- b9a479321581cd0293f124041bf5c06f456afec1 Adds exception safety tests for absl::make_unique<T>(...) by Abseil Team <absl-team@google.com>

- 78c61364007f6ab66155c151d0061bbec89c3dbd Update variadic visitation to use a switch statement when... by Matt Calabrese <calabrese@google.com>
  - b62eb9546087e0001307a741fcdf023b2d156966 Merge GitHub PR #130 - Add MIPS support to GetProgramCoun... by Derek Mauro <dmauro@google.com>
  - 09ab5739de33c8f1bebab2bb70bf7d4331348f05 Update ABSL_ASSERT to silence clang-tidy warnings about c... by Matt Calabrese <calabrese@google.com>
  - e73ee389ce8fe1a90738973c219ebbb19bb389f3 Update unary visitation to use a switch statement when th... by Matt Calabrese <calabrese@google.com>
  - c8734ccf475b856c95220f21a5ec4f44302cb5ce Work around a MSVC bug for absl::variant, by making `Acce... by Xiaoyi Zhang <zhangxy@google.com>

GitOrigin-RevId: b9a479321581cd0293f124041bf5c06f456afec1
Change-Id: Idb6fc906087c0a4e6fc5c75a391c7f73101c613e
pull/134/head
Abseil Team 7 years ago committed by Gennadiy Rozental
parent e5be80532b
commit eb686c069f
  1. 5
      absl/base/macros.h
  2. 14
      absl/memory/BUILD.bazel
  3. 19
      absl/memory/CMakeLists.txt
  4. 49
      absl/memory/memory_exception_safety_test.cc
  5. 13
      absl/types/BUILD.bazel
  6. 302
      absl/types/internal/variant.h
  7. 28
      absl/types/variant.h
  8. 220
      absl/types/variant_benchmark.cc

@ -194,8 +194,9 @@ enum LinkerInitialized {
#if defined(NDEBUG)
#define ABSL_ASSERT(expr) (false ? (void)(expr) : (void)0)
#else
#define ABSL_ASSERT(expr) \
(ABSL_PREDICT_TRUE((expr)) ? (void)0 : [] { assert(false && #expr); }())
#define ABSL_ASSERT(expr) \
(ABSL_PREDICT_TRUE((expr)) ? (void)0 \
: [] { assert(false && #expr); }()) // NOLINT
#endif
#endif // ABSL_BASE_MACROS_H_

@ -18,6 +18,7 @@ load(
"//absl:copts.bzl",
"ABSL_DEFAULT_COPTS",
"ABSL_TEST_COPTS",
"ABSL_EXCEPTIONS_FLAG",
)
package(default_visibility = ["//visibility:public"])
@ -45,3 +46,16 @@ cc_test(
"@com_google_googletest//:gtest_main",
],
)
cc_test(
name = "memory_exception_safety_test",
srcs = [
"memory_exception_safety_test.cc",
],
copts = ABSL_TEST_COPTS + ABSL_EXCEPTIONS_FLAG,
deps = [
":memory",
"//absl/base:exception_safety_testing",
"@com_google_googletest//:gtest_main",
],
)

@ -49,4 +49,23 @@ absl_test(
)
# test memory_exception_safety_test
set(MEMORY_EXCEPTION_SAFETY_TEST_SRC "memory_exception_safety_test.cc")
set(MEMORY_EXCEPTION_SAFETY_TEST_PUBLIC_LIBRARIES
absl::memory
absl_base_internal_exception_safety_testing
)
absl_test(
TARGET
memory_exception_safety_test
SOURCES
${MEMORY_EXCEPTION_SAFETY_TEST_SRC}
PUBLIC_LIBRARIES
${MEMORY_EXCEPTION_SAFETY_TEST_PUBLIC_LIBRARIES}
PRIVATE_COMPILE_FLAGS
${ABSL_EXCEPTIONS_FLAG}
)

@ -0,0 +1,49 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/memory/memory.h"
#include "gtest/gtest.h"
#include "absl/base/internal/exception_safety_testing.h"
namespace absl {
namespace {
using Thrower = ::testing::ThrowingValue<>;
TEST(MakeUnique, CheckForLeaks) {
constexpr int kValue = 321;
constexpr size_t kLength = 10;
auto tester = testing::MakeExceptionSafetyTester()
.WithInitialValue(Thrower(kValue))
// Ensures make_unique does not modify the input. The real
// test, though, is ConstructorTracker checking for leaks.
.WithInvariants(testing::strong_guarantee);
EXPECT_TRUE(tester.Test([](Thrower* thrower) {
static_cast<void>(absl::make_unique<Thrower>(*thrower));
}));
EXPECT_TRUE(tester.Test([](Thrower* thrower) {
static_cast<void>(absl::make_unique<Thrower>(std::move(*thrower)));
}));
// Test T[n] overload
EXPECT_TRUE(tester.Test([&](Thrower*) {
static_cast<void>(absl::make_unique<Thrower[]>(kLength));
}));
}
} // namespace
} // namespace absl

@ -247,6 +247,19 @@ cc_test(
],
)
cc_test(
name = "variant_benchmark",
srcs = [
"variant_benchmark.cc",
],
copts = ABSL_TEST_COPTS,
deps = [
":variant",
"//absl/utility",
"@com_github_google_benchmark//:benchmark_main",
],
)
cc_test(
name = "variant_exception_safety_test",
size = "small",

@ -19,15 +19,19 @@
#ifndef ABSL_TYPES_variant_internal_H_
#define ABSL_TYPES_variant_internal_H_
#include <cassert>
#include <cstddef>
#include <cstdlib>
#include <memory>
#include <stdexcept>
#include <tuple>
#include <type_traits>
#include "absl/base/config.h"
#include "absl/base/internal/identity.h"
#include "absl/base/internal/inline_variable.h"
#include "absl/base/internal/invoke.h"
#include "absl/base/macros.h"
#include "absl/base/optimization.h"
#include "absl/meta/type_traits.h"
#include "absl/types/bad_variant_access.h"
@ -119,6 +123,8 @@ using GiveQualsToT = typename GiveQualsTo<T, U>::type;
template <std::size_t I>
using SizeT = std::integral_constant<std::size_t, I>;
using NPos = SizeT<variant_npos>;
template <class Variant, class T, class = void>
struct IndexOfConstructedType {};
@ -248,19 +254,270 @@ struct MakeVisitationMatrix<ReturnType, FunctionObject,
ReturnType, FunctionObject, index_sequence<TailEndIndices...>,
absl::make_index_sequence<HeadEndIndex>, BoundIndices...> {};
template <std::size_t... EndIndices, class Op, class... SizeT>
VisitIndicesResultT<Op, SizeT...> visit_indices(Op&& op, SizeT... indices) {
return AccessSimpleArray(
MakeVisitationMatrix<VisitIndicesResultT<Op, SizeT...>, Op,
index_sequence<(EndIndices + 1)...>>::Run(),
(indices + 1)...)(absl::forward<Op>(op));
}
struct UnreachableSwitchCase {
template <class Op>
[[noreturn]] static VisitIndicesResultT<Op, std::size_t> Run(
Op&& /*ignored*/) {
#if ABSL_HAVE_BUILTIN(__builtin_unreachable) || \
(defined(__GNUC__) && !defined(__clang__))
__builtin_unreachable();
#elif defined(_MSC_VER)
__assume(false);
#else
// Try to use assert of false being identified as an unreachable intrinsic.
// NOTE: We use assert directly to increase chances of exploiting an assume
// intrinsic.
assert(false); // NOLINT
// Hack to silence potential no return warning -- cause an infinite loop.
return Run(absl::forward<Op>(op));
#endif // Checks for __builtin_unreachable
}
};
template <class Op, std::size_t I>
struct ReachableSwitchCase {
static VisitIndicesResultT<Op, std::size_t> Run(Op&& op) {
return absl::base_internal::Invoke(absl::forward<Op>(op), SizeT<I>());
}
};
// The number 33 is just a guess at a reasonable maximum to our switch. It is
// not based on any analysis. The reason it is a power of 2 plus 1 instead of a
// power of 2 is because the number was picked to correspond to a power of 2
// amount of "normal" alternatives, plus one for the possibility of the user
// providing "monostate" in addition to the more natural alternatives.
ABSL_INTERNAL_INLINE_CONSTEXPR(std::size_t, MaxUnrolledVisitCases, 33);
// Note: The default-definition is for unreachable cases.
template <bool IsReachable>
struct PickCaseImpl {
template <class Op, std::size_t I>
using Apply = UnreachableSwitchCase;
};
template <>
struct PickCaseImpl</*IsReachable =*/true> {
template <class Op, std::size_t I>
using Apply = ReachableSwitchCase<Op, I>;
};
// Note: This form of dance with template aliases is to make sure that we
// instantiate a number of templates proportional to the number of variant
// alternatives rather than a number of templates proportional to our
// maximum unrolled amount of visitation cases (aliases are effectively
// "free" whereas other template instantiations are costly).
template <class Op, std::size_t I, std::size_t EndIndex>
using PickCase = typename PickCaseImpl<(I < EndIndex)>::template Apply<Op, I>;
template <class ReturnType>
[[noreturn]] ReturnType TypedThrowBadVariantAccess() {
absl::variant_internal::ThrowBadVariantAccess();
}
// Given N variant sizes, determine the number of cases there would need to be
// in a single switch-statement that would cover every possibility in the
// corresponding N-ary visit operation.
template <std::size_t... NumAlternatives>
struct NumCasesOfSwitch;
template <std::size_t HeadNumAlternatives, std::size_t... TailNumAlternatives>
struct NumCasesOfSwitch<HeadNumAlternatives, TailNumAlternatives...> {
static constexpr std::size_t value =
(HeadNumAlternatives + 1) *
NumCasesOfSwitch<TailNumAlternatives...>::value;
};
template <>
struct NumCasesOfSwitch<> {
static constexpr std::size_t value = 1;
};
// A switch statement optimizes better than the table of function pointers.
template <std::size_t EndIndex>
struct VisitIndicesSwitch {
static_assert(EndIndex <= MaxUnrolledVisitCases,
"Maximum unrolled switch size exceeded.");
template <class Op>
static VisitIndicesResultT<Op, std::size_t> Run(Op&& op, std::size_t i) {
switch (i) {
case 0:
return PickCase<Op, 0, EndIndex>::Run(absl::forward<Op>(op));
case 1:
return PickCase<Op, 1, EndIndex>::Run(absl::forward<Op>(op));
case 2:
return PickCase<Op, 2, EndIndex>::Run(absl::forward<Op>(op));
case 3:
return PickCase<Op, 3, EndIndex>::Run(absl::forward<Op>(op));
case 4:
return PickCase<Op, 4, EndIndex>::Run(absl::forward<Op>(op));
case 5:
return PickCase<Op, 5, EndIndex>::Run(absl::forward<Op>(op));
case 6:
return PickCase<Op, 6, EndIndex>::Run(absl::forward<Op>(op));
case 7:
return PickCase<Op, 7, EndIndex>::Run(absl::forward<Op>(op));
case 8:
return PickCase<Op, 8, EndIndex>::Run(absl::forward<Op>(op));
case 9:
return PickCase<Op, 9, EndIndex>::Run(absl::forward<Op>(op));
case 10:
return PickCase<Op, 10, EndIndex>::Run(absl::forward<Op>(op));
case 11:
return PickCase<Op, 11, EndIndex>::Run(absl::forward<Op>(op));
case 12:
return PickCase<Op, 12, EndIndex>::Run(absl::forward<Op>(op));
case 13:
return PickCase<Op, 13, EndIndex>::Run(absl::forward<Op>(op));
case 14:
return PickCase<Op, 14, EndIndex>::Run(absl::forward<Op>(op));
case 15:
return PickCase<Op, 15, EndIndex>::Run(absl::forward<Op>(op));
case 16:
return PickCase<Op, 16, EndIndex>::Run(absl::forward<Op>(op));
case 17:
return PickCase<Op, 17, EndIndex>::Run(absl::forward<Op>(op));
case 18:
return PickCase<Op, 18, EndIndex>::Run(absl::forward<Op>(op));
case 19:
return PickCase<Op, 19, EndIndex>::Run(absl::forward<Op>(op));
case 20:
return PickCase<Op, 20, EndIndex>::Run(absl::forward<Op>(op));
case 21:
return PickCase<Op, 21, EndIndex>::Run(absl::forward<Op>(op));
case 22:
return PickCase<Op, 22, EndIndex>::Run(absl::forward<Op>(op));
case 23:
return PickCase<Op, 23, EndIndex>::Run(absl::forward<Op>(op));
case 24:
return PickCase<Op, 24, EndIndex>::Run(absl::forward<Op>(op));
case 25:
return PickCase<Op, 25, EndIndex>::Run(absl::forward<Op>(op));
case 26:
return PickCase<Op, 26, EndIndex>::Run(absl::forward<Op>(op));
case 27:
return PickCase<Op, 27, EndIndex>::Run(absl::forward<Op>(op));
case 28:
return PickCase<Op, 28, EndIndex>::Run(absl::forward<Op>(op));
case 29:
return PickCase<Op, 29, EndIndex>::Run(absl::forward<Op>(op));
case 30:
return PickCase<Op, 30, EndIndex>::Run(absl::forward<Op>(op));
case 31:
return PickCase<Op, 31, EndIndex>::Run(absl::forward<Op>(op));
case 32:
return PickCase<Op, 32, EndIndex>::Run(absl::forward<Op>(op));
default:
ABSL_ASSERT(i == variant_npos);
return absl::base_internal::Invoke(absl::forward<Op>(op), NPos());
}
}
};
template <std::size_t... EndIndices>
struct VisitIndicesFallback {
template <class Op, class... SizeT>
static VisitIndicesResultT<Op, SizeT...> Run(Op&& op, SizeT... indices) {
return AccessSimpleArray(
MakeVisitationMatrix<VisitIndicesResultT<Op, SizeT...>, Op,
index_sequence<(EndIndices + 1)...>>::Run(),
(indices + 1)...)(absl::forward<Op>(op));
}
};
// Take an N-dimensional series of indices and convert them into a single index
// without loss of information. The purpose of this is to be able to convert an
// N-ary visit operation into a single switch statement.
template <std::size_t...>
struct FlattenIndices;
template <std::size_t HeadSize, std::size_t... TailSize>
struct FlattenIndices<HeadSize, TailSize...> {
template<class... SizeType>
static constexpr std::size_t Run(std::size_t head, SizeType... tail) {
return head + HeadSize * FlattenIndices<TailSize...>::Run(tail...);
}
};
template <>
struct FlattenIndices<> {
static constexpr std::size_t Run() { return 0; }
};
// Take a single "flattened" index (flattened by FlattenIndices) and determine
// the value of the index of one of the logically represented dimensions.
template <std::size_t I, std::size_t IndexToGet, std::size_t HeadSize,
std::size_t... TailSize>
struct UnflattenIndex {
static constexpr std::size_t value =
UnflattenIndex<I / HeadSize, IndexToGet - 1, TailSize...>::value;
};
template <std::size_t I, std::size_t HeadSize, std::size_t... TailSize>
struct UnflattenIndex<I, 0, HeadSize, TailSize...> {
static constexpr std::size_t value = (I % HeadSize);
};
// The backend for converting an N-ary visit operation into a unary visit.
template <class IndexSequence, std::size_t... EndIndices>
struct VisitIndicesVariadicImpl;
template <std::size_t... N, std::size_t... EndIndices>
struct VisitIndicesVariadicImpl<absl::index_sequence<N...>, EndIndices...> {
// A type that can take an N-ary function object and converts it to a unary
// function object that takes a single, flattened index, and "unflattens" it
// into its individual dimensions when forwarding to the wrapped object.
template <class Op>
struct FlattenedOp {
template <std::size_t I>
VisitIndicesResultT<Op, decltype(EndIndices)...> operator()(
SizeT<I> /*index*/) && {
return base_internal::Invoke(
absl::forward<Op>(op),
SizeT<UnflattenIndex<I, N, (EndIndices + 1)...>::value -
std::size_t{1}>()...);
}
Op&& op;
};
template <class Op, class... SizeType>
static VisitIndicesResultT<Op, decltype(EndIndices)...> Run(
Op&& op, SizeType... i) {
return VisitIndicesSwitch<NumCasesOfSwitch<EndIndices...>::value>::Run(
FlattenedOp<Op>{absl::forward<Op>(op)},
FlattenIndices<(EndIndices + std::size_t{1})...>::Run(
(i + std::size_t{1})...));
}
};
template <std::size_t... EndIndices>
struct VisitIndicesVariadic
: VisitIndicesVariadicImpl<absl::make_index_sequence<sizeof...(EndIndices)>,
EndIndices...> {};
// This implementation will flatten N-ary visit operations into a single switch
// statement when the number of cases would be less than our maximum specified
// switch-statement size.
// TODO(calabrese)
// Based on benchmarks, determine whether the function table approach actually
// does optimize better than a chain of switch statements and possibly update
// the implementation accordingly. Also consider increasing the maximum switch
// size.
template <std::size_t... EndIndices>
struct VisitIndices
: absl::conditional_t<(NumCasesOfSwitch<EndIndices...>::value <=
MaxUnrolledVisitCases),
VisitIndicesVariadic<EndIndices...>,
VisitIndicesFallback<EndIndices...>> {};
template <std::size_t EndIndex>
struct VisitIndices<EndIndex>
: absl::conditional_t<(EndIndex <= MaxUnrolledVisitCases),
VisitIndicesSwitch<EndIndex>,
VisitIndicesFallback<EndIndex>> {};
// Suppress bogus warning on MSVC: MSVC complains that the `reinterpret_cast`
// below is returning the address of a temporary or local object.
#ifdef _MSC_VER
@ -270,8 +527,10 @@ template <class ReturnType>
// TODO(calabrese) std::launder
// TODO(calabrese) constexpr
// NOTE: DO NOT REMOVE the `inline` keyword as it is necessary to work around a
// MSVC bug. See https://github.com/abseil/abseil-cpp/issues/129 for details.
template <class Self, std::size_t I>
VariantAccessResult<I, Self> AccessUnion(Self&& self, SizeT<I> /*i*/) {
inline VariantAccessResult<I, Self> AccessUnion(Self&& self, SizeT<I> /*i*/) {
return reinterpret_cast<VariantAccessResult<I, Self>>(self);
}
@ -313,7 +572,7 @@ struct VariantCoreAccess {
template <class Variant>
static void InitFrom(Variant& self, Variant&& other) { // NOLINT
variant_internal::visit_indices<absl::variant_size<Variant>::value>(
VisitIndices<absl::variant_size<Variant>::value>::Run(
InitFromVisitor<Variant, Variant&&>{&self,
std::forward<Variant>(other)},
other.index());
@ -1049,9 +1308,7 @@ class VariantStateBaseDestructorNontrivial : protected VariantStateBase<T...> {
VariantStateBaseDestructorNontrivial* self;
};
void destroy() {
variant_internal::visit_indices<sizeof...(T)>(Destroyer{this}, index_);
}
void destroy() { VisitIndices<sizeof...(T)>::Run(Destroyer{this}, index_); }
~VariantStateBaseDestructorNontrivial() { destroy(); }
@ -1087,8 +1344,7 @@ class VariantMoveBaseNontrivial : protected VariantStateBaseDestructor<T...> {
VariantMoveBaseNontrivial(VariantMoveBaseNontrivial&& other) noexcept(
absl::conjunction<std::is_nothrow_move_constructible<T>...>::value)
: Base(NoopConstructorTag()) {
variant_internal::visit_indices<sizeof...(T)>(Construct{this, &other},
other.index_);
VisitIndices<sizeof...(T)>::Run(Construct{this, &other}, other.index_);
index_ = other.index_;
}
@ -1131,8 +1387,7 @@ class VariantCopyBaseNontrivial : protected VariantMoveBase<T...> {
VariantCopyBaseNontrivial(VariantCopyBaseNontrivial const& other)
: Base(NoopConstructorTag()) {
variant_internal::visit_indices<sizeof...(T)>(Construct{this, &other},
other.index_);
VisitIndices<sizeof...(T)>::Run(Construct{this, &other}, other.index_);
index_ = other.index_;
}
@ -1166,7 +1421,7 @@ class VariantMoveAssignBaseNontrivial : protected VariantCopyBase<T...> {
operator=(VariantMoveAssignBaseNontrivial&& other) noexcept(
absl::conjunction<std::is_nothrow_move_constructible<T>...,
std::is_nothrow_move_assignable<T>...>::value) {
variant_internal::visit_indices<sizeof...(T)>(
VisitIndices<sizeof...(T)>::Run(
VariantCoreAccess::MakeMoveAssignVisitor(this, &other), other.index_);
return *this;
}
@ -1195,7 +1450,7 @@ class VariantCopyAssignBaseNontrivial : protected VariantMoveAssignBase<T...> {
VariantCopyAssignBaseNontrivial& operator=(
const VariantCopyAssignBaseNontrivial& other) {
variant_internal::visit_indices<sizeof...(T)>(
VisitIndices<sizeof...(T)>::Run(
VariantCoreAccess::MakeCopyAssignVisitor(this, other), other.index_);
return *this;
}
@ -1336,7 +1591,7 @@ struct Swap {
template <std::size_t Wi>
void operator()(SizeT<Wi> /*w_i*/) {
if (v->index() == Wi) {
visit_indices<sizeof...(Types)>(SwapSameIndex<Types...>{v, w}, Wi);
VisitIndices<sizeof...(Types)>::Run(SwapSameIndex<Types...>{v, w}, Wi);
} else {
generic_swap();
}
@ -1370,11 +1625,10 @@ struct VariantHashBase<Variant,
if (var.valueless_by_exception()) {
return 239799884;
}
size_t result =
variant_internal::visit_indices<variant_size<Variant>::value>(
PerformVisitation<VariantHashVisitor, const Variant&>{
std::forward_as_tuple(var), VariantHashVisitor{}},
var.index());
size_t result = VisitIndices<variant_size<Variant>::value>::Run(
PerformVisitation<VariantHashVisitor, const Variant&>{
std::forward_as_tuple(var), VariantHashVisitor{}},
var.index());
// Combine the index and the hash result in order to distinguish
// std::variant<int, int> holding the same value as different alternative.
return result ^ var.index();

@ -416,12 +416,12 @@ constexpr absl::add_pointer_t<const T> get_if(
template <typename Visitor, typename... Variants>
variant_internal::VisitResult<Visitor, Variants...> visit(Visitor&& vis,
Variants&&... vars) {
return variant_internal::visit_indices<
variant_size<absl::decay_t<Variants>>::value...>(
variant_internal::PerformVisitation<Visitor, Variants...>{
std::forward_as_tuple(absl::forward<Variants>(vars)...),
absl::forward<Visitor>(vis)},
vars.index()...);
return variant_internal::
VisitIndices<variant_size<absl::decay_t<Variants> >::value...>::Run(
variant_internal::PerformVisitation<Visitor, Variants...>{
std::forward_as_tuple(absl::forward<Variants>(vars)...),
absl::forward<Visitor>(vis)},
vars.index()...);
}
// monostate
@ -573,7 +573,7 @@ class variant<T0, Tn...> : private variant_internal::VariantBase<T0, Tn...> {
variant& operator=(T&& t) noexcept(
std::is_nothrow_assignable<Tj&, T>::value&&
std::is_nothrow_constructible<Tj, T>::value) {
variant_internal::visit_indices<sizeof...(Tn) + 1>(
variant_internal::VisitIndices<sizeof...(Tn) + 1>::Run(
variant_internal::VariantCoreAccess::MakeConversionAssignVisitor(
this, absl::forward<T>(t)),
index());
@ -682,7 +682,7 @@ class variant<T0, Tn...> : private variant_internal::VariantBase<T0, Tn...> {
// true and `is_nothrow_swappable()` is same as `std::is_trivial()`.
void swap(variant& rhs) noexcept(
absl::conjunction<std::is_trivial<T0>, std::is_trivial<Tn>...>::value) {
return variant_internal::visit_indices<sizeof...(Tn) + 1>(
return variant_internal::VisitIndices<sizeof...(Tn) + 1>::Run(
variant_internal::Swap<T0, Tn...>{this, &rhs}, rhs.index());
}
};
@ -722,7 +722,7 @@ template <typename... Types>
constexpr variant_internal::RequireAllHaveEqualT<Types...> operator==(
const variant<Types...>& a, const variant<Types...>& b) {
return (a.index() == b.index()) &&
variant_internal::visit_indices<sizeof...(Types)>(
variant_internal::VisitIndices<sizeof...(Types)>::Run(
variant_internal::EqualsOp<Types...>{&a, &b}, a.index());
}
@ -731,7 +731,7 @@ template <typename... Types>
constexpr variant_internal::RequireAllHaveNotEqualT<Types...> operator!=(
const variant<Types...>& a, const variant<Types...>& b) {
return (a.index() != b.index()) ||
variant_internal::visit_indices<sizeof...(Types)>(
variant_internal::VisitIndices<sizeof...(Types)>::Run(
variant_internal::NotEqualsOp<Types...>{&a, &b}, a.index());
}
@ -741,7 +741,7 @@ constexpr variant_internal::RequireAllHaveLessThanT<Types...> operator<(
const variant<Types...>& a, const variant<Types...>& b) {
return (a.index() != b.index())
? (a.index() + 1) < (b.index() + 1)
: variant_internal::visit_indices<sizeof...(Types)>(
: variant_internal::VisitIndices<sizeof...(Types)>::Run(
variant_internal::LessThanOp<Types...>{&a, &b}, a.index());
}
@ -751,7 +751,7 @@ constexpr variant_internal::RequireAllHaveGreaterThanT<Types...> operator>(
const variant<Types...>& a, const variant<Types...>& b) {
return (a.index() != b.index())
? (a.index() + 1) > (b.index() + 1)
: variant_internal::visit_indices<sizeof...(Types)>(
: variant_internal::VisitIndices<sizeof...(Types)>::Run(
variant_internal::GreaterThanOp<Types...>{&a, &b},
a.index());
}
@ -762,7 +762,7 @@ constexpr variant_internal::RequireAllHaveLessThanOrEqualT<Types...> operator<=(
const variant<Types...>& a, const variant<Types...>& b) {
return (a.index() != b.index())
? (a.index() + 1) < (b.index() + 1)
: variant_internal::visit_indices<sizeof...(Types)>(
: variant_internal::VisitIndices<sizeof...(Types)>::Run(
variant_internal::LessThanOrEqualsOp<Types...>{&a, &b},
a.index());
}
@ -773,7 +773,7 @@ constexpr variant_internal::RequireAllHaveGreaterThanOrEqualT<Types...>
operator>=(const variant<Types...>& a, const variant<Types...>& b) {
return (a.index() != b.index())
? (a.index() + 1) > (b.index() + 1)
: variant_internal::visit_indices<sizeof...(Types)>(
: variant_internal::VisitIndices<sizeof...(Types)>::Run(
variant_internal::GreaterThanOrEqualsOp<Types...>{&a, &b},
a.index());
}

@ -0,0 +1,220 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Unit tests for the variant template. The 'is' and 'IsEmpty' methods
// of variant are not explicitly tested because they are used repeatedly
// in building other tests. All other public variant methods should have
// explicit tests.
#include "absl/types/variant.h"
#include <cstddef>
#include <cstdlib>
#include <string>
#include <tuple>
#include "benchmark/benchmark.h"
#include "absl/utility/utility.h"
namespace absl {
namespace {
template <std::size_t I>
struct VariantAlternative {
char member;
};
template <class Indices>
struct VariantOfAlternativesImpl;
template <std::size_t... Indices>
struct VariantOfAlternativesImpl<absl::index_sequence<Indices...>> {
using type = absl::variant<VariantAlternative<Indices>...>;
};
template <std::size_t NumAlternatives>
using VariantOfAlternatives = typename VariantOfAlternativesImpl<
absl::make_index_sequence<NumAlternatives>>::type;
struct Empty {};
template <class... T>
void Ignore(T...) noexcept {}
template <class T>
Empty DoNotOptimizeAndReturnEmpty(T&& arg) noexcept {
benchmark::DoNotOptimize(arg);
return {};
}
struct VisitorApplier {
struct Visitor {
template <class... T>
void operator()(T&&... args) const noexcept {
Ignore(DoNotOptimizeAndReturnEmpty(args)...);
}
};
template <class... Vars>
void operator()(const Vars&... vars) const noexcept {
absl::visit(Visitor(), vars...);
}
};
template <std::size_t NumIndices, std::size_t CurrIndex = NumIndices - 1>
struct MakeWithIndex {
using Variant = VariantOfAlternatives<NumIndices>;
static Variant Run(std::size_t index) {
return index == CurrIndex
? Variant(absl::in_place_index_t<CurrIndex>())
: MakeWithIndex<NumIndices, CurrIndex - 1>::Run(index);
}
};
template <std::size_t NumIndices>
struct MakeWithIndex<NumIndices, 0> {
using Variant = VariantOfAlternatives<NumIndices>;
static Variant Run(std::size_t /*index*/) { return Variant(); }
};
template <std::size_t NumIndices, class Dimensions>
struct MakeVariantTuple;
template <class T, std::size_t /*I*/>
using always_t = T;
template <std::size_t NumIndices>
VariantOfAlternatives<NumIndices> MakeVariant(std::size_t dimension,
std::size_t index) {
return dimension == 0
? MakeWithIndex<NumIndices>::Run(index % NumIndices)
: MakeVariant<NumIndices>(dimension - 1, index / NumIndices);
}
template <std::size_t NumIndices, std::size_t... Dimensions>
struct MakeVariantTuple<NumIndices, absl::index_sequence<Dimensions...>> {
using VariantTuple =
std::tuple<always_t<VariantOfAlternatives<NumIndices>, Dimensions>...>;
static VariantTuple Run(int index) {
return std::make_tuple(MakeVariant<NumIndices>(Dimensions, index)...);
}
};
constexpr std::size_t integral_pow(std::size_t base, std::size_t power) {
return power == 0 ? 1 : base * integral_pow(base, power - 1);
}
template <std::size_t End, std::size_t I = 0>
struct VisitTestBody {
template <class Vars, class State>
static bool Run(Vars& vars, State& state) {
if (state.KeepRunning()) {
absl::apply(VisitorApplier(), vars[I]);
return VisitTestBody<End, I + 1>::Run(vars, state);
}
return false;
}
};
template <std::size_t End>
struct VisitTestBody<End, End> {
template <class Vars, class State>
static bool Run(Vars& /*vars*/, State& /*state*/) {
return true;
}
};
// Visit operations where branch prediction is likely to give a boost.
template <std::size_t NumIndices, std::size_t NumDimensions = 1>
void BM_RedundantVisit(benchmark::State& state) {
auto vars =
MakeVariantTuple<NumIndices, absl::make_index_sequence<NumDimensions>>::
Run(static_cast<std::size_t>(state.range(0)));
for (auto _ : state) { // NOLINT
benchmark::DoNotOptimize(vars);
absl::apply(VisitorApplier(), vars);
}
}
// Visit operations where branch prediction is unlikely to give a boost.
template <std::size_t NumIndices, std::size_t NumDimensions = 1>
void BM_Visit(benchmark::State& state) {
constexpr std::size_t num_possibilities =
integral_pow(NumIndices, NumDimensions);
using VariantTupleMaker =
MakeVariantTuple<NumIndices, absl::make_index_sequence<NumDimensions>>;
using Tuple = typename VariantTupleMaker::VariantTuple;
Tuple vars[num_possibilities];
for (std::size_t i = 0; i < num_possibilities; ++i)
vars[i] = VariantTupleMaker::Run(i);
while (VisitTestBody<num_possibilities>::Run(vars, state)) {
}
}
// Visitation
// Each visit is on a different variant with a different active alternative)
// Unary visit
BENCHMARK_TEMPLATE(BM_Visit, 1);
BENCHMARK_TEMPLATE(BM_Visit, 2);
BENCHMARK_TEMPLATE(BM_Visit, 3);
BENCHMARK_TEMPLATE(BM_Visit, 4);
BENCHMARK_TEMPLATE(BM_Visit, 5);
BENCHMARK_TEMPLATE(BM_Visit, 6);
BENCHMARK_TEMPLATE(BM_Visit, 7);
BENCHMARK_TEMPLATE(BM_Visit, 8);
BENCHMARK_TEMPLATE(BM_Visit, 16);
BENCHMARK_TEMPLATE(BM_Visit, 32);
BENCHMARK_TEMPLATE(BM_Visit, 64);
// Binary visit
BENCHMARK_TEMPLATE(BM_Visit, 1, 2);
BENCHMARK_TEMPLATE(BM_Visit, 2, 2);
BENCHMARK_TEMPLATE(BM_Visit, 3, 2);
BENCHMARK_TEMPLATE(BM_Visit, 4, 2);
BENCHMARK_TEMPLATE(BM_Visit, 5, 2);
// Ternary visit
BENCHMARK_TEMPLATE(BM_Visit, 1, 3);
BENCHMARK_TEMPLATE(BM_Visit, 2, 3);
BENCHMARK_TEMPLATE(BM_Visit, 3, 3);
// Quaternary visit
BENCHMARK_TEMPLATE(BM_Visit, 1, 4);
BENCHMARK_TEMPLATE(BM_Visit, 2, 4);
// Redundant Visitation
// Each visit consistently has the same alternative active
// Unary visit
BENCHMARK_TEMPLATE(BM_RedundantVisit, 1)->Arg(0);
BENCHMARK_TEMPLATE(BM_RedundantVisit, 2)->DenseRange(0, 1);
BENCHMARK_TEMPLATE(BM_RedundantVisit, 8)->DenseRange(0, 7);
// Binary visit
BENCHMARK_TEMPLATE(BM_RedundantVisit, 1, 2)->Arg(0);
BENCHMARK_TEMPLATE(BM_RedundantVisit, 2, 2)
->DenseRange(0, integral_pow(2, 2) - 1);
BENCHMARK_TEMPLATE(BM_RedundantVisit, 4, 2)
->DenseRange(0, integral_pow(4, 2) - 1);
} // namespace
} // namespace absl
Loading…
Cancel
Save