Change kPower10Table bounds to be half-open

Half-open intervals are recommended by Dijkstra:
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html

This also simplifies a static_assert by removing a +1 term.

Also fix a "smaller exponent" copy/pasto.

PiperOrigin-RevId: 477848998
Change-Id: I67af73d37ac08d36a1117ba33313a02932bd5814
pull/1283/head
Abseil Team 2 years ago committed by Copybara-Service
parent cfa5dc7576
commit b39aa365e1
  1. 78
      absl/strings/charconv.cc

@ -111,11 +111,11 @@ struct FloatTraits<double> {
//
// 9999999999999999999, with 19 nines but no decimal point, is the largest
// "repeated nines" integer that fits in a uint64_t.
static constexpr int kEiselLemireMinInclExp10 = -324 - 18;
static constexpr int kEiselLemireMinInclusiveExp10 = -324 - 18;
// The smallest positive integer N such that parsing 1eN produces infinity.
// Parsing a smaller N will produce something finite.
static constexpr int kEiselLemireMaxExclExp10 = 309;
static constexpr int kEiselLemireMaxExclusiveExp10 = 309;
static double MakeNan(const char* tagp) {
// Support nan no matter which namespace it's in. Some platforms
@ -180,8 +180,8 @@ struct FloatTraits<float> {
static constexpr int kExponentBias = 127;
static constexpr int kEiselLemireShift = 38;
static constexpr uint64_t kEiselLemireMask = uint64_t{0x3FFFFFFFFF};
static constexpr int kEiselLemireMinInclExp10 = -46 - 18;
static constexpr int kEiselLemireMaxExclExp10 = 39;
static constexpr int kEiselLemireMinInclusiveExp10 = -46 - 18;
static constexpr int kEiselLemireMaxExclusiveExp10 = 39;
static float MakeNan(const char* tagp) {
// Support nanf no matter which namespace it's in. Some platforms
@ -232,8 +232,8 @@ struct FloatTraits<float> {
// Lookups into the power-of-10 table must first check the Power10Overflow() and
// Power10Underflow() functions, to avoid out-of-bounds table access.
//
// Indexes into these tables are biased by -kPower10TableMin, and the table has
// values in the range [kPower10TableMin, kPower10TableMax].
// Indexes into these tables are biased by -kPower10TableMinInclusive. Valid
// indexes range from kPower10TableMinInclusive to kPower10TableMaxExclusive.
extern const uint64_t kPower10MantissaHighTable[]; // High 64 of 128 bits.
extern const uint64_t kPower10MantissaLowTable[]; // Low 64 of 128 bits.
extern const int16_t kPower10ExponentTable[];
@ -241,28 +241,28 @@ extern const int16_t kPower10ExponentTable[];
// The smallest (inclusive) allowed value for use with the Power10Mantissa()
// and Power10Exponent() functions below. (If a smaller exponent is needed in
// calculations, the end result is guaranteed to underflow.)
constexpr int kPower10TableMin = -342;
constexpr int kPower10TableMinInclusive = -342;
// The largest (inclusive) allowed value for use with the Power10Mantissa() and
// Power10Exponent() functions below. (If a smaller exponent is needed in
// calculations, the end result is guaranteed to overflow.)
constexpr int kPower10TableMax = 308;
// The largest (exclusive) allowed value for use with the Power10Mantissa() and
// Power10Exponent() functions below. (If a larger-or-equal exponent is needed
// in calculations, the end result is guaranteed to overflow.)
constexpr int kPower10TableMaxExclusive = 309;
uint64_t Power10Mantissa(int n) {
return kPower10MantissaHighTable[n - kPower10TableMin];
return kPower10MantissaHighTable[n - kPower10TableMinInclusive];
}
int Power10Exponent(int n) {
return kPower10ExponentTable[n - kPower10TableMin];
return kPower10ExponentTable[n - kPower10TableMinInclusive];
}
// Returns true if n is large enough that 10**n always results in an IEEE
// overflow.
bool Power10Overflow(int n) { return n > kPower10TableMax; }
bool Power10Overflow(int n) { return n >= kPower10TableMaxExclusive; }
// Returns true if n is small enough that 10**n times a ParsedFloat mantissa
// always results in an IEEE underflow.
bool Power10Underflow(int n) { return n < kPower10TableMin; }
bool Power10Underflow(int n) { return n < kPower10TableMinInclusive; }
// Returns true if Power10Mantissa(n) * 2**Power10Exponent(n) is exactly equal
// to 10**n numerically. Put another way, this returns true if there is no
@ -656,11 +656,11 @@ bool EiselLemire(const strings_internal::ParsedFloat& input, bool negative,
FloatType* value, std::errc* ec) {
uint64_t man = input.mantissa;
int exp10 = input.exponent;
if (exp10 < FloatTraits<FloatType>::kEiselLemireMinInclExp10) {
if (exp10 < FloatTraits<FloatType>::kEiselLemireMinInclusiveExp10) {
*value = negative ? -0.0 : 0.0;
*ec = std::errc::result_out_of_range;
return true;
} else if (exp10 >= FloatTraits<FloatType>::kEiselLemireMaxExclExp10) {
} else if (exp10 >= FloatTraits<FloatType>::kEiselLemireMaxExclusiveExp10) {
// Return max (a finite value) consistent with from_chars and DR 3081. For
// SimpleAtod and SimpleAtof, post-processing will return infinity.
*value = negative ? -std::numeric_limits<FloatType>::max()
@ -669,17 +669,16 @@ bool EiselLemire(const strings_internal::ParsedFloat& input, bool negative,
return true;
}
// Assert that (kPower10TableMin <= exp10) and (exp10 <= kPower10TableMax).
// Assert kPower10TableMinInclusive <= exp10 < kPower10TableMaxExclusive.
// Equivalently, !Power10Underflow(exp10) and !Power10Overflow(exp10).
//
// The +1 is because kEiselLemireMaxExclExp10 is an exclusive bound but
// kPower10TableMax is inclusive.
static_assert(
FloatTraits<FloatType>::kEiselLemireMinInclExp10 >= kPower10TableMin,
"(exp10 - kPower10TableMin) within kPower10MantissaHighTable bounds");
FloatTraits<FloatType>::kEiselLemireMinInclusiveExp10 >=
kPower10TableMinInclusive,
"(exp10-kPower10TableMinInclusive) in kPower10MantissaHighTable bounds");
static_assert(
FloatTraits<FloatType>::kEiselLemireMaxExclExp10 <= kPower10TableMax + 1,
"(exp10 - kPower10TableMin) within kPower10MantissaHighTable bounds");
FloatTraits<FloatType>::kEiselLemireMaxExclusiveExp10 <=
kPower10TableMaxExclusive,
"(exp10-kPower10TableMinInclusive) in kPower10MantissaHighTable bounds");
// The terse (+) comments in this function body refer to sections of the
// https://nigeltao.github.io/blog/2020/eisel-lemire.html blog post.
@ -704,18 +703,19 @@ bool EiselLemire(const strings_internal::ParsedFloat& input, bool negative,
FloatTraits<FloatType>::kExponentBias - clz);
// (+) Multiplication.
uint128 x =
static_cast<uint128>(man) *
static_cast<uint128>(kPower10MantissaHighTable[exp10 - kPower10TableMin]);
uint128 x = static_cast<uint128>(man) *
static_cast<uint128>(
kPower10MantissaHighTable[exp10 - kPower10TableMinInclusive]);
// (+) Wider Approximation.
static constexpr uint64_t high64_mask =
FloatTraits<FloatType>::kEiselLemireMask;
if (((Uint128High64(x) & high64_mask) == high64_mask) &&
(man > (std::numeric_limits<uint64_t>::max() - Uint128Low64(x)))) {
uint128 y = static_cast<uint128>(man) *
static_cast<uint128>(
kPower10MantissaLowTable[exp10 - kPower10TableMin]);
uint128 y =
static_cast<uint128>(man) *
static_cast<uint128>(
kPower10MantissaLowTable[exp10 - kPower10TableMinInclusive]);
x += Uint128High64(y);
// For example, parsing "4503599627370497.5" will take the if-true
// branch here (for double precision), since:
@ -926,13 +926,17 @@ from_chars_result from_chars(const char* first, const char* last, float& value,
namespace {
// Table of powers of 10, from kPower10TableMin to kPower10TableMax.
// Table of powers of 10, from kPower10TableMinInclusive to
// kPower10TableMaxExclusive.
//
// kPower10MantissaHighTable[i - kPower10TableMinInclusive] stores the 64-bit
// mantissa. The high bit is always on.
//
// kPower10ExponentTable[i - kPower10TableMinInclusive] stores the power-of-two
// exponent.
//
// kPower10MantissaHighTable[i - kPower10TableMin] stores the 64-bit mantissa
// (high bit always on), and kPower10ExponentTable[i - kPower10TableMin] stores
// the power-of-two exponent. For a given number i, this gives the unique
// mantissa and exponent such that mantissa * 2**exponent <= 10**i < (mantissa
// + 1) * 2**exponent.
// For a given number i, this gives the unique mantissa and exponent such that
// (mantissa * 2**exponent) <= 10**i < ((mantissa + 1) * 2**exponent).
//
// kPower10MantissaLowTable extends that 64-bit mantissa to 128 bits.
//

Loading…
Cancel
Save