Export of internal Abseil changes.

--
ba4dd47492748bd630462eb68b7959037fc6a11a by Abseil Team <absl-team@google.com>:

Work around nvcc 9.0 compiler bug for open-source Tensorflow build.

With the current implementation, when I (unintentionally and transitively)
include absl/types/optional.h in a CUDA compilation unit, I get the following
nvcc error message:
  INFO: From Compiling tensorflow/core/kernels/crop_and_resize_op_gpu.cu.cc:
  external/com_google_absl/absl/types/optional.h: In member function 'void absl::optional_internal::optional_data_dtor_base<T, <anonymous> >::destruct()':
  external/com_google_absl/absl/types/optional.h:185:50: error: '__T0' was not declared in this scope
         data_.~T();

I've also seen similar compilation failures online, for flat_hash_map:
https://devtalk.nvidia.com/default/topic/1042599/nvcc-preprocessor-bug-causes-compilation-failure/

The bug is always around unnamed template parameters. Therefore, the workaround is to make them named.

PiperOrigin-RevId: 219208288

--
dad2f40cb2e8d5017660985ef6fb57f3c3cdcc80 by CJ Johnson <johnsoncj@google.com>:

Adds internal macros for catching and throwing unknown exception types

PiperOrigin-RevId: 219207362

--
0a9840328d2d86e8420b853435fdbf1f7a19d931 by Abseil Team <absl-team@google.com>:

Fix typo in mutex.h comments.

PiperOrigin-RevId: 219199397

--
0d576dc7597564210bfdf91518075064756f0bf4 by Matt Calabrese <calabrese@google.com>:

Internal change.

PiperOrigin-RevId: 219185475

--
66be156095571959fb19a76da8ad0b53ec37658e by Abseil Team <absl-team@google.com>:

Fix alignment conformance for VS 2017 >= 15.8 (fix #193)

PiperOrigin-RevId: 219129894

--
a6e1825a12587945f8194677ccfdcaba6f7aad1d by Abseil Team <absl-team@google.com>:

Reapply PR #173

PiperOrigin-RevId: 219129361

--
cf72ade4881b25acc6ccaea468f69793a0fdce32 by Abseil Team <absl-team@google.com>:

Update .gitignore

PiperOrigin-RevId: 219127495

--
0537490c6348a2cb489abe15638928ac5aa6982a by Jon Cohen <cohenjon@google.com>:

Small refactor and reformat of error messages from the exception safety test framework.

PiperOrigin-RevId: 218927773

--
4c556ca45fa25698ad12002a00c713aeceefab73 by CJ Johnson <johnsoncj@google.com>:

Updates the inlined vector swap tests to check for number of moves that took place if available

PiperOrigin-RevId: 218900777

--
dcbfda0021a1e6dfa9586986b1269c06ec394053 by Mark Barolak <mbar@google.com>:

Add parens around calls to std::numeric_limits<>::min and
std::numeric_limits<>::max to prevent compilation errors on Windows platforms
where min and max are defined as macros.

PiperOrigin-RevId: 218888700
GitOrigin-RevId: ba4dd47492748bd630462eb68b7959037fc6a11a
Change-Id: I0e393958eb8cb501b85f6114979f6d4d86ed996c
pull/170/head
Abseil Team 6 years ago committed by Matt Calabrese
parent 0117457865
commit a4c3ffff11
  1. 6
      .gitignore
  2. 10
      CMakeLists.txt
  3. 35
      absl/base/internal/exception_safety_testing.h
  4. 10
      absl/base/macros.h
  5. 17
      absl/container/CMakeLists.txt
  6. 2
      absl/container/fixed_array.h
  7. 2
      absl/container/inlined_vector.h
  8. 12
      absl/container/inlined_vector_test.cc
  9. 2
      absl/container/internal/hash_policy_testing.h
  10. 4
      absl/container/internal/raw_hash_set.h
  11. 6
      absl/copts.bzl
  12. 47
      absl/memory/memory.h
  13. 16
      absl/numeric/int128.h
  14. 23
      absl/strings/internal/numbers_test_common.h
  15. 8
      absl/strings/internal/str_format/arg.h
  16. 2
      absl/strings/string_view.h
  17. 10
      absl/synchronization/internal/kernel_timeout.h
  18. 2
      absl/synchronization/mutex.h
  19. 33
      absl/time/time.h
  20. 10
      absl/types/optional.h

6
.gitignore vendored

@ -1,2 +1,8 @@
# Ignore all bazel-* symlinks.
/bazel-*
# Ignore CMake usual build directory
build
# Ignore Vim files
*.swp
# Ignore QtCreator Project file
CMakeLists.txt.user

@ -33,7 +33,15 @@ if (MSVC)
# /wd4267 conversion from 'size_t' to 'type2'
# /wd4800 force value to bool 'true' or 'false' (performance warning)
add_compile_options(/W3 /wd4005 /wd4068 /wd4244 /wd4267 /wd4800)
add_definitions(/DNOMINMAX /DWIN32_LEAN_AND_MEAN=1 /D_CRT_SECURE_NO_WARNINGS /D_SCL_SECURE_NO_WARNINGS)
# /D_ENABLE_EXTENDED_ALIGNED_STORAGE Introduced in VS 2017 15.8, before the
# member type would non-conformingly have an alignment of only alignof(max_align_t).
add_definitions(
/DNOMINMAX
/DWIN32_LEAN_AND_MEAN=1
/D_CRT_SECURE_NO_WARNINGS
/D_SCL_SECURE_NO_WARNINGS
/D_ENABLE_EXTENDED_ALIGNED_STORAGE
)
else()
set(ABSL_STD_CXX_FLAG "-std=c++11" CACHE STRING "c++ std flag (default: c++11)")
endif()

@ -127,10 +127,8 @@ class ConstructorTracker {
void* address = it.first;
TrackedAddress& tracked_address = it.second;
if (tracked_address.is_alive) {
ADD_FAILURE() << "Object at address " << address
<< " with countdown of " << countdown_
<< " was not destroyed [" << tracked_address.description
<< "]";
ADD_FAILURE() << ErrorMessage(address, tracked_address.description,
countdown_, "Object was not destroyed.");
}
}
}
@ -141,11 +139,11 @@ class ConstructorTracker {
TrackedAddress& tracked_address =
current_tracker_instance_->address_map_[address];
if (tracked_address.is_alive) {
ADD_FAILURE() << "Object at address " << address << " with countdown of "
<< current_tracker_instance_->countdown_
<< " was re-constructed. Previously: ["
<< tracked_address.description << "] Now: [" << description
<< "]";
ADD_FAILURE() << ErrorMessage(
address, tracked_address.description,
current_tracker_instance_->countdown_,
"Object was re-constructed. Current object was constructed by " +
description);
}
tracked_address = {true, std::move(description)};
}
@ -159,10 +157,9 @@ class ConstructorTracker {
TrackedAddress& tracked_address = it->second;
if (!tracked_address.is_alive) {
ADD_FAILURE() << "Object at address " << address << " with countdown of "
<< current_tracker_instance_->countdown_
<< " was re-destroyed or created prior to construction "
<< "tracking [" << tracked_address.description << "]";
ADD_FAILURE() << ErrorMessage(address, tracked_address.description,
current_tracker_instance_->countdown_,
"Object was re-destroyed.");
}
tracked_address.is_alive = false;
}
@ -172,6 +169,16 @@ class ConstructorTracker {
return current_tracker_instance_ != nullptr;
}
static std::string ErrorMessage(void* address, const std::string& address_description,
int countdown, const std::string& error_description) {
return absl::Substitute(
"With coundtown at $0:\n"
" $1\n"
" Object originally constructed by $2\n"
" Object address: $3\n",
countdown, error_description, address_description, address);
}
std::unordered_map<void*, TrackedAddress> address_map_;
int countdown_;
@ -709,7 +716,7 @@ class ThrowingAllocator : private exceptions_internal::TrackedObject {
}
size_type max_size() const noexcept {
return std::numeric_limits<difference_type>::max() / sizeof(value_type);
return (std::numeric_limits<difference_type>::max)() / sizeof(value_type);
}
ThrowingAllocator select_on_container_copy_construction() noexcept(

@ -199,4 +199,14 @@ enum LinkerInitialized {
: [] { assert(false && #expr); }()) // NOLINT
#endif
#ifdef ABSL_HAVE_EXCEPTIONS
#define ABSL_INTERNAL_TRY try
#define ABSL_INTERNAL_CATCH_ANY catch (...)
#define ABSL_INTERNAL_RETHROW do { throw; } while (false)
#else // ABSL_HAVE_EXCEPTIONS
#define ABSL_INTERNAL_TRY if (true)
#define ABSL_INTERNAL_CATCH_ANY else if (false)
#define ABSL_INTERNAL_RETHROW do {} while (false)
#endif // ABSL_HAVE_EXCEPTIONS
#endif // ABSL_BASE_MACROS_H_

@ -48,14 +48,15 @@ list(APPEND CONTAINER_INTERNAL_HEADERS
)
absl_header_library(
absl_library(
TARGET
absl_container
SOURCES
"internal/raw_hash_set.cc"
EXPORT_NAME
container
)
#
## TESTS
#
@ -162,3 +163,15 @@ absl_test(
PUBLIC_LIBRARIES
${TEST_INSTANCE_TRACKER_TEST_PUBLIC_LIBRARIES}
)
absl_test(
TARGET
raw_hash_set_test
SOURCES
"internal/raw_hash_set_test.cc"
PUBLIC_LIBRARIES
absl::base
absl::hash
absl_internal_throw_delegate
test_instance_tracker_lib
)

@ -188,7 +188,7 @@ class FixedArray {
// `FixedArray<T>`. This is equivalent to the most possible addressable bytes
// over the number of bytes taken by T.
constexpr size_type max_size() const {
return std::numeric_limits<difference_type>::max() / sizeof(value_type);
return (std::numeric_limits<difference_type>::max)() / sizeof(value_type);
}
// FixedArray::empty()

@ -264,7 +264,7 @@ class InlinedVector {
// One bit of the size storage is used to indicate whether the inlined
// vector is allocated; as a result, the maximum size of the container that
// we can express is half of the max for our size type.
return std::numeric_limits<size_type>::max() / 2;
return (std::numeric_limits<size_type>::max)() / 2;
}
// InlinedVector::data()

@ -906,6 +906,8 @@ TYPED_TEST_P(InstanceTest, Swap) {
InstanceTracker tracker;
InstanceVec a, b;
const size_t inlined_capacity = a.capacity();
auto min_len = std::min(l1, l2);
auto max_len = std::max(l1, l2);
for (int i = 0; i < l1; i++) a.push_back(Instance(i));
for (int i = 0; i < l2; i++) b.push_back(Instance(100+i));
EXPECT_EQ(tracker.instances(), l1 + l2);
@ -919,15 +921,15 @@ TYPED_TEST_P(InstanceTest, Swap) {
EXPECT_EQ(tracker.swaps(), 0); // Allocations are swapped.
EXPECT_EQ(tracker.moves(), 0);
} else if (a.size() <= inlined_capacity && b.size() <= inlined_capacity) {
EXPECT_EQ(tracker.swaps(), std::min(l1, l2));
// TODO(bsamwel): This should use moves when the type is movable.
EXPECT_EQ(tracker.copies(), std::max(l1, l2) - std::min(l1, l2));
EXPECT_EQ(tracker.swaps(), min_len);
EXPECT_EQ((tracker.moves() ? tracker.moves() : tracker.copies()),
max_len - min_len);
} else {
// One is allocated and the other isn't. The allocation is transferred
// without copying elements, and the inlined instances are copied/moved.
EXPECT_EQ(tracker.swaps(), 0);
// TODO(bsamwel): This should use moves when the type is movable.
EXPECT_EQ(tracker.copies(), std::min(l1, l2));
EXPECT_EQ((tracker.moves() ? tracker.moves() : tracker.copies()),
min_len);
}
EXPECT_EQ(l1, b.size());

@ -139,7 +139,7 @@ struct Alloc : std::allocator<T> {
friend bool operator!=(const Alloc& a, const Alloc& b) { return !(a == b); }
private:
size_t id_ = std::numeric_limits<size_t>::max();
size_t id_ = (std::numeric_limits<size_t>::max)();
};
template <class Map>

@ -477,7 +477,7 @@ inline size_t NormalizeCapacity(size_t n) {
constexpr size_t kMinCapacity = Group::kWidth - 1;
return n <= kMinCapacity
? kMinCapacity
: std::numeric_limits<size_t>::max() >> LeadingZeros(n);
: (std::numeric_limits<size_t>::max)() >> LeadingZeros(n);
}
// The node_handle concept from C++17.
@ -1022,7 +1022,7 @@ class raw_hash_set {
bool empty() const { return !size(); }
size_t size() const { return size_; }
size_t capacity() const { return capacity_; }
size_t max_size() const { return std::numeric_limits<size_t>::max(); }
size_t max_size() const { return (std::numeric_limits<size_t>::max)(); }
void clear() {
// Iterating over this container is O(bucket_count()). When bucket_count()

@ -130,7 +130,11 @@ MSVC_FLAGS = [
"/wd4800", # forcing value to bool 'true' or 'false' (performance warning)
"/DNOMINMAX", # Don't define min and max macros (windows.h)
"/DWIN32_LEAN_AND_MEAN", # Don't bloat namespace with incompatible winsock versions.
"/D_CRT_SECURE_NO_WARNINGS", # Don't warn about usage of insecure C functions
"/D_CRT_SECURE_NO_WARNINGS", # Don't warn about usage of insecure C functions.
"/D_SCL_SECURE_NO_WARNINGS", # Don't warm when the compiler encounters a function or
# variable that is marked as deprecated (same as /wd4996).
"/D_ENABLE_EXTENDED_ALIGNED_STORAGE", # Introduced in VS 2017 15.8,
# before the member type would non-conformingly have an alignment of only alignof(max_align_t).
]
MSVC_TEST_FLAGS = [

@ -599,7 +599,7 @@ struct allocator_traits {
return a.max_size();
}
static size_type max_size_impl(char, const Alloc&) {
return std::numeric_limits<size_type>::max() / sizeof(value_type);
return (std::numeric_limits<size_type>::max)() / sizeof(value_type);
}
template <typename A>
@ -655,59 +655,42 @@ struct default_allocator_is_nothrow : std::false_type {};
#endif
namespace memory_internal {
#ifdef ABSL_HAVE_EXCEPTIONS // ConstructRange
template <typename Allocator, typename Iterator, typename... Args>
void ConstructRange(Allocator& alloc, Iterator first, Iterator last,
const Args&... args) {
for (Iterator cur = first; cur != last; ++cur) {
try {
std::allocator_traits<Allocator>::construct(alloc, cur, args...);
} catch (...) {
ABSL_INTERNAL_TRY {
std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur),
args...);
}
ABSL_INTERNAL_CATCH_ANY {
while (cur != first) {
--cur;
std::allocator_traits<Allocator>::destroy(alloc, cur);
std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur));
}
throw;
ABSL_INTERNAL_RETHROW;
}
}
}
#else // ABSL_HAVE_EXCEPTIONS // ConstructRange
template <typename Allocator, typename Iterator, typename... Args>
void ConstructRange(Allocator& alloc, Iterator first, Iterator last,
const Args&... args) {
for (; first != last; ++first) {
std::allocator_traits<Allocator>::construct(alloc, first, args...);
}
}
#endif // ABSL_HAVE_EXCEPTIONS // ConstructRange
#ifdef ABSL_HAVE_EXCEPTIONS // CopyRange
template <typename Allocator, typename Iterator, typename InputIterator>
void CopyRange(Allocator& alloc, Iterator destination, InputIterator first,
InputIterator last) {
for (Iterator cur = destination; first != last;
static_cast<void>(++cur), static_cast<void>(++first)) {
try {
std::allocator_traits<Allocator>::construct(alloc, cur, *first);
} catch (...) {
ABSL_INTERNAL_TRY {
std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur),
*first);
}
ABSL_INTERNAL_CATCH_ANY {
while (cur != destination) {
--cur;
std::allocator_traits<Allocator>::destroy(alloc, cur);
std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur));
}
throw;
ABSL_INTERNAL_RETHROW;
}
}
}
#else // ABSL_HAVE_EXCEPTIONS // CopyRange
template <typename Allocator, typename Iterator, typename InputIterator>
void CopyRange(Allocator& alloc, Iterator destination, InputIterator first,
InputIterator last) {
for (; first != last;
static_cast<void>(++destination), static_cast<void>(++first)) {
std::allocator_traits<Allocator>::construct(alloc, destination, *first);
}
}
#endif // ABSL_HAVE_EXCEPTIONS // CopyRange
} // namespace memory_internal
} // namespace absl

@ -227,8 +227,8 @@ std::ostream& operator<<(std::ostream& os, uint128 v);
// TODO(strel) add operator>>(std::istream&, uint128)
constexpr uint128 Uint128Max() {
return uint128(std::numeric_limits<uint64_t>::max(),
std::numeric_limits<uint64_t>::max());
return uint128((std::numeric_limits<uint64_t>::max)(),
(std::numeric_limits<uint64_t>::max)());
}
} // namespace absl
@ -384,13 +384,13 @@ constexpr uint128::uint128(uint64_t high, uint64_t low)
constexpr uint128::uint128(int v)
: lo_{static_cast<uint64_t>(v)},
hi_{v < 0 ? std::numeric_limits<uint64_t>::max() : 0} {}
hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0} {}
constexpr uint128::uint128(long v) // NOLINT(runtime/int)
: lo_{static_cast<uint64_t>(v)},
hi_{v < 0 ? std::numeric_limits<uint64_t>::max() : 0} {}
hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0} {}
constexpr uint128::uint128(long long v) // NOLINT(runtime/int)
: lo_{static_cast<uint64_t>(v)},
hi_{v < 0 ? std::numeric_limits<uint64_t>::max() : 0} {}
hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0} {}
constexpr uint128::uint128(unsigned int v) : lo_{v}, hi_{0} {}
// NOLINTNEXTLINE(runtime/int)
@ -413,13 +413,13 @@ constexpr uint128::uint128(uint64_t high, uint64_t low)
: hi_{high}, lo_{low} {}
constexpr uint128::uint128(int v)
: hi_{v < 0 ? std::numeric_limits<uint64_t>::max() : 0},
: hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0},
lo_{static_cast<uint64_t>(v)} {}
constexpr uint128::uint128(long v) // NOLINT(runtime/int)
: hi_{v < 0 ? std::numeric_limits<uint64_t>::max() : 0},
: hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0},
lo_{static_cast<uint64_t>(v)} {}
constexpr uint128::uint128(long long v) // NOLINT(runtime/int)
: hi_{v < 0 ? std::numeric_limits<uint64_t>::max() : 0},
: hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0},
lo_{static_cast<uint64_t>(v)} {}
constexpr uint128::uint128(unsigned int v) : hi_{0}, lo_{v} {}

@ -64,11 +64,11 @@ struct uint32_test_case {
inline const std::array<uint32_test_case, 27>& strtouint32_test_cases() {
static const std::array<uint32_test_case, 27> test_cases{{
{"0xffffffff", true, 16, std::numeric_limits<uint32_t>::max()},
{"0xffffffff", true, 16, (std::numeric_limits<uint32_t>::max)()},
{"0x34234324", true, 16, 0x34234324},
{"34234324", true, 16, 0x34234324},
{"0", true, 16, 0},
{" \t\n 0xffffffff", true, 16, std::numeric_limits<uint32_t>::max()},
{" \t\n 0xffffffff", true, 16, (std::numeric_limits<uint32_t>::max)()},
{" \f\v 46", true, 10, 46}, // must accept weird whitespace
{" \t\n 72717222", true, 8, 072717222},
{" \t\n 072717222", true, 8, 072717222},
@ -77,7 +77,7 @@ inline const std::array<uint32_test_case, 27>& strtouint32_test_cases() {
// Base-10 version.
{"34234324", true, 0, 34234324},
{"4294967295", true, 0, std::numeric_limits<uint32_t>::max()},
{"4294967295", true, 0, (std::numeric_limits<uint32_t>::max)()},
{"34234324 \n\t", true, 10, 34234324},
// Unusual base
@ -96,8 +96,8 @@ inline const std::array<uint32_test_case, 27>& strtouint32_test_cases() {
{" \t\n -123", false, 0, 0},
// Out of bounds.
{"4294967296", false, 0, std::numeric_limits<uint32_t>::max()},
{"0x100000000", false, 0, std::numeric_limits<uint32_t>::max()},
{"4294967296", false, 0, (std::numeric_limits<uint32_t>::max)()},
{"0x100000000", false, 0, (std::numeric_limits<uint32_t>::max)()},
{nullptr, false, 0, 0},
}};
return test_cases;
@ -119,7 +119,7 @@ inline const std::array<uint64_test_case, 34>& strtouint64_test_cases() {
{"000", true, 0, 0},
{"0", true, 0, 0},
{" \t\n 0xffffffffffffffff", true, 16,
std::numeric_limits<uint64_t>::max()},
(std::numeric_limits<uint64_t>::max)()},
{"012345670123456701234", true, 8, int64_t{012345670123456701234}},
{"12345670123456701234", true, 8, int64_t{012345670123456701234}},
@ -130,7 +130,7 @@ inline const std::array<uint64_test_case, 34>& strtouint64_test_cases() {
{"34234324487834466", true, 0, int64_t{34234324487834466}},
{" \t\n 18446744073709551615", true, 0,
std::numeric_limits<uint64_t>::max()},
(std::numeric_limits<uint64_t>::max)()},
{"34234324487834466 \n\t ", true, 0, int64_t{34234324487834466}},
@ -156,12 +156,13 @@ inline const std::array<uint64_test_case, 34>& strtouint64_test_cases() {
// Out of bounds.
{"18446744073709551616", false, 10, 0},
{"18446744073709551616", false, 0, 0},
{"0x10000000000000000", false, 16, std::numeric_limits<uint64_t>::max()},
{"0x10000000000000000", false, 16,
(std::numeric_limits<uint64_t>::max)()},
{"0X10000000000000000", false, 16,
std::numeric_limits<uint64_t>::max()}, // 0X versus 0x.
{"0x10000000000000000", false, 0, std::numeric_limits<uint64_t>::max()},
(std::numeric_limits<uint64_t>::max)()}, // 0X versus 0x.
{"0x10000000000000000", false, 0, (std::numeric_limits<uint64_t>::max)()},
{"0X10000000000000000", false, 0,
std::numeric_limits<uint64_t>::max()}, // 0X versus 0x.
(std::numeric_limits<uint64_t>::max)()}, // 0X versus 0x.
{"0x1234", true, 16, 0x1234},

@ -335,12 +335,12 @@ class FormatArgImpl {
using CommonType = typename std::conditional<std::is_signed<T>::value,
int64_t, uint64_t>::type;
if (static_cast<CommonType>(val) >
static_cast<CommonType>(std::numeric_limits<int>::max())) {
return std::numeric_limits<int>::max();
static_cast<CommonType>((std::numeric_limits<int>::max)())) {
return (std::numeric_limits<int>::max)();
} else if (std::is_signed<T>::value &&
static_cast<CommonType>(val) <
static_cast<CommonType>(std::numeric_limits<int>::min())) {
return std::numeric_limits<int>::min();
static_cast<CommonType>((std::numeric_limits<int>::min)())) {
return (std::numeric_limits<int>::min)();
}
return static_cast<int>(val);
}

@ -490,7 +490,7 @@ class string_view {
private:
static constexpr size_type kMaxSize =
std::numeric_limits<difference_type>::max();
(std::numeric_limits<difference_type>::max)();
static constexpr size_type CheckLengthInternal(size_type len) {
return ABSL_ASSERT(len <= kMaxSize), len;

@ -76,7 +76,7 @@ class KernelTimeout {
if (x <= 0) x = 1;
// A time larger than what can be represented to the kernel is treated
// as no timeout.
if (x == std::numeric_limits<int64_t>::max()) x = 0;
if (x == (std::numeric_limits<int64_t>::max)()) x = 0;
return x;
}
@ -90,7 +90,7 @@ class KernelTimeout {
ERROR,
"Tried to create a timespec from a non-timeout; never do this.");
// But we'll try to continue sanely. no-timeout ~= saturated timeout.
n = std::numeric_limits<int64_t>::max();
n = (std::numeric_limits<int64_t>::max)();
}
// Kernel APIs validate timespecs as being at or after the epoch,
@ -101,7 +101,7 @@ class KernelTimeout {
struct timespec abstime;
int64_t seconds = std::min(n / kNanosPerSecond,
int64_t{std::numeric_limits<time_t>::max()});
int64_t{(std::numeric_limits<time_t>::max)()});
abstime.tv_sec = static_cast<time_t>(seconds);
abstime.tv_nsec =
static_cast<decltype(abstime.tv_nsec)>(n % kNanosPerSecond);
@ -119,7 +119,7 @@ class KernelTimeout {
// <intsafe.h> and <WinBase.h>.
typedef unsigned long DWord; // NOLINT
DWord InMillisecondsFromNow() const {
constexpr DWord kInfinite = std::numeric_limits<DWord>::max();
constexpr DWord kInfinite = (std::numeric_limits<DWord>::max)();
if (!has_timeout()) {
return kInfinite;
}
@ -130,7 +130,7 @@ class KernelTimeout {
if (ns_ >= now) {
// Round up so that Now() + ms_from_now >= ns_.
constexpr uint64_t max_nanos =
std::numeric_limits<int64_t>::max() - 999999u;
(std::numeric_limits<int64_t>::max)() - 999999u;
uint64_t ms_from_now =
(std::min<uint64_t>(max_nanos, ns_ - now) + 999999u) / 1000000u;
if (ms_from_now > kInfinite) {

@ -584,7 +584,7 @@ class SCOPED_LOCKABLE WriterMutexLock {
// -----------------------------------------------------------------------------
//
// As noted above, `Mutex` contains a number of member functions which take a
// `Condition` as a argument; clients can wait for conditions to become `true`
// `Condition` as an argument; clients can wait for conditions to become `true`
// before attempting to acquire the mutex. These sections are known as
// "condition critical" sections. To use a `Condition`, you simply need to
// construct it, and use within an appropriate `Mutex` member function;

@ -402,10 +402,10 @@ Duration Milliseconds(T n) {
template <typename T, time_internal::EnableIfFloat<T> = 0>
Duration Seconds(T n) {
if (n >= 0) {
if (n >= std::numeric_limits<int64_t>::max()) return InfiniteDuration();
if (n >= (std::numeric_limits<int64_t>::max)()) return InfiniteDuration();
return time_internal::MakePosDoubleDuration(n);
} else {
if (n <= std::numeric_limits<int64_t>::min()) return -InfiniteDuration();
if (n <= (std::numeric_limits<int64_t>::min)()) return -InfiniteDuration();
return -time_internal::MakePosDoubleDuration(-n);
}
}
@ -686,7 +686,7 @@ constexpr Time UniversalEpoch() {
// Returns an `absl::Time` that is infinitely far in the future.
constexpr Time InfiniteFuture() {
return Time(
time_internal::MakeDuration(std::numeric_limits<int64_t>::max(), ~0U));
time_internal::MakeDuration((std::numeric_limits<int64_t>::max)(), ~0U));
}
// InfinitePast()
@ -694,7 +694,7 @@ constexpr Time InfiniteFuture() {
// Returns an `absl::Time` that is infinitely far in the past.
constexpr Time InfinitePast() {
return Time(
time_internal::MakeDuration(std::numeric_limits<int64_t>::min(), ~0U));
time_internal::MakeDuration((std::numeric_limits<int64_t>::min)(), ~0U));
}
// FromUnixNanos()
@ -1329,8 +1329,8 @@ constexpr bool IsInfiniteDuration(Duration d) { return GetRepLo(d) == ~0U; }
// REQUIRES: IsInfiniteDuration(d)
constexpr Duration OppositeInfinity(Duration d) {
return GetRepHi(d) < 0
? MakeDuration(std::numeric_limits<int64_t>::max(), ~0U)
: MakeDuration(std::numeric_limits<int64_t>::min(), ~0U);
? MakeDuration((std::numeric_limits<int64_t>::max)(), ~0U)
: MakeDuration((std::numeric_limits<int64_t>::min)(), ~0U);
}
// Returns (-n)-1 (equivalently -(n+1)) without avoidable overflow.
@ -1355,14 +1355,14 @@ constexpr Duration FromInt64(int64_t v, std::ratio<1, N>) {
v / N, v % N * kTicksPerNanosecond * 1000 * 1000 * 1000 / N);
}
constexpr Duration FromInt64(int64_t v, std::ratio<60>) {
return (v <= std::numeric_limits<int64_t>::max() / 60 &&
v >= std::numeric_limits<int64_t>::min() / 60)
return (v <= (std::numeric_limits<int64_t>::max)() / 60 &&
v >= (std::numeric_limits<int64_t>::min)() / 60)
? MakeDuration(v * 60)
: v > 0 ? InfiniteDuration() : -InfiniteDuration();
}
constexpr Duration FromInt64(int64_t v, std::ratio<3600>) {
return (v <= std::numeric_limits<int64_t>::max() / 3600 &&
v >= std::numeric_limits<int64_t>::min() / 3600)
return (v <= (std::numeric_limits<int64_t>::max)() / 3600 &&
v >= (std::numeric_limits<int64_t>::min)() / 3600)
? MakeDuration(v * 3600)
: v > 0 ? InfiniteDuration() : -InfiniteDuration();
}
@ -1421,8 +1421,8 @@ T ToChronoDuration(Duration d) {
if (time_internal::IsInfiniteDuration(d))
return d < ZeroDuration() ? T::min() : T::max();
const auto v = ToInt64(d, Period{});
if (v > std::numeric_limits<Rep>::max()) return T::max();
if (v < std::numeric_limits<Rep>::min()) return T::min();
if (v > (std::numeric_limits<Rep>::max)()) return T::max();
if (v < (std::numeric_limits<Rep>::min)()) return T::min();
return T{v};
}
@ -1449,7 +1449,8 @@ constexpr Duration Hours(int64_t n) {
constexpr bool operator<(Duration lhs, Duration rhs) {
return time_internal::GetRepHi(lhs) != time_internal::GetRepHi(rhs)
? time_internal::GetRepHi(lhs) < time_internal::GetRepHi(rhs)
: time_internal::GetRepHi(lhs) == std::numeric_limits<int64_t>::min()
: time_internal::GetRepHi(lhs) ==
(std::numeric_limits<int64_t>::min)()
? time_internal::GetRepLo(lhs) + 1 <
time_internal::GetRepLo(rhs) + 1
: time_internal::GetRepLo(lhs) <
@ -1474,7 +1475,8 @@ constexpr Duration operator-(Duration d) {
// a second's worth of ticks and avoid overflow (as negating int64_t-min + 1
// is safe).
return time_internal::GetRepLo(d) == 0
? time_internal::GetRepHi(d) == std::numeric_limits<int64_t>::min()
? time_internal::GetRepHi(d) ==
(std::numeric_limits<int64_t>::min)()
? InfiniteDuration()
: time_internal::MakeDuration(-time_internal::GetRepHi(d))
: time_internal::IsInfiniteDuration(d)
@ -1487,7 +1489,8 @@ constexpr Duration operator-(Duration d) {
}
constexpr Duration InfiniteDuration() {
return time_internal::MakeDuration(std::numeric_limits<int64_t>::max(), ~0U);
return time_internal::MakeDuration((std::numeric_limits<int64_t>::max)(),
~0U);
}
constexpr Duration FromChrono(const std::chrono::nanoseconds& d) {

@ -163,7 +163,7 @@ struct empty_struct {};
// This class stores the data in optional<T>.
// It is specialized based on whether T is trivially destructible.
// This is the specialization for non trivially destructible type.
template <typename T, bool = std::is_trivially_destructible<T>::value>
template <typename T, bool unused = std::is_trivially_destructible<T>::value>
class optional_data_dtor_base {
struct dummy_type {
static_assert(sizeof(T) % sizeof(empty_struct) == 0, "");
@ -261,10 +261,10 @@ class optional_data_base : public optional_data_dtor_base<T> {
// have trivial move but nontrivial copy.
// Also, we should be checking is_trivially_copyable here, which is not
// supported now, so we use is_trivially_* traits instead.
template <typename T, bool = absl::is_trivially_copy_constructible<T>::value&&
absl::is_trivially_copy_assignable<
typename std::remove_cv<T>::type>::value&&
std::is_trivially_destructible<T>::value>
template <typename T,
bool unused = absl::is_trivially_copy_constructible<T>::value&&
absl::is_trivially_copy_assignable<typename std::remove_cv<
T>::type>::value&& std::is_trivially_destructible<T>::value>
class optional_data;
// Trivially copyable types

Loading…
Cancel
Save