Export of internal Abseil changes

--
a0847bf19789c97689f1a8b0133a53b8af5e5caa by Samuel Benzaquen <sbenza@google.com>:

Add support for absl::(u)int128 to random distributions and generators.

PiperOrigin-RevId: 411565479
GitOrigin-RevId: a0847bf19789c97689f1a8b0133a53b8af5e5caa
Change-Id: Ide434bdd93fcab8e90f791796498de14833b667c
pull/1070/head
Abseil Team 3 years ago committed by Derek Mauro
parent 72c7651111
commit ec0d76f1d0
  1. 1
      absl/random/CMakeLists.txt
  2. 6
      absl/random/distributions.h
  3. 1
      absl/random/distributions_test.cc
  4. 6
      absl/random/generators_test.cc
  5. 8
      absl/random/internal/BUILD.bazel
  6. 3
      absl/random/internal/fast_uniform_bits.h
  7. 58
      absl/random/internal/traits.h
  8. 10
      absl/random/internal/uniform_helper.h
  9. 81
      absl/random/internal/wide_multiply.h
  10. 110
      absl/random/internal/wide_multiply_test.cc
  11. 19
      absl/random/log_uniform_int_distribution.h
  12. 11
      absl/random/poisson_distribution.h
  13. 4
      absl/random/uniform_int_distribution.h
  14. 5
      absl/random/zipf_distribution.h

@ -1210,5 +1210,6 @@ absl_cc_test(
absl::random_internal_wide_multiply
absl::bits
absl::int128
GTest::gmock
GTest::gtest_main
)

@ -373,7 +373,7 @@ RealType Gaussian(URBG&& urbg, // NOLINT(runtime/references)
template <typename IntType, typename URBG>
IntType LogUniform(URBG&& urbg, // NOLINT(runtime/references)
IntType lo, IntType hi, IntType base = 2) {
static_assert(std::is_integral<IntType>::value,
static_assert(random_internal::IsIntegral<IntType>::value,
"Template-argument 'IntType' must be an integral type, in "
"absl::LogUniform<IntType, URBG>(...)");
@ -403,7 +403,7 @@ IntType LogUniform(URBG&& urbg, // NOLINT(runtime/references)
template <typename IntType, typename URBG>
IntType Poisson(URBG&& urbg, // NOLINT(runtime/references)
double mean = 1.0) {
static_assert(std::is_integral<IntType>::value,
static_assert(random_internal::IsIntegral<IntType>::value,
"Template-argument 'IntType' must be an integral type, in "
"absl::Poisson<IntType, URBG>(...)");
@ -435,7 +435,7 @@ template <typename IntType, typename URBG>
IntType Zipf(URBG&& urbg, // NOLINT(runtime/references)
IntType hi = (std::numeric_limits<IntType>::max)(), double q = 2.0,
double v = 1.0) {
static_assert(std::is_integral<IntType>::value,
static_assert(random_internal::IsIntegral<IntType>::value,
"Template-argument 'IntType' must be an integral type, in "
"absl::Zipf<IntType, URBG>(...)");

@ -220,6 +220,7 @@ TEST_F(RandomDistributionsTest, UniformNoBounds) {
absl::Uniform<uint16_t>(gen);
absl::Uniform<uint32_t>(gen);
absl::Uniform<uint64_t>(gen);
absl::Uniform<absl::uint128>(gen);
}
TEST_F(RandomDistributionsTest, UniformNonsenseRanges) {

@ -107,6 +107,8 @@ void TestPoisson(URBG* gen) {
absl::Poisson<int64_t>(*gen);
absl::Poisson<uint64_t>(*gen);
absl::Poisson<uint64_t>(URBG());
absl::Poisson<absl::int128>(*gen);
absl::Poisson<absl::uint128>(*gen);
}
template <typename URBG>
@ -126,6 +128,8 @@ void TestZipf(URBG* gen) {
absl::Zipf<int64_t>(*gen, 1 << 10);
absl::Zipf<uint64_t>(*gen, 1 << 10);
absl::Zipf<uint64_t>(URBG(), 1 << 10);
absl::Zipf<absl::int128>(*gen, 1 << 10);
absl::Zipf<absl::uint128>(*gen, 1 << 10);
}
template <typename URBG>
@ -146,6 +150,8 @@ void TestLogNormal(URBG* gen) {
absl::LogUniform<int64_t>(*gen, 0, 1 << 10);
absl::LogUniform<uint64_t>(*gen, 0, 1 << 10);
absl::LogUniform<uint64_t>(URBG(), 0, 1 << 10);
absl::LogUniform<absl::int128>(*gen, 0, 1 << 10);
absl::LogUniform<absl::uint128>(*gen, 0, 1 << 10);
}
template <typename URBG>

@ -35,7 +35,11 @@ cc_library(
hdrs = ["traits.h"],
copts = ABSL_DEFAULT_COPTS,
linkopts = ABSL_DEFAULT_LINKOPTS,
deps = ["//absl/base:config"],
deps = [
"//absl/base:config",
"//absl/numeric:bits",
"//absl/numeric:int128",
],
)
cc_library(
@ -58,6 +62,7 @@ cc_library(
copts = ABSL_DEFAULT_COPTS,
linkopts = ABSL_DEFAULT_LINKOPTS,
deps = [
":traits",
"//absl/base:config",
"//absl/meta:type_traits",
],
@ -674,6 +679,7 @@ cc_library(
":traits",
"//absl/base:config",
"//absl/meta:type_traits",
"//absl/numeric:int128",
],
)

@ -22,6 +22,7 @@
#include "absl/base/config.h"
#include "absl/meta/type_traits.h"
#include "absl/random/internal/traits.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
@ -98,7 +99,7 @@ class FastUniformBits {
result_type operator()(URBG& g); // NOLINT(runtime/references)
private:
static_assert(std::is_unsigned<UIntType>::value,
static_assert(IsUnsigned<UIntType>::value,
"Class-template FastUniformBits<> must be parameterized using "
"an unsigned type.");

@ -20,6 +20,8 @@
#include <type_traits>
#include "absl/base/config.h"
#include "absl/numeric/bits.h"
#include "absl/numeric/int128.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
@ -59,6 +61,31 @@ class is_widening_convertible {
rank<A>() <= rank<B>();
};
template <typename T>
struct IsIntegral : std::is_integral<T> {};
template <>
struct IsIntegral<absl::int128> : std::true_type {};
template <>
struct IsIntegral<absl::uint128> : std::true_type {};
template <typename T>
struct MakeUnsigned : std::make_unsigned<T> {};
template <>
struct MakeUnsigned<absl::int128> {
using type = absl::uint128;
};
template <>
struct MakeUnsigned<absl::uint128> {
using type = absl::uint128;
};
template <typename T>
struct IsUnsigned : std::is_unsigned<T> {};
template <>
struct IsUnsigned<absl::int128> : std::false_type {};
template <>
struct IsUnsigned<absl::uint128> : std::true_type {};
// unsigned_bits<N>::type returns the unsigned int type with the indicated
// number of bits.
template <size_t N>
@ -81,19 +108,40 @@ struct unsigned_bits<64> {
using type = uint64_t;
};
#ifdef ABSL_HAVE_INTRINSIC_INT128
template <>
struct unsigned_bits<128> {
using type = __uint128_t;
using type = absl::uint128;
};
// 256-bit wrapper for wide multiplications.
struct U256 {
uint128 hi;
uint128 lo;
};
template <>
struct unsigned_bits<256> {
using type = U256;
};
#endif
template <typename IntType>
struct make_unsigned_bits {
using type = typename unsigned_bits<std::numeric_limits<
typename std::make_unsigned<IntType>::type>::digits>::type;
using type = typename unsigned_bits<
std::numeric_limits<typename MakeUnsigned<IntType>::type>::digits>::type;
};
template <typename T>
int BitWidth(T v) {
// Workaround for bit_width not supporting int128.
// Don't hardcode `64` to make sure this code does not trigger compiler
// warnings in smaller types.
constexpr int half_bits = sizeof(T) * 8 / 2;
if (sizeof(T) == 16 && (v >> half_bits) != 0) {
return bit_width(static_cast<uint64_t>(v >> half_bits)) + half_bits;
} else {
return bit_width(static_cast<uint64_t>(v));
}
}
} // namespace random_internal
ABSL_NAMESPACE_END
} // namespace absl

@ -100,7 +100,7 @@ using uniform_inferred_return_t =
template <typename IntType, typename Tag>
typename absl::enable_if_t<
absl::conjunction<
std::is_integral<IntType>,
IsIntegral<IntType>,
absl::disjunction<std::is_same<Tag, IntervalOpenClosedTag>,
std::is_same<Tag, IntervalOpenOpenTag>>>::value,
IntType>
@ -131,7 +131,7 @@ uniform_lower_bound(Tag, NumType a, NumType) {
template <typename IntType, typename Tag>
typename absl::enable_if_t<
absl::conjunction<
std::is_integral<IntType>,
IsIntegral<IntType>,
absl::disjunction<std::is_same<Tag, IntervalClosedOpenTag>,
std::is_same<Tag, IntervalOpenOpenTag>>>::value,
IntType>
@ -153,7 +153,7 @@ uniform_upper_bound(Tag, FloatType, FloatType b) {
template <typename IntType, typename Tag>
typename absl::enable_if_t<
absl::conjunction<
std::is_integral<IntType>,
IsIntegral<IntType>,
absl::disjunction<std::is_same<Tag, IntervalClosedClosedTag>,
std::is_same<Tag, IntervalOpenClosedTag>>>::value,
IntType>
@ -201,7 +201,7 @@ is_uniform_range_valid(FloatType a, FloatType b) {
}
template <typename IntType>
absl::enable_if_t<std::is_integral<IntType>::value, bool>
absl::enable_if_t<IsIntegral<IntType>::value, bool>
is_uniform_range_valid(IntType a, IntType b) {
return a <= b;
}
@ -210,7 +210,7 @@ is_uniform_range_valid(IntType a, IntType b) {
// or absl::uniform_real_distribution depending on the NumType parameter.
template <typename NumType>
using UniformDistribution =
typename std::conditional<std::is_integral<NumType>::value,
typename std::conditional<IsIntegral<NumType>::value,
absl::uniform_int_distribution<NumType>,
absl::uniform_real_distribution<NumType>>::type;

@ -34,43 +34,6 @@ namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal {
// Helper object to multiply two 64-bit values to a 128-bit value.
// MultiplyU64ToU128 multiplies two 64-bit values to a 128-bit value.
// If an intrinsic is available, it is used, otherwise use native 32-bit
// multiplies to construct the result.
inline absl::uint128 MultiplyU64ToU128(uint64_t a, uint64_t b) {
#if defined(ABSL_HAVE_INTRINSIC_INT128)
return absl::uint128(static_cast<__uint128_t>(a) * b);
#elif defined(ABSL_INTERNAL_USE_UMUL128)
// uint64_t * uint64_t => uint128 multiply using imul intrinsic on MSVC.
uint64_t high = 0;
const uint64_t low = _umul128(a, b, &high);
return absl::MakeUint128(high, low);
#else
// uint128(a) * uint128(b) in emulated mode computes a full 128-bit x 128-bit
// multiply. However there are many cases where that is not necessary, and it
// is only necessary to support a 64-bit x 64-bit = 128-bit multiply. This is
// for those cases.
const uint64_t a00 = static_cast<uint32_t>(a);
const uint64_t a32 = a >> 32;
const uint64_t b00 = static_cast<uint32_t>(b);
const uint64_t b32 = b >> 32;
const uint64_t c00 = a00 * b00;
const uint64_t c32a = a00 * b32;
const uint64_t c32b = a32 * b00;
const uint64_t c64 = a32 * b32;
const uint32_t carry =
static_cast<uint32_t>(((c00 >> 32) + static_cast<uint32_t>(c32a) +
static_cast<uint32_t>(c32b)) >>
32);
return absl::MakeUint128(c64 + (c32a >> 32) + (c32b >> 32) + carry,
c00 + (c32a << 32) + (c32b << 32));
#endif
}
// wide_multiply<T> multiplies two N-bit values to a 2N-bit result.
template <typename UIntType>
struct wide_multiply {
@ -82,27 +45,49 @@ struct wide_multiply {
return static_cast<result_type>(a) * b;
}
static input_type hi(result_type r) { return r >> kN; }
static input_type lo(result_type r) { return r; }
static input_type hi(result_type r) {
return static_cast<input_type>(r >> kN);
}
static input_type lo(result_type r) { return static_cast<input_type>(r); }
static_assert(std::is_unsigned<UIntType>::value,
"Class-template wide_multiply<> argument must be unsigned.");
};
#ifndef ABSL_HAVE_INTRINSIC_INT128
// MultiplyU128ToU256 multiplies two 128-bit values to a 256-bit value.
inline U256 MultiplyU128ToU256(uint128 a, uint128 b) {
const uint128 a00 = static_cast<uint64_t>(a);
const uint128 a64 = a >> 64;
const uint128 b00 = static_cast<uint64_t>(b);
const uint128 b64 = b >> 64;
const uint128 c00 = a00 * b00;
const uint128 c64a = a00 * b64;
const uint128 c64b = a64 * b00;
const uint128 c128 = a64 * b64;
const uint64_t carry =
static_cast<uint64_t>(((c00 >> 64) + static_cast<uint64_t>(c64a) +
static_cast<uint64_t>(c64b)) >>
64);
return {c128 + (c64a >> 64) + (c64b >> 64) + carry,
c00 + (c64a << 64) + (c64b << 64)};
}
template <>
struct wide_multiply<uint64_t> {
using input_type = uint64_t;
using result_type = absl::uint128;
struct wide_multiply<uint128> {
using input_type = uint128;
using result_type = U256;
static result_type multiply(uint64_t a, uint64_t b) {
return MultiplyU64ToU128(a, b);
static result_type multiply(input_type a, input_type b) {
return MultiplyU128ToU256(a, b);
}
static uint64_t hi(result_type r) { return absl::Uint128High64(r); }
static uint64_t lo(result_type r) { return absl::Uint128Low64(r); }
static input_type hi(result_type r) { return r.hi; }
static input_type lo(result_type r) { return r.lo; }
};
#endif
} // namespace random_internal
ABSL_NAMESPACE_END

@ -14,52 +14,106 @@
#include "absl/random/internal/wide_multiply.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/numeric/int128.h"
using absl::random_internal::MultiplyU64ToU128;
using absl::random_internal::MultiplyU128ToU256;
using absl::random_internal::U256;
namespace {
TEST(WideMultiplyTest, MultiplyU64ToU128Test) {
constexpr uint64_t k1 = 1;
constexpr uint64_t kMax = ~static_cast<uint64_t>(0);
U256 LeftShift(U256 v, int s) {
if (s == 0) {
return v;
} else if (s < 128) {
return {(v.hi << s) | (v.lo >> (128 - s)), v.lo << s};
} else {
return {v.lo << (s - 128), 0};
}
}
MATCHER_P2(Eq256, hi, lo, "") { return arg.hi == hi && arg.lo == lo; }
MATCHER_P(Eq256, v, "") { return arg.hi == v.hi && arg.lo == v.lo; }
TEST(WideMultiplyTest, MultiplyU128ToU256Test) {
using absl::uint128;
constexpr uint128 k1 = 1;
constexpr uint128 kMax = ~static_cast<uint128>(0);
EXPECT_EQ(absl::uint128(0), MultiplyU64ToU128(0, 0));
EXPECT_THAT(MultiplyU128ToU256(0, 0), Eq256(0, 0));
// Max uint64_t
EXPECT_EQ(MultiplyU64ToU128(kMax, kMax),
absl::MakeUint128(0xfffffffffffffffe, 0x0000000000000001));
EXPECT_EQ(absl::MakeUint128(0, kMax), MultiplyU64ToU128(kMax, 1));
EXPECT_EQ(absl::MakeUint128(0, kMax), MultiplyU64ToU128(1, kMax));
// Max uin128_t
EXPECT_THAT(MultiplyU128ToU256(kMax, kMax), Eq256(kMax << 1, 1));
EXPECT_THAT(MultiplyU128ToU256(kMax, 1), Eq256(0, kMax));
EXPECT_THAT(MultiplyU128ToU256(1, kMax), Eq256(0, kMax));
for (int i = 0; i < 64; ++i) {
EXPECT_EQ(absl::MakeUint128(0, kMax) << i,
MultiplyU64ToU128(kMax, k1 << i));
EXPECT_EQ(absl::MakeUint128(0, kMax) << i,
MultiplyU64ToU128(k1 << i, kMax));
SCOPED_TRACE(i);
EXPECT_THAT(MultiplyU128ToU256(kMax, k1 << i),
Eq256(LeftShift({0, kMax}, i)));
EXPECT_THAT(MultiplyU128ToU256(k1 << i, kMax),
Eq256(LeftShift({0, kMax}, i)));
}
// 1-bit x 1-bit.
for (int i = 0; i < 64; ++i) {
for (int j = 0; j < 64; ++j) {
EXPECT_EQ(absl::MakeUint128(0, 1) << (i + j),
MultiplyU64ToU128(k1 << i, k1 << j));
EXPECT_EQ(absl::MakeUint128(0, 1) << (i + j),
MultiplyU64ToU128(k1 << i, k1 << j));
EXPECT_THAT(MultiplyU128ToU256(k1 << i, k1 << j),
Eq256(LeftShift({0, 1}, i + j)));
}
}
// Verified multiplies
EXPECT_EQ(MultiplyU64ToU128(0xffffeeeeddddcccc, 0xbbbbaaaa99998888),
absl::MakeUint128(0xbbbb9e2692c5dddc, 0xc28f7531048d2c60));
EXPECT_EQ(MultiplyU64ToU128(0x0123456789abcdef, 0xfedcba9876543210),
absl::MakeUint128(0x0121fa00ad77d742, 0x2236d88fe5618cf0));
EXPECT_EQ(MultiplyU64ToU128(0x0123456789abcdef, 0xfdb97531eca86420),
absl::MakeUint128(0x0120ae99d26725fc, 0xce197f0ecac319e0));
EXPECT_EQ(MultiplyU64ToU128(0x97a87f4f261ba3f2, 0xfedcba9876543210),
absl::MakeUint128(0x96fbf1a8ae78d0ba, 0x5a6dd4b71f278320));
EXPECT_EQ(MultiplyU64ToU128(0xfedcba9876543210, 0xfdb97531eca86420),
absl::MakeUint128(0xfc98c6981a413e22, 0x342d0bbf48948200));
EXPECT_THAT(MultiplyU128ToU256(
absl::MakeUint128(0xc502da0d6ea99fe8, 0xfa3c9141a1f50912),
absl::MakeUint128(0x96bcf1ac37f97bd6, 0x27e2cdeb5fb2299e)),
Eq256(absl::MakeUint128(0x740113d838f96a64, 0x22e8cfa4d71f89ea),
absl::MakeUint128(0x19184a345c62e993, 0x237871b630337b1c)));
EXPECT_THAT(MultiplyU128ToU256(
absl::MakeUint128(0x6f29e670cee07230, 0xc3d8e6c3e4d86759),
absl::MakeUint128(0x3227d29fa6386db1, 0x231682bb1e4b764f)),
Eq256(absl::MakeUint128(0x15c779d9d5d3b07c, 0xd7e6c827f0c81cbe),
absl::MakeUint128(0xf88e3914f7fa287a, 0x15b79975137dea77)));
EXPECT_THAT(MultiplyU128ToU256(
absl::MakeUint128(0xafb77107215646e1, 0x3b844cb1ac5769e7),
absl::MakeUint128(0x1ff7b2d888b62479, 0x92f758ae96fcba0b)),
Eq256(absl::MakeUint128(0x15f13b70181f6985, 0x2adb36bbabce7d02),
absl::MakeUint128(0x6c470d72e13aad04, 0x63fba3f5841762ed)));
EXPECT_THAT(MultiplyU128ToU256(
absl::MakeUint128(0xd85d5558d67ac905, 0xf88c70654dae19b1),
absl::MakeUint128(0x17252c6727db3738, 0x399ff658c511eedc)),
Eq256(absl::MakeUint128(0x138fcdaf8b0421ee, 0x1b465ddf2a0d03f6),
absl::MakeUint128(0x8f573ba68296860f, 0xf327d2738741a21c)));
EXPECT_THAT(MultiplyU128ToU256(
absl::MakeUint128(0x46f0421a37ff6bee, 0xa61df89f09d140b1),
absl::MakeUint128(0x3d712ec9f37ca2e1, 0x9658a2cba47ef4b1)),
Eq256(absl::MakeUint128(0x11069cc48ee7c95d, 0xd35fb1c7aa91c978),
absl::MakeUint128(0xbe2f4a6de874b015, 0xd2f7ac1b76746e61)));
EXPECT_THAT(MultiplyU128ToU256(
absl::MakeUint128(0x730d27c72d58fa49, 0x3ebeda7498f8827c),
absl::MakeUint128(0xa2c959eca9f503af, 0x189c687eb842bbd8)),
Eq256(absl::MakeUint128(0x4928d0ea356ba022, 0x1546d34a2963393),
absl::MakeUint128(0x7481531e1e0a16d1, 0xdd8025015cf6aca0)));
EXPECT_THAT(MultiplyU128ToU256(
absl::MakeUint128(0x6ca41020f856d2f1, 0xb9b0838c04a7f4aa),
absl::MakeUint128(0x9cf41d28a8396f54, 0x1d681695e377ffe6)),
Eq256(absl::MakeUint128(0x429b92934d9be6f1, 0xea182877157c1e7),
absl::MakeUint128(0x7135c23f0a4a475, 0xc1adc366f4a126bc)));
EXPECT_THAT(MultiplyU128ToU256(
absl::MakeUint128(0x57472833797c332, 0x6c79272fdec4687a),
absl::MakeUint128(0xb5f022ea3838e46b, 0x16face2f003e27a6)),
Eq256(absl::MakeUint128(0x3e072e0962b3400, 0x5d9fe8fdc3d0e1f4),
absl::MakeUint128(0x7dc0df47cedafd62, 0xbe6501f1acd2551c)));
EXPECT_THAT(MultiplyU128ToU256(
absl::MakeUint128(0xf0fb4198322eb1c2, 0xfe7f5f31f3885938),
absl::MakeUint128(0xd99012b71bb7aa31, 0xac7a6f9eb190789)),
Eq256(absl::MakeUint128(0xcccc998cf075ca01, 0x642d144322fb873a),
absl::MakeUint128(0xc79dc12b69d91ed4, 0xa83459132ce046f8)));
EXPECT_THAT(MultiplyU128ToU256(
absl::MakeUint128(0xb5c04120848cdb47, 0x8aa62a827bf52635),
absl::MakeUint128(0x8d07a359be2f1380, 0x467bb90d59da0dea)),
Eq256(absl::MakeUint128(0x64205019d139a9ce, 0x99425c5fb6e7a977),
absl::MakeUint128(0xd3e99628a9e5fca7, 0x9c7824cb7279d72)));
}
} // namespace

@ -69,10 +69,8 @@ class log_uniform_int_distribution {
if (base_ == 2) {
// Determine where the first set bit is on range(), giving a log2(range)
// value which can be used to construct bounds.
log_range_ =
(std::min)(bit_width(range()),
static_cast<unsigned_type>(
std::numeric_limits<unsigned_type>::digits));
log_range_ = (std::min)(random_internal::BitWidth(range()),
std::numeric_limits<unsigned_type>::digits);
} else {
// NOTE: Computing the logN(x) introduces error from 2 sources:
// 1. Conversion of int to double loses precision for values >=
@ -83,7 +81,7 @@ class log_uniform_int_distribution {
//
// Thus a result which should equal K may equal K +/- epsilon,
// which can eliminate some values depending on where the bounds fall.
const double inv_log_base = 1.0 / std::log(base_);
const double inv_log_base = 1.0 / std::log(static_cast<double>(base_));
const double log_range = std::log(static_cast<double>(range()) + 0.5);
log_range_ = static_cast<int>(std::ceil(inv_log_base * log_range));
}
@ -113,7 +111,7 @@ class log_uniform_int_distribution {
unsigned_type range_; // max - min
int log_range_; // ceil(logN(range_))
static_assert(std::is_integral<IntType>::value,
static_assert(random_internal::IsIntegral<IntType>::value,
"Class-template absl::log_uniform_int_distribution<> must be "
"parameterized using an integral type.");
};
@ -139,7 +137,7 @@ class log_uniform_int_distribution {
template <typename URBG>
result_type operator()(URBG& g, // NOLINT(runtime/references)
const param_type& p) {
return (p.min)() + Generate(g, p);
return static_cast<result_type>((p.min)() + Generate(g, p));
}
result_type(min)() const { return (param_.min)(); }
@ -193,8 +191,8 @@ log_uniform_int_distribution<IntType>::Generate(
? (std::numeric_limits<unsigned_type>::max)()
: (static_cast<unsigned_type>(1) << e) - 1;
} else {
const double r = std::pow(p.base(), d);
const double s = (r * p.base()) - 1.0;
const double r = std::pow(static_cast<double>(p.base()), d);
const double s = (r * static_cast<double>(p.base())) - 1.0;
base_e =
(r > static_cast<double>((std::numeric_limits<unsigned_type>::max)()))
@ -211,7 +209,8 @@ log_uniform_int_distribution<IntType>::Generate(
const unsigned_type hi = (top_e >= p.range()) ? p.range() : top_e;
// choose uniformly over [lo, hi]
return absl::uniform_int_distribution<result_type>(lo, hi)(g);
return absl::uniform_int_distribution<result_type>(
static_cast<result_type>(lo), static_cast<result_type>(hi))(g);
}
template <typename CharT, typename Traits, typename IntType>

@ -26,6 +26,7 @@
#include "absl/random/internal/fastmath.h"
#include "absl/random/internal/generate_real.h"
#include "absl/random/internal/iostream_state_saver.h"
#include "absl/random/internal/traits.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
@ -80,7 +81,7 @@ class poisson_distribution {
double log_k_;
int split_;
static_assert(std::is_integral<IntType>::value,
static_assert(random_internal::IsIntegral<IntType>::value,
"Class-template absl::poisson_distribution<> must be "
"parameterized using an integral type.");
};
@ -133,7 +134,8 @@ template <typename IntType>
poisson_distribution<IntType>::param_type::param_type(double mean)
: mean_(mean), split_(0) {
assert(mean >= 0);
assert(mean <= (std::numeric_limits<result_type>::max)());
assert(mean <=
static_cast<double>((std::numeric_limits<result_type>::max)()));
// As a defensive measure, avoid large values of the mean. The rejection
// algorithm used does not support very large values well. It my be worth
// changing algorithms to better deal with these cases.
@ -222,8 +224,9 @@ poisson_distribution<IntType>::operator()(
// clang-format on
const double lhs = 2.0 * std::log(u) + p.log_k_ + s;
if (lhs < rhs) {
return x > (max)() ? (max)()
: static_cast<result_type>(x); // f(x)/k >= u^2
return x > static_cast<double>((max)())
? (max)()
: static_cast<result_type>(x); // f(x)/k >= u^2
}
}
}

@ -97,7 +97,7 @@ class uniform_int_distribution {
result_type lo_;
unsigned_type range_;
static_assert(std::is_integral<result_type>::value,
static_assert(random_internal::IsIntegral<result_type>::value,
"Class-template absl::uniform_int_distribution<> must be "
"parameterized using an integral type.");
}; // param_type
@ -125,7 +125,7 @@ class uniform_int_distribution {
template <typename URBG>
result_type operator()(
URBG& gen, const param_type& param) { // NOLINT(runtime/references)
return param.a() + Generate(gen, param.range());
return static_cast<result_type>(param.a() + Generate(gen, param.range()));
}
result_type a() const { return param_.a(); }

@ -23,6 +23,7 @@
#include <type_traits>
#include "absl/random/internal/iostream_state_saver.h"
#include "absl/random/internal/traits.h"
#include "absl/random/uniform_real_distribution.h"
namespace absl {
@ -94,7 +95,7 @@ class zipf_distribution {
double hxm_; // h(k + 0.5)
double hx0_minus_hxm_; // h(x0) - h(k + 0.5)
static_assert(std::is_integral<IntType>::value,
static_assert(random_internal::IsIntegral<IntType>::value,
"Class-template absl::zipf_distribution<> must be "
"parameterized using an integral type.");
};
@ -221,7 +222,7 @@ zipf_distribution<IntType>::operator()(
const double u = p.hxm_ + v * p.hx0_minus_hxm_;
const double x = p.hinv(u);
k = rint(x); // std::floor(x + 0.5);
if (k > p.k()) continue; // reject k > max_k
if (k > static_cast<double>(p.k())) continue; // reject k > max_k
if (k - x <= p.s_) break;
const double h = p.h(k + 0.5);
const double r = p.pow_negative_q(p.v_ + k);

Loading…
Cancel
Save