_end = buffer + integral_size; char *integral_digits_start; char *const fractional_digits_start = buffer + integral_size + 1; char *fractional_digits_end = fractional_digits_start; if (exp >= 0) { const int total_bits = input_bits - LeadingZeros(v) + exp; integral_digits_start = total_bits <= 64 ? PrintIntegralDigitsFromRightFast(static_cast(v) << exp, integral_digits_end) : PrintIntegralDigitsFromRightFast(static_cast(v) << exp, integral_digits_end); } else { exp = -exp; integral_digits_start = PrintIntegralDigitsFromRightFast( exp < input_bits ? v >> exp : 0, integral_digits_end); // PrintFractionalDigits may pull a carried 1 all the way up through the // integral portion. integral_digits_start[-1] = '0'; fractional_digits_end = exp <= 64 ? PrintFractionalDigitsFast(v, fractional_digits_start, exp, state.precision) : PrintFractionalDigitsFast(static_cast(v), fractional_digits_start, exp, state.precision); // There was a carry, so include the first digit too. if (integral_digits_start[-1] != '0') --integral_digits_start; } size_t size = fractional_digits_end - integral_digits_start; // In `alt` mode (flag #) we keep the `.` even if there are no fractional // digits. In non-alt mode, we strip it. if (!state.ShouldPrintDot()) --size; FinalPrint(state, absl::string_view(integral_digits_start, size), /*padding_offset=*/0, static_cast(state.precision - (fractional_digits_end - fractional_digits_start)), /*data_postfix=*/""); } // Slow %f formatter for when the shifted value does not fit in a uint128, and // `exp > 0`. // Prints `v*2^exp` with the options from `state`. // This one is guaranteed to not have fractional digits, so we don't have to // worry about anything after the `.`. void FormatFPositiveExpSlow(uint128 v, int exp, const FormatState &state) { BinaryToDecimal::RunConversion(v, exp, [&](BinaryToDecimal btd) { const size_t total_digits = btd.TotalDigits() + (state.ShouldPrintDot() ? static_cast(state.precision) + 1 : 0); const auto padding = ExtraWidthToPadding( total_digits + (state.sign_char != '\0' ? 1 : 0), state); state.sink->Append(padding.left_spaces, ' '); if (state.sign_char != '\0') state.sink->Append(1, state.sign_char); state.sink->Append(padding.zeros, '0'); do { state.sink->Append(btd.CurrentDigits()); } while (btd.AdvanceDigits()); if (state.ShouldPrintDot()) state.sink->Append(1, '.'); state.sink->Append(state.precision, '0'); state.sink->Append(padding.right_spaces, ' '); }); } // Slow %f formatter for when the shifted value does not fit in a uint128, and // `exp < 0`. // Prints `v*2^exp` with the options from `state`. // This one is guaranteed to be < 1.0, so we don't have to worry about integral // digits. void FormatFNegativeExpSlow(uint128 v, int exp, const FormatState &state) { const size_t total_digits = /* 0 */ 1 + (state.ShouldPrintDot() ? static_cast(state.precision) + 1 : 0); auto padding = ExtraWidthToPadding(total_digits + (state.sign_char ? 1 : 0), state); padding.zeros += 1; state.sink->Append(padding.left_spaces, ' '); if (state.sign_char != '\0') state.sink->Append(1, state.sign_char); state.sink->Append(padding.zeros, '0'); if (state.ShouldPrintDot()) state.sink->Append(1, '.'); // Print digits int digits_to_go = state.precision; FractionalDigitGenerator::RunConversion( v, exp, [&](FractionalDigitGenerator digit_gen) { // There are no digits to print here. if (state.precision == 0) return; // We go one digit at a time, while keeping track of runs of nines. // The runs of nines are used to perform rounding when necessary. while (digits_to_go > 0 && digit_gen.HasMoreDigits()) { auto digits = digit_gen.GetDigits(); // Now we have a digit and a run of nines. // See if we can print them all. if (digits.num_nines + 1 < digits_to_go) { // We don't have to round yet, so print them. state.sink->Append(1, digits.digit_before_nine + '0'); state.sink->Append(digits.num_nines, '9'); digits_to_go -= digits.num_nines + 1; } else { // We can't print all the nines, see where we have to truncate. bool round_up = false; if (digits.num_nines + 1 > digits_to_go) { // We round up at a nine. No need to print them. round_up = true; } else { // We can fit all the nines, but truncate just after it. if (digit_gen.IsGreaterThanHalf()) { round_up = true; } else if (digit_gen.IsExactlyHalf()) { // Round to even round_up = digits.num_nines != 0 || digits.digit_before_nine % 2 == 1; } } if (round_up) { state.sink->Append(1, digits.digit_before_nine + '1'); --digits_to_go; // The rest will be zeros. } else { state.sink->Append(1, digits.digit_before_nine + '0'); state.sink->Append(digits_to_go - 1, '9'); digits_to_go = 0; } return; } } }); state.sink->Append(digits_to_go, '0'); state.sink->Append(padding.right_spaces, ' '); } template void FormatF(Int mantissa, int exp, const FormatState &state) { if (exp >= 0) { const int total_bits = sizeof(Int) * 8 - LeadingZeros(mantissa) + exp; // Fallback to the slow stack-based approach if we can't do it in a 64 or // 128 bit state. if (ABSL_PREDICT_FALSE(total_bits > 128)) { return FormatFPositiveExpSlow(mantissa, exp, state); } } else { // Fallback to the slow stack-based approach if we can't do it in a 64 or // 128 bit state. if (ABSL_PREDICT_FALSE(exp < -128)) { return FormatFNegativeExpSlow(mantissa, -exp, state); } } return FormatFFast(mantissa, exp, state); } // Grab the group of four bits (nibble) from `n`. E.g., nibble 1 corresponds to // bits 4-7. template uint8_t GetNibble(Int n, int nibble_index) { constexpr Int mask_low_nibble = Int{0xf}; int shift = nibble_index * 4; n &= mask_low_nibble << shift; return static_cast((n >> shift) & 0xf); } // Add one to the given nibble, applying carry to higher nibbles. Returns true // if overflow, false otherwise. template bool IncrementNibble(int nibble_index, Int *n) { constexpr int kShift = sizeof(Int) * 8 - 1; constexpr int kNumNibbles = sizeof(Int) * 8 / 4; Int before = *n >> kShift; // Here we essentially want to take the number 1 and move it into the requsted // nibble, then add it to *n to effectively increment the nibble. However, // ASan will complain if we try to shift the 1 beyond the limits of the Int, // i.e., if the nibble_index is out of range. So therefore we check for this // and if we are out of range we just add 0 which leaves *n unchanged, which // seems like the reasonable thing to do in that case. *n += ((nibble_index * 4 >= sizeof(Int) * 8) ? 0 : (Int{1} << (nibble_index * 4))); Int after = *n >> kShift; return (before && !after) || (nibble_index >= kNumNibbles); } // Return a mask with 1's in the given nibble and all lower nibbles. template Int MaskUpToNibbleInclusive(int nibble_index) { constexpr int kNumNibbles = sizeof(Int) * 8 / 4; static const Int ones = ~Int{0}; return ones >> std::max(0, 4 * (kNumNibbles - nibble_index - 1)); } // Return a mask with 1's below the given nibble. template Int MaskUpToNibbleExclusive(int nibble_index) { return nibble_index <= 0 ? 0 : MaskUpToNibbleInclusive(nibble_index - 1); } template Int MoveToNibble(uint8_t nibble, int nibble_index) { return Int{nibble} << (4 * nibble_index); } // Given mantissa size, find optimal # of mantissa bits to put in initial digit. // // In the hex representation we keep a single hex digit to the left of the dot. // However, the question as to how many bits of the mantissa should be put into // that hex digit in theory is arbitrary, but in practice it is optimal to // choose based on the size of the mantissa. E.g., for a `double`, there are 53 // mantissa bits, so that means that we should put 1 bit to the left of the dot, // thereby leaving 52 bits to the right, which is evenly divisible by four and // thus all fractional digits represent actual precision. For a `long double`, // on the other hand, there are 64 bits of mantissa, thus we can use all four // bits for the initial hex digit and still have a number left over (60) that is // a multiple of four. Once again, the goal is to have all fractional digits // represent real precision. template constexpr int HexFloatLeadingDigitSizeInBits() { return std::numeric_limits::digits % 4 > 0 ? std::numeric_limits::digits % 4 : 4; } // This function captures the rounding behavior of glibc for hex float // representations. E.g. when rounding 0x1.ab800000 to a precision of .2 // ("%.2a") glibc will round up because it rounds toward the even number (since // 0xb is an odd number, it will round up to 0xc). However, when rounding at a // point that is not followed by 800000..., it disregards the parity and rounds // up if > 8 and rounds down if < 8. template bool HexFloatNeedsRoundUp(Int mantissa, int final_nibble_displayed, uint8_t leading) { // If the last nibble (hex digit) to be displayed is the lowest on in the // mantissa then that means that we don't have any further nibbles to inform // rounding, so don't round. if (final_nibble_displayed <= 0) { return false; } int rounding_nibble_idx = final_nibble_displayed - 1; constexpr int kTotalNibbles = sizeof(Int) * 8 / 4; assert(final_nibble_displayed <= kTotalNibbles); Int mantissa_up_to_rounding_nibble_inclusive = mantissa & MaskUpToNibbleInclusive(rounding_nibble_idx); Int eight = MoveToNibble(8, rounding_nibble_idx); if (mantissa_up_to_rounding_nibble_inclusive != eight) { return mantissa_up_to_rounding_nibble_inclusive > eight; } // Nibble in question == 8. uint8_t round_if_odd = (final_nibble_displayed == kTotalNibbles) ? leading : GetNibble(mantissa, final_nibble_displayed); return round_if_odd % 2 == 1; } // Stores values associated with a Float type needed by the FormatA // implementation in order to avoid templatizing that function by the Float // type. struct HexFloatTypeParams { template explicit HexFloatTypeParams(Float) : min_exponent(std::numeric_limits::min_exponent - 1), leading_digit_size_bits(HexFloatLeadingDigitSizeInBits()) { assert(leading_digit_size_bits >= 1 && leading_digit_size_bits <= 4); } int min_exponent; int leading_digit_size_bits; }; // Hex Float Rounding. First check if we need to round; if so, then we do that // by manipulating (incrementing) the mantissa, that way we can later print the // mantissa digits by iterating through them in the same way regardless of // whether a rounding happened. template void FormatARound(bool precision_specified, const FormatState &state, uint8_t *leading, Int *mantissa, int *exp) { constexpr int kTotalNibbles = sizeof(Int) * 8 / 4; // Index of the last nibble that we could display given precision. int final_nibble_displayed = precision_specified ? std::max(0, (kTotalNibbles - state.precision)) : 0; if (HexFloatNeedsRoundUp(*mantissa, final_nibble_displayed, *leading)) { // Need to round up. bool overflow = IncrementNibble(final_nibble_displayed, mantissa); *leading += (overflow ? 1 : 0); if (ABSL_PREDICT_FALSE(*leading > 15)) { // We have overflowed the leading digit. This would mean that we would // need two hex digits to the left of the dot, which is not allowed. So // adjust the mantissa and exponent so that the result is always 1.0eXXX. *leading = 1; *mantissa = 0; *exp += 4; } } // Now that we have handled a possible round-up we can go ahead and zero out // all the nibbles of the mantissa that we won't need. if (precision_specified) { *mantissa &= ~MaskUpToNibbleExclusive(final_nibble_displayed); } } template void FormatANormalize(const HexFloatTypeParams float_traits, uint8_t *leading, Int *mantissa, int *exp) { constexpr int kIntBits = sizeof(Int) * 8; static const Int kHighIntBit = Int{1} << (kIntBits - 1); const int kLeadDigitBitsCount = float_traits.leading_digit_size_bits; // Normalize mantissa so that highest bit set is in MSB position, unless we // get interrupted by the exponent threshold. while (*mantissa && !(*mantissa & kHighIntBit)) { if (ABSL_PREDICT_FALSE(*exp - 1 < float_traits.min_exponent)) { *mantissa >>= (float_traits.min_exponent - *exp); *exp = float_traits.min_exponent; return; } *mantissa <<= 1; --*exp; } // Extract bits for leading digit then shift them away leaving the // fractional part. *leading = static_cast(*mantissa >> (kIntBits - kLeadDigitBitsCount)); *exp -= (*mantissa != 0) ? kLeadDigitBitsCount : *exp; *mantissa <<= kLeadDigitBitsCount; } template void FormatA(const HexFloatTypeParams float_traits, Int mantissa, int exp, bool uppercase, const FormatState &state) { // Int properties. constexpr int kIntBits = sizeof(Int) * 8; constexpr int kTotalNibbles = sizeof(Int) * 8 / 4; // Did the user specify a precision explicitly? const bool precision_specified = state.conv.precision() >= 0; // ========== Normalize/Denormalize ========== exp += kIntBits; // make all digits fractional digits. // This holds the (up to four) bits of leading digit, i.e., the '1' in the // number 0x1.e6fp+2. It's always > 0 unless number is zero or denormal. uint8_t leading = 0; FormatANormalize(float_traits, &leading, &mantissa, &exp); // =============== Rounding ================== // Check if we need to round; if so, then we do that by manipulating // (incrementing) the mantissa before beginning to print characters. FormatARound(precision_specified, state, &leading, &mantissa, &exp); // ============= Format Result =============== // This buffer holds the "0x1.ab1de3" portion of "0x1.ab1de3pe+2". Compute the // size with long double which is the largest of the floats. constexpr size_t kBufSizeForHexFloatRepr = 2 // 0x + std::numeric_limits::digits / 4 // number of hex digits + 1 // round up + 1; // "." (dot) char digits_buffer[kBufSizeForHexFloatRepr]; char *digits_iter = digits_buffer; const char *const digits = static_cast("0123456789ABCDEF0123456789abcdef") + (uppercase ? 0 : 16); // =============== Hex Prefix ================ *digits_iter++ = '0'; *digits_iter++ = uppercase ? 'X' : 'x'; // ========== Non-Fractional Digit =========== *digits_iter++ = digits[leading]; // ================== Dot ==================== // There are three reasons we might need a dot. Keep in mind that, at this // point, the mantissa holds only the fractional part. if ((precision_specified && state.precision > 0) || (!precision_specified && mantissa > 0) || state.conv.has_alt_flag()) { *digits_iter++ = '.'; } // ============ Fractional Digits ============ int digits_emitted = 0; while (mantissa > 0) { *digits_iter++ = digits[GetNibble(mantissa, kTotalNibbles - 1)]; mantissa <<= 4; ++digits_emitted; } int trailing_zeros = precision_specified ? state.precision - digits_emitted : 0; assert(trailing_zeros >= 0); auto digits_result = string_view(digits_buffer, digits_iter - digits_buffer); // =============== Exponent ================== constexpr size_t kBufSizeForExpDecRepr = numbers_internal::kFastToBufferSize // requred for FastIntToBuffer + 1 // 'p' or 'P' + 1; // '+' or '-' char exp_buffer[kBufSizeForExpDecRepr]; exp_buffer[0] = uppercase ? 'P' : 'p'; exp_buffer[1] = exp >= 0 ? '+' : '-'; numbers_internal::FastIntToBuffer(exp < 0 ? -exp : exp, exp_buffer + 2); // ============ Assemble Result ============== FinalPrint(state, // digits_result, // 0xN.NNN... 2, // offset in `data` to start padding if needed. trailing_zeros, // num remaining mantissa padding zeros exp_buffer); // exponent } char *CopyStringTo(absl::string_view v, char *out) { std::memcpy(out, v.data(), v.size()); return out + v.size(); } template bool FallbackToSnprintf(const Float v, const FormatConversionSpecImpl &conv, FormatSinkImpl *sink) { int w = conv.width() >= 0 ? conv.width() : 0; int p = conv.precision() >= 0 ? conv.precision() : -1; char fmt[32]; { char *fp = fmt; *fp++ = '%'; fp = CopyStringTo(FormatConversionSpecImplFriend::FlagsToString(conv), fp); fp = CopyStringTo("*.*", fp); if (std::is_same()) { *fp++ = 'L'; } *fp++ = FormatConversionCharToChar(conv.conversion_char()); *fp = 0; assert(fp < fmt + sizeof(fmt)); } std::string space(512, '\0'); absl::string_view result; while (true) { int n = snprintf(&space[0], space.size(), fmt, w, p, v); if (n < 0) return false; if (static_cast(n) < space.size()) { result = absl::string_view(space.data(), n); break; } space.resize(n + 1); } sink->Append(result); return true; } // 128-bits in decimal: ceil(128*log(2)/log(10)) // or std::numeric_limits<__uint128_t>::digits10 constexpr int kMaxFixedPrecision = 39; constexpr int kBufferLength = /*sign*/ 1 + /*integer*/ kMaxFixedPrecision + /*point*/ 1 + /*fraction*/ kMaxFixedPrecision + /*exponent e+123*/ 5; struct Buffer { void push_front(char c) { assert(begin > data); *--begin = c; } void push_back(char c) { assert(end < data + sizeof(data)); *end++ = c; } void pop_back() { assert(begin < end); --end; } char &back() { assert(begin < end); return end[-1]; } char last_digit() const { return end[-1] == '.' ? end[-2] : end[-1]; } int size() const { return static_cast(end - begin); } char data[kBufferLength]; char *begin; char *end; }; enum class FormatStyle { Fixed, Precision }; // If the value is Inf or Nan, print it and return true. // Otherwise, return false. template bool ConvertNonNumericFloats(char sign_char, Float v, const FormatConversionSpecImpl &conv, FormatSinkImpl *sink) { char text[4], *ptr = text; if (sign_char != '\0') *ptr++ = sign_char; if (std::isnan(v)) { ptr = std::copy_n( FormatConversionCharIsUpper(conv.conversion_char()) ? "NAN" : "nan", 3, ptr); } else if (std::isinf(v)) { ptr = std::copy_n( FormatConversionCharIsUpper(conv.conversion_char()) ? "INF" : "inf", 3, ptr); } else { return false; } return sink->PutPaddedString(string_view(text, ptr - text), conv.width(), -1, conv.has_left_flag()); } // Round up the last digit of the value. // It will carry over and potentially overflow. 'exp' will be adjusted in that // case. template void RoundUp(Buffer *buffer, int *exp) { char *p = &buffer->back(); while (p >= buffer->begin && (*p == '9' || *p == '.')) { if (*p == '9') *p = '0'; --p; } if (p < buffer->begin) { *p = '1'; buffer->begin = p; if (mode == FormatStyle::Precision) { std::swap(p[1], p[2]); // move the . ++*exp; buffer->pop_back(); } } else { ++*p; } } void PrintExponent(int exp, char e, Buffer *out) { out->push_back(e); if (exp < 0) { out->push_back('-'); exp = -exp; } else { out->push_back('+'); } // Exponent digits. if (exp > 99) { out->push_back(exp / 100 + '0'); out->push_back(exp / 10 % 10 + '0'); out->push_back(exp % 10 + '0'); } else { out->push_back(exp / 10 + '0'); out->push_back(exp % 10 + '0'); } } template constexpr bool CanFitMantissa() { return #if defined(__clang__) && !defined(__SSE3__) // Workaround for clang bug: https://bugs.llvm.org/show_bug.cgi?id=38289 // Casting from long double to uint64_t is miscompiled and drops bits. (!std::is_same::value || !std::is_same::value) && #endif std::numeric_limits::digits <= std::numeric_limits::digits; } template struct Decomposed { using MantissaType = absl::conditional_t::value, uint128, uint64_t>; static_assert(std::numeric_limits::digits <= sizeof(MantissaType) * 8, ""); MantissaType mantissa; int exponent; }; // Decompose the double into an integer mantissa and an exponent. template Decomposed Decompose(Float v) { int exp; Float m = std::frexp(v, &exp); m = std::ldexp(m, std::numeric_limits::digits); exp -= std::numeric_limits::digits; return {static_cast::MantissaType>(m), exp}; } // Print 'digits' as decimal. // In Fixed mode, we add a '.' at the end. // In Precision mode, we add a '.' after the first digit. template int PrintIntegralDigits(Int digits, Buffer *out) { int printed = 0; if (digits) { for (; digits; digits /= 10) out->push_front(digits % 10 + '0'); printed = out->size(); if (mode == FormatStyle::Precision) { out->push_front(*out->begin); out->begin[1] = '.'; } else { out->push_back('.'); } } else if (mode == FormatStyle::Fixed) { out->push_front('0'); out->push_back('.'); printed = 1; } return printed; } // Back out 'extra_digits' digits and round up if necessary. bool RemoveExtraPrecision(int extra_digits, bool has_leftover_value, Buffer *out, int *exp_out) { if (extra_digits <= 0) return false; // Back out the extra digits out->end -= extra_digits; bool needs_to_round_up = [&] { // We look at the digit just past the end. // There must be 'extra_digits' extra valid digits after end. if (*out->end > '5') return true; if (*out->end < '5') return false; if (has_leftover_value || std::any_of(out->end + 1, out->end + extra_digits, [](char c) { return c != '0'; })) return true; // Ends in ...50*, round to even. return out->last_digit() % 2 == 1; }(); if (needs_to_round_up) { RoundUp(out, exp_out); } return true; } // Print the value into the buffer. // This will not include the exponent, which will be returned in 'exp_out' for // Precision mode. template bool FloatToBufferImpl(Int int_mantissa, int exp, int precision, Buffer *out, int *exp_out) { assert((CanFitMantissa())); const int int_bits = std::numeric_limits::digits; // In precision mode, we start printing one char to the right because it will // also include the '.' // In fixed mode we put the dot afterwards on the right. out->begin = out->end = out->data + 1 + kMaxFixedPrecision + (mode == FormatStyle::Precision); if (exp >= 0) { if (std::numeric_limits::digits + exp > int_bits) { // The value will overflow the Int return false; } int digits_printed = PrintIntegralDigits(int_mantissa << exp, out); int digits_to_zero_pad = precision; if (mode == FormatStyle::Precision) { *exp_out = digits_printed - 1; digits_to_zero_pad -= digits_printed - 1; if (RemoveExtraPrecision(-digits_to_zero_pad, false, out, exp_out)) { return true; } } for (; digits_to_zero_pad-- > 0;) out->push_back('0'); return true; } exp = -exp; // We need at least 4 empty bits for the next decimal digit. // We will multiply by 10. if (exp > int_bits - 4) return false; const Int mask = (Int{1} << exp) - 1; // Print the integral part first. int digits_printed = PrintIntegralDigits(int_mantissa >> exp, out); int_mantissa &= mask; int fractional_count = precision; if (mode == FormatStyle::Precision) { if (digits_printed == 0) { // Find the first non-zero digit, when in Precision mode. *exp_out = 0; if (int_mantissa) { while (int_mantissa <= mask) { int_mantissa *= 10; --*exp_out; } } out->push_front(static_cast(int_mantissa >> exp) + '0'); out->push_back('.'); int_mantissa &= mask; } else { // We already have a digit, and a '.' *exp_out = digits_printed - 1; fractional_count -= *exp_out; if (RemoveExtraPrecision(-fractional_count, int_mantissa != 0, out, exp_out)) { // If we had enough digits, return right away. // The code below will try to round again otherwise. return true; } } } auto get_next_digit = [&] { int_mantissa *= 10; int digit = static_cast(int_mantissa >> exp); int_mantissa &= mask; return digit; }; // Print fractional_count more digits, if available. for (; fractional_count > 0; --fractional_count) { out->push_back(get_next_digit() + '0'); } int next_digit = get_next_digit(); if (next_digit > 5 || (next_digit == 5 && (int_mantissa || out->last_digit() % 2 == 1))) { RoundUp(out, exp_out); } return true; } template bool FloatToBuffer(Decomposed decomposed, int precision, Buffer *out, int *exp) { if (precision > kMaxFixedPrecision) return false; // Try with uint64_t. if (CanFitMantissa() && FloatToBufferImpl( static_cast(decomposed.mantissa), static_cast(decomposed.exponent), precision, out, exp)) return true; #if defined(ABSL_HAVE_INTRINSIC_INT128) // If that is not enough, try with __uint128_t. return CanFitMantissa() && FloatToBufferImpl<__uint128_t, Float, mode>( static_cast<__uint128_t>(decomposed.mantissa), static_cast<__uint128_t>(decomposed.exponent), precision, out, exp); #endif return false; } void WriteBufferToSink(char sign_char, absl::string_view str, const FormatConversionSpecImpl &conv, FormatSinkImpl *sink) { int left_spaces = 0, zeros = 0, right_spaces = 0; int missing_chars = conv.width() >= 0 ? std::max(conv.width() - static_cast(str.size()) - static_cast(sign_char != 0), 0) : 0; if (conv.has_left_flag()) { right_spaces = missing_chars; } else if (conv.has_zero_flag()) { zeros = missing_chars; } else { left_spaces = missing_chars; } sink->Append(left_spaces, ' '); if (sign_char != '\0') sink->Append(1, sign_char); sink->Append(zeros, '0'); sink->Append(str); sink->Append(right_spaces, ' '); } template bool FloatToSink(const Float v, const FormatConversionSpecImpl &conv, FormatSinkImpl *sink) { // Print the sign or the sign column. Float abs_v = v; char sign_char = 0; if (std::signbit(abs_v)) { sign_char = '-'; abs_v = -abs_v; } else if (conv.has_show_pos_flag()) { sign_char = '+'; } else if (conv.has_sign_col_flag()) { sign_char = ' '; } // Print nan/inf. if (ConvertNonNumericFloats(sign_char, abs_v, conv, sink)) { return true; } int precision = conv.precision() < 0 ? 6 : conv.precision(); int exp = 0; auto decomposed = Decompose(abs_v); Buffer buffer; FormatConversionChar c = conv.conversion_char(); if (c == FormatConversionCharInternal::f || c == FormatConversionCharInternal::F) { FormatF(decomposed.mantissa, decomposed.exponent, {sign_char, precision, conv, sink}); return true; } else if (c == FormatConversionCharInternal::e || c == FormatConversionCharInternal::E) { if (!FloatToBuffer(decomposed, precision, &buffer, &exp)) { return FallbackToSnprintf(v, conv, sink); } if (!conv.has_alt_flag() && buffer.back() == '.') buffer.pop_back(); PrintExponent( exp, FormatConversionCharIsUpper(conv.conversion_char()) ? 'E' : 'e', &buffer); } else if (c == FormatConversionCharInternal::g || c == FormatConversionCharInternal::G) { precision = std::max(0, precision - 1); if (!FloatToBuffer(decomposed, precision, &buffer, &exp)) { return FallbackToSnprintf(v, conv, sink); } if (precision + 1 > exp && exp >= -4) { if (exp < 0) { // Have 1.23456, needs 0.00123456 // Move the first digit buffer.begin[1] = *buffer.begin; // Add some zeros for (; exp < -1; ++exp) *buffer.begin-- = '0'; *buffer.begin-- = '.'; *buffer.begin = '0'; } else if (exp > 0) { // Have 1.23456, needs 1234.56 // Move the '.' exp positions to the right. std::rotate(buffer.begin + 1, buffer.begin + 2, buffer.begin + exp + 2); } exp = 0; } if (!conv.has_alt_flag()) { while (buffer.back() == '0') buffer.pop_back(); if (buffer.back() == '.') buffer.pop_back(); } if (exp) { PrintExponent( exp, FormatConversionCharIsUpper(conv.conversion_char()) ? 'E' : 'e', &buffer); } } else if (c == FormatConversionCharInternal::a || c == FormatConversionCharInternal::A) { bool uppercase = (c == FormatConversionCharInternal::A); FormatA(HexFloatTypeParams(Float{}), decomposed.mantissa, decomposed.exponent, uppercase, {sign_char, precision, conv, sink}); return true; } else { return false; } WriteBufferToSink(sign_char, absl::string_view(buffer.begin, buffer.end - buffer.begin), conv, sink); return true; } } // namespace bool ConvertFloatImpl(long double v, const FormatConversionSpecImpl &conv, FormatSinkImpl *sink) { if (std::numeric_limits::digits == 2 * std::numeric_limits::digits) { // This is the `double-double` representation of `long double`. // We do not handle it natively. Fallback to snprintf. return FallbackToSnprintf(v, conv, sink); } return FloatToSink(v, conv, sink); } bool ConvertFloatImpl(float v, const FormatConversionSpecImpl &conv, FormatSinkImpl *sink) { return FloatToSink(static_cast(v), conv, sink); } bool ConvertFloatImpl(double v, const FormatConversionSpecImpl &conv, FormatSinkImpl *sink) { return FloatToSink(v, conv, sink); } } // namespace str_format_internal ABSL_NAMESPACE_END } // namespace absl