- abacaab4b11a69dd4db627bd183571d7cabb8def Refinement to previous time.h edit (in this same github p... by Greg Falcon <gfalcon@google.com>

- 64db19b773134c6c8004e3b23c9ca892efbf8bae Move SpinLock's adaptive spin count computation from a st... by Derek Mauro <dmauro@google.com>
  - 6f9533fb44a52485a7c2bbb9b4efc7bf8d6c359a Import of CCTZ from GitHub. by Abseil Team <absl-team@google.com>
  - a211d7255c986e8dd4ceada362c0d054a6a1969a Cleanup exception flags by Abseil Team <absl-team@google.com>
  - babdb29c590126fe9bba5229fe91034b5b5c358a Release time benchmarks. by Alex Strelnikov <strel@google.com>
  - 5803b32a3ff123d1fb57a0c471d199c818357c9f Release memutil microbenchmarks. by Alex Strelnikov <strel@google.com>
  - 5357d4890d30e80c53beb05af32500fb20e9402b Add parens around expansion of ABSL_PREDICT_{FALSE,TRUE} ... by Abseil Team <absl-team@google.com>
  - 32023f61a239a5f6b1c59e577bfe81b179bbcd2d Reformat build rule tag. by Alex Strelnikov <strel@google.com>
  - 833758ecf2b0cf7a42bbd50b5b127e416425c168 Release uint128 microbenchmarks. by Alex Strelnikov <strel@google.com>
  - c115a9bca1f944b90fdc78a56b2de176466b124f Disambiguate bitwise-not of size_type by Abseil Team <absl-team@google.com>
  - f6905f5b5f6e425792de646edafde440548d9346 Updates ConstructorTracker and TrackedObjects with 1) a m... by Abseil Team <absl-team@google.com>
  - 147c553bdd5d2db20a38f75c4d1ef973d6c709c5 Changes the absl::Duration factory functions to disallow ... by Greg Miller <jgm@google.com>
  - dba2b96d11b5264546b283ba452f2de1303b0f07 White space fix by Alex Strelnikov <strel@google.com>

GitOrigin-RevId: abacaab4b11a69dd4db627bd183571d7cabb8def
Change-Id: I6fa34f20d0b2f898e7b5475a603111413bb80a67
pull/130/head
Abseil Team 7 years ago committed by Gennadiy Civil
parent 7aacab8ae0
commit 92020a042c
  1. 71
      absl/base/exception_safety_testing_test.cc
  2. 31
      absl/base/internal/exception_safety_testing.cc
  3. 182
      absl/base/internal/exception_safety_testing.h
  4. 30
      absl/base/internal/spinlock.cc
  5. 4
      absl/base/optimization.h
  6. 12
      absl/numeric/BUILD.bazel
  7. 221
      absl/numeric/int128_benchmark.cc
  8. 16
      absl/strings/BUILD.bazel
  9. 323
      absl/strings/internal/memutil_benchmark.cc
  10. 20
      absl/time/BUILD.bazel
  11. 72
      absl/time/clock_benchmark.cc
  12. 361
      absl/time/duration_benchmark.cc
  13. 20
      absl/time/duration_test.cc
  14. 63
      absl/time/format_benchmark.cc
  15. 13
      absl/time/internal/cctz/src/time_zone_format_test.cc
  16. 17
      absl/time/internal/cctz/src/time_zone_lookup_test.cc
  17. 88
      absl/time/time.h
  18. 316
      absl/time/time_benchmark.cc
  19. 15
      absl/types/BUILD.bazel
  20. 84
      absl/types/optional_exception_safety_test.cc
  21. 2
      absl/types/span.h
  22. 121
      absl/types/variant_exception_safety_test.cc

@ -168,8 +168,58 @@ TEST(ThrowingValueTest, ThrowingCompoundAssignmentOps) {
TEST(ThrowingValueTest, ThrowingStreamOps) {
ThrowingValue<> bomb;
TestOp([&]() { std::cin >> bomb; });
TestOp([&]() { std::cout << bomb; });
TestOp([&]() {
std::istringstream stream;
stream >> bomb;
});
TestOp([&]() {
std::stringstream stream;
stream << bomb;
});
}
// Tests the operator<< of ThrowingValue by forcing ConstructorTracker to emit
// a nonfatal failure that contains the std::string representation of the Thrower
TEST(ThrowingValueTest, StreamOpsOutput) {
using ::testing::TypeSpec;
exceptions_internal::ConstructorTracker ct(exceptions_internal::countdown);
// Test default spec list (kEverythingThrows)
EXPECT_NONFATAL_FAILURE(
{
using Thrower = ThrowingValue<TypeSpec{}>;
auto thrower = Thrower(123);
thrower.~Thrower();
},
"ThrowingValue<>(123)");
// Test with one item in spec list (kNoThrowCopy)
EXPECT_NONFATAL_FAILURE(
{
using Thrower = ThrowingValue<TypeSpec::kNoThrowCopy>;
auto thrower = Thrower(234);
thrower.~Thrower();
},
"ThrowingValue<kNoThrowCopy>(234)");
// Test with multiple items in spec list (kNoThrowMove, kNoThrowNew)
EXPECT_NONFATAL_FAILURE(
{
using Thrower =
ThrowingValue<TypeSpec::kNoThrowMove | TypeSpec::kNoThrowNew>;
auto thrower = Thrower(345);
thrower.~Thrower();
},
"ThrowingValue<kNoThrowMove | kNoThrowNew>(345)");
// Test with all items in spec list (kNoThrowCopy, kNoThrowMove, kNoThrowNew)
EXPECT_NONFATAL_FAILURE(
{
using Thrower = ThrowingValue<static_cast<TypeSpec>(-1)>;
auto thrower = Thrower(456);
thrower.~Thrower();
},
"ThrowingValue<kNoThrowCopy | kNoThrowMove | kNoThrowNew>(456)");
}
template <typename F>
@ -653,20 +703,20 @@ struct BasicGuaranteeWithExtraInvariants : public NonNegative {
};
constexpr int BasicGuaranteeWithExtraInvariants::kExceptionSentinel;
TEST(ExceptionCheckTest, BasicGuaranteeWithInvariants) {
TEST(ExceptionCheckTest, BasicGuaranteeWithExtraInvariants) {
auto tester_with_val =
tester.WithInitialValue(BasicGuaranteeWithExtraInvariants{});
EXPECT_TRUE(tester_with_val.Test());
EXPECT_TRUE(
tester_with_val
.WithInvariants([](BasicGuaranteeWithExtraInvariants* w) {
if (w->i == BasicGuaranteeWithExtraInvariants::kExceptionSentinel) {
.WithInvariants([](BasicGuaranteeWithExtraInvariants* o) {
if (o->i == BasicGuaranteeWithExtraInvariants::kExceptionSentinel) {
return testing::AssertionSuccess();
}
return testing::AssertionFailure()
<< "i should be "
<< BasicGuaranteeWithExtraInvariants::kExceptionSentinel
<< ", but is " << w->i;
<< ", but is " << o->i;
})
.Test());
}
@ -846,29 +896,28 @@ TEST(ConstructorTrackerTest, NotDestroyedAfter) {
new (&storage) Tracked;
},
"not destroyed");
// Manual destruction of the Tracked instance is not required because
// ~ConstructorTracker() handles that automatically when a leak is found
}
TEST(ConstructorTrackerTest, DestroyedTwice) {
exceptions_internal::ConstructorTracker ct(exceptions_internal::countdown);
EXPECT_NONFATAL_FAILURE(
{
Tracked t;
t.~Tracked();
},
"destroyed improperly");
"re-destroyed");
}
TEST(ConstructorTrackerTest, ConstructedTwice) {
exceptions_internal::ConstructorTracker ct(exceptions_internal::countdown);
absl::aligned_storage_t<sizeof(Tracked), alignof(Tracked)> storage;
EXPECT_NONFATAL_FAILURE(
{
new (&storage) Tracked;
new (&storage) Tracked;
reinterpret_cast<Tracked*>(&storage)->~Tracked();
},
"re-constructed");
reinterpret_cast<Tracked*>(&storage)->~Tracked();
}
TEST(ThrowingValueTraitsTest, RelationalOperators) {

@ -21,16 +21,14 @@ namespace testing {
exceptions_internal::NoThrowTag nothrow_ctor;
bool nothrow_guarantee(const void*) {
return ::testing::AssertionFailure()
<< "Exception thrown violating NoThrow Guarantee";
}
exceptions_internal::StrongGuaranteeTagType strong_guarantee;
namespace exceptions_internal {
int countdown = -1;
ConstructorTracker* ConstructorTracker::current_tracker_instance_ = nullptr;
void MaybeThrow(absl::string_view msg, bool throw_bad_alloc) {
if (countdown-- == 0) {
if (throw_bad_alloc) throw TestBadAllocException(msg);
@ -43,6 +41,31 @@ testing::AssertionResult FailureMessage(const TestException& e,
return testing::AssertionFailure() << "Exception thrown from " << e.what();
}
std::string GetSpecString(TypeSpec spec) {
std::string out;
absl::string_view sep;
const auto append = [&](absl::string_view s) {
absl::StrAppend(&out, sep, s);
sep = " | ";
};
if (static_cast<bool>(TypeSpec::kNoThrowCopy & spec)) {
append("kNoThrowCopy");
}
if (static_cast<bool>(TypeSpec::kNoThrowMove & spec)) {
append("kNoThrowMove");
}
if (static_cast<bool>(TypeSpec::kNoThrowNew & spec)) {
append("kNoThrowNew");
}
return out;
}
std::string GetSpecString(AllocSpec spec) {
return static_cast<bool>(AllocSpec::kNoThrowAllocate & spec)
? "kNoThrowAllocate"
: "";
}
} // namespace exceptions_internal
} // namespace testing

@ -62,6 +62,9 @@ constexpr AllocSpec operator&(AllocSpec a, AllocSpec b) {
namespace exceptions_internal {
std::string GetSpecString(TypeSpec);
std::string GetSpecString(AllocSpec);
struct NoThrowTag {};
struct StrongGuaranteeTagType {};
@ -101,70 +104,96 @@ void MaybeThrow(absl::string_view msg, bool throw_bad_alloc = false);
testing::AssertionResult FailureMessage(const TestException& e,
int countdown) noexcept;
class ConstructorTracker;
struct TrackedAddress {
bool is_alive;
std::string description;
};
class TrackedObject {
// Inspects the constructions and destructions of anything inheriting from
// TrackedObject. This allows us to safely "leak" TrackedObjects, as
// ConstructorTracker will destroy everything left over in its destructor.
class ConstructorTracker {
public:
TrackedObject(const TrackedObject&) = delete;
TrackedObject(TrackedObject&&) = delete;
explicit ConstructorTracker(int count) : countdown_(count) {
assert(current_tracker_instance_ == nullptr);
current_tracker_instance_ = this;
}
protected:
explicit TrackedObject(const char* child_ctor) {
if (!GetInstanceMap().emplace(this, child_ctor).second) {
ADD_FAILURE() << "Object at address " << static_cast<void*>(this)
<< " re-constructed in ctor " << child_ctor;
~ConstructorTracker() {
assert(current_tracker_instance_ == this);
current_tracker_instance_ = nullptr;
for (auto& it : address_map_) {
void* address = it.first;
TrackedAddress& tracked_address = it.second;
if (tracked_address.is_alive) {
ADD_FAILURE() << "Object at address " << address
<< " with countdown of " << countdown_
<< " was not destroyed [" << tracked_address.description
<< "]";
}
}
}
~TrackedObject() noexcept {
if (GetInstanceMap().erase(this) == 0) {
ADD_FAILURE() << "Object at address " << static_cast<void*>(this)
<< " destroyed improperly";
static void ObjectConstructed(void* address, std::string description) {
if (!CurrentlyTracking()) return;
TrackedAddress& tracked_address =
current_tracker_instance_->address_map_[address];
if (tracked_address.is_alive) {
ADD_FAILURE() << "Object at address " << address << " with countdown of "
<< current_tracker_instance_->countdown_
<< " was re-constructed. Previously: ["
<< tracked_address.description << "] Now: [" << description
<< "]";
}
tracked_address = {true, std::move(description)};
}
static void ObjectDestructed(void* address) {
if (!CurrentlyTracking()) return;
auto it = current_tracker_instance_->address_map_.find(address);
// Not tracked. Ignore.
if (it == current_tracker_instance_->address_map_.end()) return;
TrackedAddress& tracked_address = it->second;
if (!tracked_address.is_alive) {
ADD_FAILURE() << "Object at address " << address << " with countdown of "
<< current_tracker_instance_->countdown_
<< " was re-destroyed or created prior to construction "
<< "tracking [" << tracked_address.description << "]";
}
tracked_address.is_alive = false;
}
private:
using InstanceMap = std::unordered_map<TrackedObject*, absl::string_view>;
static InstanceMap& GetInstanceMap() {
static auto* instance_map = new InstanceMap();
return *instance_map;
static bool CurrentlyTracking() {
return current_tracker_instance_ != nullptr;
}
friend class ConstructorTracker;
std::unordered_map<void*, TrackedAddress> address_map_;
int countdown_;
static ConstructorTracker* current_tracker_instance_;
};
// Inspects the constructions and destructions of anything inheriting from
// TrackedObject. This allows us to safely "leak" TrackedObjects, as
// ConstructorTracker will destroy everything left over in its destructor.
class ConstructorTracker {
class TrackedObject {
public:
explicit ConstructorTracker(int c)
: init_count_(c), init_instances_(TrackedObject::GetInstanceMap()) {}
~ConstructorTracker() {
auto& cur_instances = TrackedObject::GetInstanceMap();
for (auto it = cur_instances.begin(); it != cur_instances.end();) {
if (init_instances_.count(it->first) == 0) {
ADD_FAILURE() << "Object at address " << static_cast<void*>(it->first)
<< " constructed from " << it->second
<< " where the exception countdown was set to "
<< init_count_ << " was not destroyed";
// Erasing an item inside an unordered_map invalidates the existing
// iterator. A new one is returned for iteration to continue.
it = cur_instances.erase(it);
} else {
++it;
}
}
TrackedObject(const TrackedObject&) = delete;
TrackedObject(TrackedObject&&) = delete;
protected:
explicit TrackedObject(std::string description) {
ConstructorTracker::ObjectConstructed(this, std::move(description));
}
private:
int init_count_;
TrackedObject::InstanceMap init_instances_;
~TrackedObject() noexcept { ConstructorTracker::ObjectDestructed(this); }
};
template <typename Factory, typename Operation, typename Invariant>
absl::optional<testing::AssertionResult> TestSingleInvariantAtCountdownImpl(
const Factory& factory, Operation operation, int count,
const Factory& factory, const Operation& operation, int count,
const Invariant& invariant) {
auto t_ptr = factory();
absl::optional<testing::AssertionResult> current_res;
@ -229,7 +258,6 @@ inline absl::optional<testing::AssertionResult> TestAllInvariantsAtCountdown(
extern exceptions_internal::NoThrowTag nothrow_ctor;
bool nothrow_guarantee(const void*);
extern exceptions_internal::StrongGuaranteeTagType strong_guarantee;
// A test class which is convertible to bool. The conversion can be
@ -283,17 +311,18 @@ class ThrowingValue : private exceptions_internal::TrackedObject {
return static_cast<bool>(Spec & spec);
}
static constexpr int kDefaultValue = 0;
static constexpr int kBadValue = 938550620;
public:
ThrowingValue() : TrackedObject(ABSL_PRETTY_FUNCTION) {
ThrowingValue() : TrackedObject(GetInstanceString(kDefaultValue)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ = 0;
dummy_ = kDefaultValue;
}
ThrowingValue(const ThrowingValue& other) noexcept(
IsSpecified(TypeSpec::kNoThrowCopy))
: TrackedObject(ABSL_PRETTY_FUNCTION) {
: TrackedObject(GetInstanceString(other.dummy_)) {
if (!IsSpecified(TypeSpec::kNoThrowCopy)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
}
@ -302,20 +331,20 @@ class ThrowingValue : private exceptions_internal::TrackedObject {
ThrowingValue(ThrowingValue&& other) noexcept(
IsSpecified(TypeSpec::kNoThrowMove))
: TrackedObject(ABSL_PRETTY_FUNCTION) {
: TrackedObject(GetInstanceString(other.dummy_)) {
if (!IsSpecified(TypeSpec::kNoThrowMove)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
}
dummy_ = other.dummy_;
}
explicit ThrowingValue(int i) : TrackedObject(ABSL_PRETTY_FUNCTION) {
explicit ThrowingValue(int i) : TrackedObject(GetInstanceString(i)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ = i;
}
ThrowingValue(int i, exceptions_internal::NoThrowTag) noexcept
: TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(i) {}
: TrackedObject(GetInstanceString(i)), dummy_(i) {}
// absl expects nothrow destructors
~ThrowingValue() noexcept = default;
@ -548,9 +577,9 @@ class ThrowingValue : private exceptions_internal::TrackedObject {
void operator&() const = delete; // NOLINT(runtime/operator)
// Stream operators
friend std::ostream& operator<<(std::ostream& os, const ThrowingValue&) {
friend std::ostream& operator<<(std::ostream& os, const ThrowingValue& tv) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return os;
return os << GetInstanceString(tv.dummy_);
}
friend std::istream& operator>>(std::istream& is, const ThrowingValue&) {
@ -606,6 +635,12 @@ class ThrowingValue : private exceptions_internal::TrackedObject {
const int& Get() const noexcept { return dummy_; }
private:
static std::string GetInstanceString(int dummy) {
return absl::StrCat("ThrowingValue<",
exceptions_internal::GetSpecString(Spec), ">(", dummy,
")");
}
int dummy_;
};
// While not having to do with exceptions, explicitly delete comma operator, to
@ -658,26 +693,30 @@ class ThrowingAllocator : private exceptions_internal::TrackedObject {
using propagate_on_container_swap = std::true_type;
using is_always_equal = std::false_type;
ThrowingAllocator() : TrackedObject(ABSL_PRETTY_FUNCTION) {
ThrowingAllocator() : TrackedObject(GetInstanceString(next_id_)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ = std::make_shared<const int>(next_id_++);
}
template <typename U>
ThrowingAllocator(const ThrowingAllocator<U, Spec>& other) noexcept // NOLINT
: TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(other.State()) {}
: TrackedObject(GetInstanceString(*other.State())),
dummy_(other.State()) {}
// According to C++11 standard [17.6.3.5], Table 28, the move/copy ctors of
// allocator shall not exit via an exception, thus they are marked noexcept.
ThrowingAllocator(const ThrowingAllocator& other) noexcept
: TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(other.State()) {}
: TrackedObject(GetInstanceString(*other.State())),
dummy_(other.State()) {}
template <typename U>
ThrowingAllocator(ThrowingAllocator<U, Spec>&& other) noexcept // NOLINT
: TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(std::move(other.State())) {}
: TrackedObject(GetInstanceString(*other.State())),
dummy_(std::move(other.State())) {}
ThrowingAllocator(ThrowingAllocator&& other) noexcept
: TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(std::move(other.State())) {}
: TrackedObject(GetInstanceString(*other.State())),
dummy_(std::move(other.State())) {}
~ThrowingAllocator() noexcept = default;
@ -758,6 +797,12 @@ class ThrowingAllocator : private exceptions_internal::TrackedObject {
friend class ThrowingAllocator;
private:
static std::string GetInstanceString(int dummy) {
return absl::StrCat("ThrowingAllocator<",
exceptions_internal::GetSpecString(Spec), ">(", dummy,
")");
}
const std::shared_ptr<const int>& State() const { return dummy_; }
std::shared_ptr<const int>& State() { return dummy_; }
@ -801,6 +846,29 @@ void TestThrowingCtor(Args&&... args) {
}
}
// Tests the nothrow guarantee of the provided nullary operation. If the an
// exception is thrown, the result will be AssertionFailure(). Otherwise, it
// will be AssertionSuccess().
template <typename Operation>
testing::AssertionResult TestNothrowOp(const Operation& operation) {
struct Cleanup {
Cleanup() { exceptions_internal::SetCountdown(); }
~Cleanup() { exceptions_internal::UnsetCountdown(); }
} c;
try {
operation();
return testing::AssertionSuccess();
} catch (exceptions_internal::TestException) {
return testing::AssertionFailure()
<< "TestException thrown during call to operation() when nothrow "
"guarantee was expected.";
} catch (...) {
return testing::AssertionFailure()
<< "Unknown exception thrown during call to operation() when "
"nothrow guarantee was expected.";
}
}
namespace exceptions_internal {
// Dummy struct for ExceptionSafetyTester<> partial state.

@ -18,10 +18,12 @@
#include <atomic>
#include <limits>
#include "absl/base/attributes.h"
#include "absl/base/internal/atomic_hook.h"
#include "absl/base/internal/cycleclock.h"
#include "absl/base/internal/spinlock_wait.h"
#include "absl/base/internal/sysinfo.h" /* For NumCPUs() */
#include "absl/base/call_once.h"
// Description of lock-word:
// 31..00: [............................3][2][1][0]
@ -54,30 +56,10 @@
namespace absl {
namespace base_internal {
static int adaptive_spin_count = 0;
namespace {
struct SpinLock_InitHelper {
SpinLock_InitHelper() {
// On multi-cpu machines, spin for longer before yielding
// the processor or sleeping. Reduces idle time significantly.
if (base_internal::NumCPUs() > 1) {
adaptive_spin_count = 1000;
}
}
};
// Hook into global constructor execution:
// We do not do adaptive spinning before that,
// but nothing lock-intensive should be going on at that time.
static SpinLock_InitHelper init_helper;
ABSL_CONST_INIT static base_internal::AtomicHook<void (*)(const void *lock,
int64_t wait_cycles)>
submit_profile_data;
} // namespace
void RegisterSpinLockProfiler(void (*fn)(const void *contendedlock,
int64_t wait_cycles)) {
submit_profile_data.Store(fn);
@ -120,6 +102,14 @@ void SpinLock::InitLinkerInitializedAndCooperative() {
// from the lock is returned from the method.
uint32_t SpinLock::SpinLoop(int64_t initial_wait_timestamp,
uint32_t *wait_cycles) {
// We are already in the slow path of SpinLock, initialize the
// adaptive_spin_count here.
ABSL_CONST_INIT static absl::once_flag init_adaptive_spin_count;
ABSL_CONST_INIT static int adaptive_spin_count = 0;
base_internal::LowLevelCallOnce(&init_adaptive_spin_count, []() {
adaptive_spin_count = base_internal::NumCPUs() > 1 ? 1000 : 1;
});
int c = adaptive_spin_count;
uint32_t lock_value;
do {

@ -158,8 +158,8 @@
#define ABSL_PREDICT_FALSE(x) (__builtin_expect(x, 0))
#define ABSL_PREDICT_TRUE(x) (__builtin_expect(!!(x), 1))
#else
#define ABSL_PREDICT_FALSE(x) x
#define ABSL_PREDICT_TRUE(x) x
#define ABSL_PREDICT_FALSE(x) (x)
#define ABSL_PREDICT_TRUE(x) (x)
#endif
#endif // ABSL_BASE_OPTIMIZATION_H_

@ -53,3 +53,15 @@ cc_test(
"@com_google_googletest//:gtest_main",
],
)
cc_test(
name = "int128_benchmark",
srcs = ["int128_benchmark.cc"],
copts = ABSL_TEST_COPTS,
tags = ["benchmark"],
deps = [
":int128",
"//absl/base:config",
"@com_github_google_benchmark//:benchmark_main",
],
)

@ -0,0 +1,221 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/numeric/int128.h"
#include <algorithm>
#include <cstdint>
#include <random>
#include <vector>
#include "benchmark/benchmark.h"
#include "absl/base/config.h"
namespace {
constexpr size_t kSampleSize = 1000000;
std::mt19937 MakeRandomEngine() {
std::random_device r;
std::seed_seq seed({r(), r(), r(), r(), r(), r(), r(), r()});
return std::mt19937(seed);
}
std::vector<std::pair<absl::uint128, absl::uint128>>
GetRandomClass128SampleUniformDivisor() {
std::vector<std::pair<absl::uint128, absl::uint128>> values;
std::mt19937 random = MakeRandomEngine();
std::uniform_int_distribution<uint64_t> uniform_uint64;
values.reserve(kSampleSize);
for (size_t i = 0; i < kSampleSize; ++i) {
absl::uint128 a =
absl::MakeUint128(uniform_uint64(random), uniform_uint64(random));
absl::uint128 b =
absl::MakeUint128(uniform_uint64(random), uniform_uint64(random));
values.emplace_back(std::max(a, b),
std::max(absl::uint128(2), std::min(a, b)));
}
return values;
}
void BM_DivideClass128UniformDivisor(benchmark::State& state) {
auto values = GetRandomClass128SampleUniformDivisor();
while (state.KeepRunningBatch(values.size())) {
for (const auto& pair : values) {
benchmark::DoNotOptimize(pair.first / pair.second);
}
}
}
BENCHMARK(BM_DivideClass128UniformDivisor);
std::vector<std::pair<absl::uint128, uint64_t>>
GetRandomClass128SampleSmallDivisor() {
std::vector<std::pair<absl::uint128, uint64_t>> values;
std::mt19937 random = MakeRandomEngine();
std::uniform_int_distribution<uint64_t> uniform_uint64;
values.reserve(kSampleSize);
for (size_t i = 0; i < kSampleSize; ++i) {
absl::uint128 a =
absl::MakeUint128(uniform_uint64(random), uniform_uint64(random));
uint64_t b = std::max(uint64_t{2}, uniform_uint64(random));
values.emplace_back(std::max(a, absl::uint128(b)), b);
}
return values;
}
void BM_DivideClass128SmallDivisor(benchmark::State& state) {
auto values = GetRandomClass128SampleSmallDivisor();
while (state.KeepRunningBatch(values.size())) {
for (const auto& pair : values) {
benchmark::DoNotOptimize(pair.first / pair.second);
}
}
}
BENCHMARK(BM_DivideClass128SmallDivisor);
std::vector<std::pair<absl::uint128, absl::uint128>> GetRandomClass128Sample() {
std::vector<std::pair<absl::uint128, absl::uint128>> values;
std::mt19937 random = MakeRandomEngine();
std::uniform_int_distribution<uint64_t> uniform_uint64;
values.reserve(kSampleSize);
for (size_t i = 0; i < kSampleSize; ++i) {
values.emplace_back(
absl::MakeUint128(uniform_uint64(random), uniform_uint64(random)),
absl::MakeUint128(uniform_uint64(random), uniform_uint64(random)));
}
return values;
}
void BM_MultiplyClass128(benchmark::State& state) {
auto values = GetRandomClass128Sample();
while (state.KeepRunningBatch(values.size())) {
for (const auto& pair : values) {
benchmark::DoNotOptimize(pair.first * pair.second);
}
}
}
BENCHMARK(BM_MultiplyClass128);
void BM_AddClass128(benchmark::State& state) {
auto values = GetRandomClass128Sample();
while (state.KeepRunningBatch(values.size())) {
for (const auto& pair : values) {
benchmark::DoNotOptimize(pair.first + pair.second);
}
}
}
BENCHMARK(BM_AddClass128);
#ifdef ABSL_HAVE_INTRINSIC_INT128
// Some implementations of <random> do not support __int128 when it is
// available, so we make our own uniform_int_distribution-like type.
class UniformIntDistribution128 {
public:
// NOLINTNEXTLINE: mimicking std::uniform_int_distribution API
unsigned __int128 operator()(std::mt19937& generator) {
return (static_cast<unsigned __int128>(dist64_(generator)) << 64) |
dist64_(generator);
}
private:
std::uniform_int_distribution<uint64_t> dist64_;
};
std::vector<std::pair<unsigned __int128, unsigned __int128>>
GetRandomIntrinsic128SampleUniformDivisor() {
std::vector<std::pair<unsigned __int128, unsigned __int128>> values;
std::mt19937 random = MakeRandomEngine();
UniformIntDistribution128 uniform_uint128;
values.reserve(kSampleSize);
for (size_t i = 0; i < kSampleSize; ++i) {
unsigned __int128 a = uniform_uint128(random);
unsigned __int128 b = uniform_uint128(random);
values.emplace_back(
std::max(a, b),
std::max(static_cast<unsigned __int128>(2), std::min(a, b)));
}
return values;
}
void BM_DivideIntrinsic128UniformDivisor(benchmark::State& state) {
auto values = GetRandomIntrinsic128SampleUniformDivisor();
while (state.KeepRunningBatch(values.size())) {
for (const auto& pair : values) {
benchmark::DoNotOptimize(pair.first / pair.second);
}
}
}
BENCHMARK(BM_DivideIntrinsic128UniformDivisor);
std::vector<std::pair<unsigned __int128, uint64_t>>
GetRandomIntrinsic128SampleSmallDivisor() {
std::vector<std::pair<unsigned __int128, uint64_t>> values;
std::mt19937 random = MakeRandomEngine();
UniformIntDistribution128 uniform_uint128;
std::uniform_int_distribution<uint64_t> uniform_uint64;
values.reserve(kSampleSize);
for (size_t i = 0; i < kSampleSize; ++i) {
unsigned __int128 a = uniform_uint128(random);
uint64_t b = std::max(uint64_t{2}, uniform_uint64(random));
values.emplace_back(std::max(a, static_cast<unsigned __int128>(b)), b);
}
return values;
}
void BM_DivideIntrinsic128SmallDivisor(benchmark::State& state) {
auto values = GetRandomIntrinsic128SampleSmallDivisor();
while (state.KeepRunningBatch(values.size())) {
for (const auto& pair : values) {
benchmark::DoNotOptimize(pair.first / pair.second);
}
}
}
BENCHMARK(BM_DivideIntrinsic128SmallDivisor);
std::vector<std::pair<unsigned __int128, unsigned __int128>>
GetRandomIntrinsic128Sample() {
std::vector<std::pair<unsigned __int128, unsigned __int128>> values;
std::mt19937 random = MakeRandomEngine();
UniformIntDistribution128 uniform_uint128;
values.reserve(kSampleSize);
for (size_t i = 0; i < kSampleSize; ++i) {
values.emplace_back(uniform_uint128(random), uniform_uint128(random));
}
return values;
}
void BM_MultiplyIntrinsic128(benchmark::State& state) {
auto values = GetRandomIntrinsic128Sample();
while (state.KeepRunningBatch(values.size())) {
for (const auto& pair : values) {
benchmark::DoNotOptimize(pair.first * pair.second);
}
}
}
BENCHMARK(BM_MultiplyIntrinsic128);
void BM_AddIntrinsic128(benchmark::State& state) {
auto values = GetRandomIntrinsic128Sample();
while (state.KeepRunningBatch(values.size())) {
for (const auto& pair : values) {
benchmark::DoNotOptimize(pair.first + pair.second);
}
}
}
BENCHMARK(BM_AddIntrinsic128);
#endif // ABSL_HAVE_INTRINSIC_INT128
} // namespace

@ -157,6 +157,22 @@ cc_test(
],
)
cc_test(
name = "memutil_benchmark",
srcs = [
"internal/memutil.h",
"internal/memutil_benchmark.cc",
],
copts = ABSL_TEST_COPTS,
tags = ["benchmark"],
visibility = ["//visibility:private"],
deps = [
":strings",
"//absl/base:core_headers",
"@com_github_google_benchmark//:benchmark_main",
],
)
cc_test(
name = "memutil_test",
size = "small",

@ -0,0 +1,323 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/internal/memutil.h"
#include <algorithm>
#include <cstdlib>
#include "benchmark/benchmark.h"
#include "absl/strings/ascii.h"
// We fill the haystack with aaaaaaaaaaaaaaaaaa...aaaab.
// That gives us:
// - an easy search: 'b'
// - a medium search: 'ab'. That means every letter is a possible match.
// - a pathological search: 'aaaaaa.......aaaaab' (half as many a's as haytack)
// We benchmark case-sensitive and case-insensitive versions of
// three memmem implementations:
// - memmem() from memutil.h
// - search() from STL
// - memmatch(), a custom implementation using memchr and memcmp.
// Here are sample results:
//
// Run on (12 X 3800 MHz CPU s)
// CPU Caches:
// L1 Data 32K (x6)
// L1 Instruction 32K (x6)
// L2 Unified 256K (x6)
// L3 Unified 15360K (x1)
// ----------------------------------------------------------------
// Benchmark Time CPU Iterations
// ----------------------------------------------------------------
// BM_Memmem 3583 ns 3582 ns 196469 2.59966GB/s
// BM_MemmemMedium 13743 ns 13742 ns 50901 693.986MB/s
// BM_MemmemPathological 13695030 ns 13693977 ns 51 713.133kB/s
// BM_Memcasemem 3299 ns 3299 ns 212942 2.82309GB/s
// BM_MemcasememMedium 16407 ns 16406 ns 42170 581.309MB/s
// BM_MemcasememPathological 17267745 ns 17266030 ns 41 565.598kB/s
// BM_Search 1610 ns 1609 ns 431321 5.78672GB/s
// BM_SearchMedium 11111 ns 11110 ns 63001 858.414MB/s
// BM_SearchPathological 12117390 ns 12116397 ns 58 805.984kB/s
// BM_Searchcase 3081 ns 3081 ns 229949 3.02313GB/s
// BM_SearchcaseMedium 16003 ns 16001 ns 44170 595.998MB/s
// BM_SearchcasePathological 15823413 ns 15821909 ns 44 617.222kB/s
// BM_Memmatch 197 ns 197 ns 3584225 47.2951GB/s
// BM_MemmatchMedium 52333 ns 52329 ns 13280 182.244MB/s
// BM_MemmatchPathological 659799 ns 659727 ns 1058 14.4556MB/s
// BM_Memcasematch 5460 ns 5460 ns 127606 1.70586GB/s
// BM_MemcasematchMedium 32861 ns 32857 ns 21258 290.248MB/s
// BM_MemcasematchPathological 15154243 ns 15153089 ns 46 644.464kB/s
// BM_MemmemStartup 5 ns 5 ns 150821500
// BM_SearchStartup 5 ns 5 ns 150644203
// BM_MemmatchStartup 7 ns 7 ns 97068802
//
// Conclusions:
//
// The following recommendations are based on the sample results above. However,
// we have found that the performance of STL search can vary significantly
// depending on compiler and standard library implementation. We recommend you
// run the benchmarks for yourself on relevant platforms.
//
// If you need case-insensitive, STL search is slightly better than memmem for
// all cases.
//
// Case-sensitive is more subtle:
// Custom memmatch is _very_ fast at scanning, so if you have very few possible
// matches in your haystack, that's the way to go. Performance drops
// significantly with more matches.
//
// STL search is slightly faster than memmem in the medium and pathological
// benchmarks. However, the performance of memmem is currently more dependable
// across platforms and build configurations.
namespace {
constexpr int kHaystackSize = 10000;
constexpr int64_t kHaystackSize64 = kHaystackSize;
const char* MakeHaystack() {
char* haystack = new char[kHaystackSize];
for (int i = 0; i < kHaystackSize - 1; ++i) haystack[i] = 'a';
haystack[kHaystackSize - 1] = 'b';
return haystack;
}
const char* const kHaystack = MakeHaystack();
void BM_Memmem(benchmark::State& state) {
for (auto _ : state) {
benchmark::DoNotOptimize(
absl::strings_internal::memmem(kHaystack, kHaystackSize, "b", 1));
}
state.SetBytesProcessed(kHaystackSize64 * state.iterations());
}
BENCHMARK(BM_Memmem);
void BM_MemmemMedium(benchmark::State& state) {
for (auto _ : state) {
benchmark::DoNotOptimize(
absl::strings_internal::memmem(kHaystack, kHaystackSize, "ab", 2));
}
state.SetBytesProcessed(kHaystackSize64 * state.iterations());
}
BENCHMARK(BM_MemmemMedium);
void BM_MemmemPathological(benchmark::State& state) {
for (auto _ : state) {
benchmark::DoNotOptimize(absl::strings_internal::memmem(
kHaystack, kHaystackSize, kHaystack + kHaystackSize / 2,
kHaystackSize - kHaystackSize / 2));
}
state.SetBytesProcessed(kHaystackSize64 * state.iterations());
}
BENCHMARK(BM_MemmemPathological);
void BM_Memcasemem(benchmark::State& state) {
for (auto _ : state) {
benchmark::DoNotOptimize(
absl::strings_internal::memcasemem(kHaystack, kHaystackSize, "b", 1));
}
state.SetBytesProcessed(kHaystackSize64 * state.iterations());
}
BENCHMARK(BM_Memcasemem);
void BM_MemcasememMedium(benchmark::State& state) {
for (auto _ : state) {
benchmark::DoNotOptimize(
absl::strings_internal::memcasemem(kHaystack, kHaystackSize, "ab", 2));
}
state.SetBytesProcessed(kHaystackSize64 * state.iterations());
}
BENCHMARK(BM_MemcasememMedium);
void BM_MemcasememPathological(benchmark::State& state) {
for (auto _ : state) {
benchmark::DoNotOptimize(absl::strings_internal::memcasemem(
kHaystack, kHaystackSize, kHaystack + kHaystackSize / 2,
kHaystackSize - kHaystackSize / 2));
}
state.SetBytesProcessed(kHaystackSize64 * state.iterations());
}
BENCHMARK(BM_MemcasememPathological);
bool case_eq(const char a, const char b) {
return absl::ascii_tolower(a) == absl::ascii_tolower(b);
}
void BM_Search(benchmark::State& state) {
for (auto _ : state) {
benchmark::DoNotOptimize(std::search(kHaystack, kHaystack + kHaystackSize,
kHaystack + kHaystackSize - 1,
kHaystack + kHaystackSize));
}
state.SetBytesProcessed(kHaystackSize64 * state.iterations());
}
BENCHMARK(BM_Search);
void BM_SearchMedium(benchmark::State& state) {
for (auto _ : state) {
benchmark::DoNotOptimize(std::search(kHaystack, kHaystack + kHaystackSize,
kHaystack + kHaystackSize - 2,
kHaystack + kHaystackSize));
}
state.SetBytesProcessed(kHaystackSize64 * state.iterations());
}
BENCHMARK(BM_SearchMedium);
void BM_SearchPathological(benchmark::State& state) {
for (auto _ : state) {
benchmark::DoNotOptimize(std::search(kHaystack, kHaystack + kHaystackSize,
kHaystack + kHaystackSize / 2,
kHaystack + kHaystackSize));
}
state.SetBytesProcessed(kHaystackSize64 * state.iterations());
}
BENCHMARK(BM_SearchPathological);
void BM_Searchcase(benchmark::State& state) {
for (auto _ : state) {
benchmark::DoNotOptimize(std::search(kHaystack, kHaystack + kHaystackSize,
kHaystack + kHaystackSize - 1,
kHaystack + kHaystackSize, case_eq));
}
state.SetBytesProcessed(kHaystackSize64 * state.iterations());
}
BENCHMARK(BM_Searchcase);
void BM_SearchcaseMedium(benchmark::State& state) {
for (auto _ : state) {
benchmark::DoNotOptimize(std::search(kHaystack, kHaystack + kHaystackSize,
kHaystack + kHaystackSize - 2,
kHaystack + kHaystackSize, case_eq));
}
state.SetBytesProcessed(kHaystackSize64 * state.iterations());
}
BENCHMARK(BM_SearchcaseMedium);
void BM_SearchcasePathological(benchmark::State& state) {
for (auto _ : state) {
benchmark::DoNotOptimize(std::search(kHaystack, kHaystack + kHaystackSize,
kHaystack + kHaystackSize / 2,
kHaystack + kHaystackSize, case_eq));
}
state.SetBytesProcessed(kHaystackSize64 * state.iterations());
}
BENCHMARK(BM_SearchcasePathological);
char* memcasechr(const char* s, int c, size_t slen) {
c = absl::ascii_tolower(c);
for (; slen; ++s, --slen) {
if (absl::ascii_tolower(*s) == c) return const_cast<char*>(s);
}
return nullptr;
}
const char* memcasematch(const char* phaystack, size_t haylen,
const char* pneedle, size_t neelen) {
if (0 == neelen) {
return phaystack; // even if haylen is 0
}
if (haylen < neelen) return nullptr;
const char* match;
const char* hayend = phaystack + haylen - neelen + 1;
while ((match = static_cast<char*>(
memcasechr(phaystack, pneedle[0], hayend - phaystack)))) {
if (absl::strings_internal::memcasecmp(match, pneedle, neelen) == 0)
return match;
else
phaystack = match + 1;
}
return nullptr;
}
void BM_Memmatch(benchmark::State& state) {
for (auto _ : state) {
benchmark::DoNotOptimize(
absl::strings_internal::memmatch(kHaystack, kHaystackSize, "b", 1));
}
state.SetBytesProcessed(kHaystackSize64 * state.iterations());
}
BENCHMARK(BM_Memmatch);
void BM_MemmatchMedium(benchmark::State& state) {
for (auto _ : state) {
benchmark::DoNotOptimize(
absl::strings_internal::memmatch(kHaystack, kHaystackSize, "ab", 2));
}
state.SetBytesProcessed(kHaystackSize64 * state.iterations());
}
BENCHMARK(BM_MemmatchMedium);
void BM_MemmatchPathological(benchmark::State& state) {
for (auto _ : state) {
benchmark::DoNotOptimize(absl::strings_internal::memmatch(
kHaystack, kHaystackSize, kHaystack + kHaystackSize / 2,
kHaystackSize - kHaystackSize / 2));
}
state.SetBytesProcessed(kHaystackSize64 * state.iterations());
}
BENCHMARK(BM_MemmatchPathological);
void BM_Memcasematch(benchmark::State& state) {
for (auto _ : state) {
benchmark::DoNotOptimize(memcasematch(kHaystack, kHaystackSize, "b", 1));
}
state.SetBytesProcessed(kHaystackSize64 * state.iterations());
}
BENCHMARK(BM_Memcasematch);
void BM_MemcasematchMedium(benchmark::State& state) {
for (auto _ : state) {
benchmark::DoNotOptimize(memcasematch(kHaystack, kHaystackSize, "ab", 2));
}
state.SetBytesProcessed(kHaystackSize64 * state.iterations());
}
BENCHMARK(BM_MemcasematchMedium);
void BM_MemcasematchPathological(benchmark::State& state) {
for (auto _ : state) {
benchmark::DoNotOptimize(memcasematch(kHaystack, kHaystackSize,
kHaystack + kHaystackSize / 2,
kHaystackSize - kHaystackSize / 2));
}
state.SetBytesProcessed(kHaystackSize64 * state.iterations());
}
BENCHMARK(BM_MemcasematchPathological);
void BM_MemmemStartup(benchmark::State& state) {
for (auto _ : state) {
benchmark::DoNotOptimize(absl::strings_internal::memmem(
kHaystack + kHaystackSize - 10, 10, kHaystack + kHaystackSize - 1, 1));
}
}
BENCHMARK(BM_MemmemStartup);
void BM_SearchStartup(benchmark::State& state) {
for (auto _ : state) {
benchmark::DoNotOptimize(
std::search(kHaystack + kHaystackSize - 10, kHaystack + kHaystackSize,
kHaystack + kHaystackSize - 1, kHaystack + kHaystackSize));
}
}
BENCHMARK(BM_SearchStartup);
void BM_MemmatchStartup(benchmark::State& state) {
for (auto _ : state) {
benchmark::DoNotOptimize(absl::strings_internal::memmatch(
kHaystack + kHaystackSize - 10, 10, kHaystack + kHaystackSize - 1, 1));
}
}
BENCHMARK(BM_MemmatchStartup);
} // namespace

@ -93,3 +93,23 @@ cc_test(
"@com_google_googletest//:gtest_main",
],
)
cc_test(
name = "time_benchmark",
srcs = [
"clock_benchmark.cc",
"duration_benchmark.cc",
"format_benchmark.cc",
"time_benchmark.cc",
],
copts = ABSL_TEST_COPTS,
tags = [
"benchmark",
],
deps = [
":test_util",
":time",
"//absl/base",
"@com_github_google_benchmark//:benchmark_main",
],
)

@ -0,0 +1,72 @@
// Copyright 2018 The Abseil Authors.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/time/clock.h"
#if !defined(_WIN32)
#include <sys/time.h>
#endif // _WIN32
#include <cstdio>
#include "absl/base/internal/cycleclock.h"
#include "benchmark/benchmark.h"
namespace {
void BM_Clock_Now_AbslTime(benchmark::State& state) {
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::Now());
}
}
BENCHMARK(BM_Clock_Now_AbslTime);
void BM_Clock_Now_GetCurrentTimeNanos(benchmark::State& state) {
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::GetCurrentTimeNanos());
}
}
BENCHMARK(BM_Clock_Now_GetCurrentTimeNanos);
void BM_Clock_Now_AbslTime_ToUnixNanos(benchmark::State& state) {
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::ToUnixNanos(absl::Now()));
}
}
BENCHMARK(BM_Clock_Now_AbslTime_ToUnixNanos);
void BM_Clock_Now_CycleClock(benchmark::State& state) {
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::base_internal::CycleClock::Now());
}
}
BENCHMARK(BM_Clock_Now_CycleClock);
#if !defined(_WIN32)
static void BM_Clock_Now_gettimeofday(benchmark::State& state) {
struct timeval tv;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(gettimeofday(&tv, nullptr));
}
}
BENCHMARK(BM_Clock_Now_gettimeofday);
static void BM_Clock_Now_clock_gettime(benchmark::State& state) {
struct timespec ts;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(clock_gettime(CLOCK_REALTIME, &ts));
}
}
BENCHMARK(BM_Clock_Now_clock_gettime);
#endif // _WIN32
} // namespace

@ -0,0 +1,361 @@
// Copyright 2018 The Abseil Authors.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <ctime>
#include <string>
#include "absl/time/time.h"
#include "benchmark/benchmark.h"
namespace {
//
// Factory functions
//
void BM_Duration_Factory_Nanoseconds(benchmark::State& state) {
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::Nanoseconds(1));
}
}
BENCHMARK(BM_Duration_Factory_Nanoseconds);
void BM_Duration_Factory_Microseconds(benchmark::State& state) {
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::Microseconds(1));
}
}
BENCHMARK(BM_Duration_Factory_Microseconds);
void BM_Duration_Factory_Milliseconds(benchmark::State& state) {
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::Milliseconds(1));
}
}
BENCHMARK(BM_Duration_Factory_Milliseconds);
void BM_Duration_Factory_Seconds(benchmark::State& state) {
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::Seconds(1));
}
}
BENCHMARK(BM_Duration_Factory_Seconds);
void BM_Duration_Factory_Minutes(benchmark::State& state) {
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::Minutes(1));
}
}
BENCHMARK(BM_Duration_Factory_Minutes);
void BM_Duration_Factory_Hours(benchmark::State& state) {
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::Hours(1));
}
}
BENCHMARK(BM_Duration_Factory_Hours);
//
// Arithmetic
//
void BM_Duration_Addition(benchmark::State& state) {
absl::Duration d = absl::Nanoseconds(1);
absl::Duration step = absl::Milliseconds(1);
while (state.KeepRunning()) {
benchmark::DoNotOptimize(d += step);
}
}
BENCHMARK(BM_Duration_Addition);
void BM_Duration_Subtraction(benchmark::State& state) {
absl::Duration d = absl::Seconds(std::numeric_limits<int64_t>::max());
absl::Duration step = absl::Milliseconds(1);
while (state.KeepRunning()) {
benchmark::DoNotOptimize(d -= step);
}
}
BENCHMARK(BM_Duration_Subtraction);
void BM_Duration_Multiplication_Fixed(benchmark::State& state) {
absl::Duration d = absl::Milliseconds(1);
absl::Duration s;
int i = 0;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(s += d * (i + 1));
++i;
}
}
BENCHMARK(BM_Duration_Multiplication_Fixed);
void BM_Duration_Multiplication_Double(benchmark::State& state) {
absl::Duration d = absl::Milliseconds(1);
absl::Duration s;
int i = 0;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(s += d * (i + 1.0));
++i;
}
}
BENCHMARK(BM_Duration_Multiplication_Double);
void BM_Duration_Division_Fixed(benchmark::State& state) {
absl::Duration d = absl::Seconds(1);
int i = 0;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(d /= i + 1);
++i;
}
}
BENCHMARK(BM_Duration_Division_Fixed);
void BM_Duration_Division_Double(benchmark::State& state) {
absl::Duration d = absl::Seconds(1);
int i = 0;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(d /= i + 1.0);
++i;
}
}
BENCHMARK(BM_Duration_Division_Double);
void BM_Duration_FDivDuration_Nanoseconds(benchmark::State& state) {
double d = 1;
int i = 0;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(
d += absl::FDivDuration(absl::Milliseconds(i), absl::Nanoseconds(1)));
++i;
}
}
BENCHMARK(BM_Duration_FDivDuration_Nanoseconds);
void BM_Duration_IDivDuration_Nanoseconds(benchmark::State& state) {
int64_t a = 1;
absl::Duration ignore;
int i = 0;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(a +=
absl::IDivDuration(absl::Nanoseconds(i),
absl::Nanoseconds(1), &ignore));
++i;
}
}
BENCHMARK(BM_Duration_IDivDuration_Nanoseconds);
void BM_Duration_IDivDuration_Microseconds(benchmark::State& state) {
int64_t a = 1;
absl::Duration ignore;
int i = 0;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(a += absl::IDivDuration(absl::Microseconds(i),
absl::Microseconds(1),
&ignore));
++i;
}
}
BENCHMARK(BM_Duration_IDivDuration_Microseconds);
void BM_Duration_IDivDuration_Milliseconds(benchmark::State& state) {
int64_t a = 1;
absl::Duration ignore;
int i = 0;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(a += absl::IDivDuration(absl::Milliseconds(i),
absl::Milliseconds(1),
&ignore));
++i;
}
}
BENCHMARK(BM_Duration_IDivDuration_Milliseconds);
void BM_Duration_IDivDuration_Seconds(benchmark::State& state) {
int64_t a = 1;
absl::Duration ignore;
int i = 0;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(
a += absl::IDivDuration(absl::Seconds(i), absl::Seconds(1), &ignore));
++i;
}
}
BENCHMARK(BM_Duration_IDivDuration_Seconds);
void BM_Duration_IDivDuration_Minutes(benchmark::State& state) {
int64_t a = 1;
absl::Duration ignore;
int i = 0;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(
a += absl::IDivDuration(absl::Minutes(i), absl::Minutes(1), &ignore));
++i;
}
}
BENCHMARK(BM_Duration_IDivDuration_Minutes);
void BM_Duration_IDivDuration_Hours(benchmark::State& state) {
int64_t a = 1;
absl::Duration ignore;
int i = 0;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(
a += absl::IDivDuration(absl::Hours(i), absl::Hours(1), &ignore));
++i;
}
}
BENCHMARK(BM_Duration_IDivDuration_Hours);
void BM_Duration_ToInt64Nanoseconds(benchmark::State& state) {
absl::Duration d = absl::Seconds(100000);
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::ToInt64Nanoseconds(d));
}
}
BENCHMARK(BM_Duration_ToInt64Nanoseconds);
void BM_Duration_ToInt64Microseconds(benchmark::State& state) {
absl::Duration d = absl::Seconds(100000);
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::ToInt64Microseconds(d));
}
}
BENCHMARK(BM_Duration_ToInt64Microseconds);
void BM_Duration_ToInt64Milliseconds(benchmark::State& state) {
absl::Duration d = absl::Seconds(100000);
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::ToInt64Milliseconds(d));
}
}
BENCHMARK(BM_Duration_ToInt64Milliseconds);
void BM_Duration_ToInt64Seconds(benchmark::State& state) {
absl::Duration d = absl::Seconds(100000);
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::ToInt64Seconds(d));
}
}
BENCHMARK(BM_Duration_ToInt64Seconds);
void BM_Duration_ToInt64Minutes(benchmark::State& state) {
absl::Duration d = absl::Seconds(100000);
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::ToInt64Minutes(d));
}
}
BENCHMARK(BM_Duration_ToInt64Minutes);
void BM_Duration_ToInt64Hours(benchmark::State& state) {
absl::Duration d = absl::Seconds(100000);
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::ToInt64Hours(d));
}
}
BENCHMARK(BM_Duration_ToInt64Hours);
//
// To/FromTimespec
//
void BM_Duration_ToTimespec_AbslTime(benchmark::State& state) {
absl::Duration d = absl::Seconds(1);
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::ToTimespec(d));
}
}
BENCHMARK(BM_Duration_ToTimespec_AbslTime);
ABSL_ATTRIBUTE_NOINLINE timespec DoubleToTimespec(double seconds) {
timespec ts;
ts.tv_sec = seconds;
ts.tv_nsec = (seconds - ts.tv_sec) * (1000 * 1000 * 1000);
return ts;
}
void BM_Duration_ToTimespec_Double(benchmark::State& state) {
while (state.KeepRunning()) {
benchmark::DoNotOptimize(DoubleToTimespec(1.0));
}
}
BENCHMARK(BM_Duration_ToTimespec_Double);
void BM_Duration_FromTimespec_AbslTime(benchmark::State& state) {
timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = 0;
while (state.KeepRunning()) {
if (++ts.tv_nsec == 1000 * 1000 * 1000) {
++ts.tv_sec;
ts.tv_nsec = 0;
}
benchmark::DoNotOptimize(absl::DurationFromTimespec(ts));
}
}
BENCHMARK(BM_Duration_FromTimespec_AbslTime);
ABSL_ATTRIBUTE_NOINLINE double TimespecToDouble(timespec ts) {
return ts.tv_sec + (ts.tv_nsec / (1000 * 1000 * 1000));
}
void BM_Duration_FromTimespec_Double(benchmark::State& state) {
timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = 0;
while (state.KeepRunning()) {
if (++ts.tv_nsec == 1000 * 1000 * 1000) {
++ts.tv_sec;
ts.tv_nsec = 0;
}
benchmark::DoNotOptimize(TimespecToDouble(ts));
}
}
BENCHMARK(BM_Duration_FromTimespec_Double);
//
// String conversions
//
const char* const kDurations[] = {
"0", // 0
"123ns", // 1
"1h2m3s", // 2
"-2h3m4.005006007s", // 3
"2562047788015215h30m7.99999999975s", // 4
};
const int kNumDurations = sizeof(kDurations) / sizeof(kDurations[0]);
void BM_Duration_FormatDuration(benchmark::State& state) {
const std::string s = kDurations[state.range(0)];
state.SetLabel(s);
absl::Duration d;
absl::ParseDuration(kDurations[state.range(0)], &d);
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::FormatDuration(d));
}
}
BENCHMARK(BM_Duration_FormatDuration)->DenseRange(0, kNumDurations - 1);
void BM_Duration_ParseDuration(benchmark::State& state) {
const std::string s = kDurations[state.range(0)];
state.SetLabel(s);
absl::Duration d;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::ParseDuration(s, &d));
}
}
BENCHMARK(BM_Duration_ParseDuration)->DenseRange(0, kNumDurations - 1);
} // namespace

@ -330,18 +330,10 @@ TEST(Duration, ToChrono) {
EXPECT_EQ(hours::max(), absl::ToChronoHours(inf));
}
// Used for testing the factory overloads.
template <typename T>
struct ImplicitlyConvertible {
T n_;
explicit ImplicitlyConvertible(T n) : n_(n) {}
// Marking this conversion operator with 'explicit' will cause the test to
// fail (as desired).
operator T() { return n_; }
};
TEST(Duration, FactoryOverloads) {
enum E { kOne = 1 };
#define TEST_FACTORY_OVERLOADS(NAME) \
EXPECT_EQ(1, NAME(kOne) / NAME(kOne)); \
EXPECT_EQ(1, NAME(static_cast<int8_t>(1)) / NAME(1)); \
EXPECT_EQ(1, NAME(static_cast<int16_t>(1)) / NAME(1)); \
EXPECT_EQ(1, NAME(static_cast<int32_t>(1)) / NAME(1)); \
@ -350,14 +342,6 @@ TEST(Duration, FactoryOverloads) {
EXPECT_EQ(1, NAME(static_cast<uint16_t>(1)) / NAME(1)); \
EXPECT_EQ(1, NAME(static_cast<uint32_t>(1)) / NAME(1)); \
EXPECT_EQ(1, NAME(static_cast<uint64_t>(1)) / NAME(1)); \
EXPECT_EQ(1, NAME(ImplicitlyConvertible<int8_t>(1)) / NAME(1)); \
EXPECT_EQ(1, NAME(ImplicitlyConvertible<int16_t>(1)) / NAME(1)); \
EXPECT_EQ(1, NAME(ImplicitlyConvertible<int32_t>(1)) / NAME(1)); \
EXPECT_EQ(1, NAME(ImplicitlyConvertible<int64_t>(1)) / NAME(1)); \
EXPECT_EQ(1, NAME(ImplicitlyConvertible<uint8_t>(1)) / NAME(1)); \
EXPECT_EQ(1, NAME(ImplicitlyConvertible<uint16_t>(1)) / NAME(1)); \
EXPECT_EQ(1, NAME(ImplicitlyConvertible<uint32_t>(1)) / NAME(1)); \
EXPECT_EQ(1, NAME(ImplicitlyConvertible<uint64_t>(1)) / NAME(1)); \
EXPECT_EQ(NAME(1) / 2, NAME(static_cast<float>(0.5))); \
EXPECT_EQ(NAME(1) / 2, NAME(static_cast<double>(0.5))); \
EXPECT_EQ(1.5, absl::FDivDuration(NAME(static_cast<float>(1.5)), NAME(1))); \

@ -0,0 +1,63 @@
// Copyright 2018 The Abseil Authors.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cstddef>
#include <string>
#include "absl/time/internal/test_util.h"
#include "absl/time/time.h"
#include "benchmark/benchmark.h"
namespace {
namespace {
const char* const kFormats[] = {
absl::RFC1123_full, // 0
absl::RFC1123_no_wday, // 1
absl::RFC3339_full, // 2
absl::RFC3339_sec, // 3
"%Y-%m-%dT%H:%M:%S", // 4
"%Y-%m-%d", // 5
};
const int kNumFormats = sizeof(kFormats) / sizeof(kFormats[0]);
} // namespace
void BM_Format_FormatTime(benchmark::State& state) {
const std::string fmt = kFormats[state.range(0)];
state.SetLabel(fmt);
const absl::TimeZone lax =
absl::time_internal::LoadTimeZone("America/Los_Angeles");
const absl::Time t =
absl::FromDateTime(1977, 6, 28, 9, 8, 7, lax) + absl::Nanoseconds(1);
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::FormatTime(fmt, t, lax).length());
}
}
BENCHMARK(BM_Format_FormatTime)->DenseRange(0, kNumFormats - 1);
void BM_Format_ParseTime(benchmark::State& state) {
const std::string fmt = kFormats[state.range(0)];
state.SetLabel(fmt);
const absl::TimeZone lax =
absl::time_internal::LoadTimeZone("America/Los_Angeles");
absl::Time t =
absl::FromDateTime(1977, 6, 28, 9, 8, 7, lax) + absl::Nanoseconds(1);
const std::string when = absl::FormatTime(fmt, t, lax);
std::string err;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::ParseTime(fmt, when, lax, &t, &err));
}
}
BENCHMARK(BM_Format_ParseTime)->DenseRange(0, kNumFormats - 1);
} // namespace

@ -463,13 +463,12 @@ TEST(Format, ExtendedSecondOffset) {
EXPECT_TRUE(load_time_zone("Europe/Moscow", &tz));
tp = convert(civil_second(1919, 6, 30, 23, 59, 59), utc);
if (tz.lookup(tp).offset == 4 * 60 * 60) {
// We're likely dealing with zoneinfo that doesn't support really old
// timestamps, so Europe/Moscow never looks to be on local mean time.
} else {
TestFormatSpecifier(tp, tz, "%E*z", "+04:31:19");
TestFormatSpecifier(tp, tz, "%Ez", "+04:31");
}
#if defined(__ANDROID__) && __ANDROID_API__ < 25
// Only Android 'N'.1 and beyond have this tz2016g transition.
#else
TestFormatSpecifier(tp, tz, "%E*z", "+04:31:19");
TestFormatSpecifier(tp, tz, "%Ez", "+04:31");
#endif
tp += seconds(1);
TestFormatSpecifier(tp, tz, "%E*z", "+04:00:00");
}

@ -693,7 +693,14 @@ TEST(TimeZones, LoadZonesConcurrently) {
// Allow a small number of failures to account for skew between
// the contents of kTimeZoneNames and the zoneinfo data source.
#if defined(__ANDROID__)
// Cater to the possibility of using an even older zoneinfo data
// source when running on Android, where it is difficult to override
// the bionic tzdata provided by the test environment.
const std::size_t max_failures = 20;
#else
const std::size_t max_failures = 3;
#endif
std::set<std::string> failures;
for (const auto& thread_failure : thread_failures) {
failures.insert(thread_failure.begin(), thread_failure.end());
@ -839,7 +846,7 @@ TEST(TimeZoneImpl, LocalTimeInFixed) {
const time_zone tz = fixed_time_zone(offset);
const auto tp = system_clock::from_time_t(0);
ExpectTime(tp, tz, 1969, 12, 31, 15, 26, 13, offset.count(), false,
"UTC-083347");
"-083347");
EXPECT_EQ(weekday::wednesday, get_weekday(civil_day(convert(tp, tz))));
}
@ -1098,6 +1105,9 @@ TEST(TimeZoneEdgeCase, PacificApia) {
TEST(TimeZoneEdgeCase, AfricaCairo) {
const time_zone tz = LoadZone("Africa/Cairo");
#if defined(__ANDROID__) && __ANDROID_API__ < 21
// Only Android 'L' and beyond have this tz2014c transition.
#else
// An interesting case of midnight not existing.
//
// 1400191199 == Thu, 15 May 2014 23:59:59 +0200 (EET)
@ -1106,11 +1116,15 @@ TEST(TimeZoneEdgeCase, AfricaCairo) {
ExpectTime(tp, tz, 2014, 5, 15, 23, 59, 59, 2 * 3600, false, "EET");
tp += seconds(1);
ExpectTime(tp, tz, 2014, 5, 16, 1, 0, 0, 3 * 3600, true, "EEST");
#endif
}
TEST(TimeZoneEdgeCase, AfricaMonrovia) {
const time_zone tz = LoadZone("Africa/Monrovia");
#if defined(__ANDROID__) && __ANDROID_API__ < 26
// Only Android 'O' and beyond have this tz2017b transition.
#else
// Strange offset change -00:44:30 -> +00:00:00 (non-DST)
//
// 63593069 == Thu, 6 Jan 1972 23:59:59 -0044 (MMT)
@ -1119,6 +1133,7 @@ TEST(TimeZoneEdgeCase, AfricaMonrovia) {
ExpectTime(tp, tz, 1972, 1, 6, 23, 59, 59, -44.5 * 60, false, "MMT");
tp += seconds(1);
ExpectTime(tp, tz, 1972, 1, 7, 0, 44, 30, 0 * 60, false, "GMT");
#endif
}
TEST(TimeZoneEdgeCase, AmericaJamaica) {

@ -82,8 +82,15 @@ constexpr Duration MakeDuration(int64_t hi, uint32_t lo);
constexpr Duration MakeDuration(int64_t hi, int64_t lo);
constexpr int64_t kTicksPerNanosecond = 4;
constexpr int64_t kTicksPerSecond = 1000 * 1000 * 1000 * kTicksPerNanosecond;
template <std::intmax_t N>
constexpr Duration FromInt64(int64_t v, std::ratio<1, N>);
constexpr Duration FromInt64(int64_t v, std::ratio<60>);
constexpr Duration FromInt64(int64_t v, std::ratio<3600>);
template <typename T>
using EnableIfIntegral = typename std::enable_if<
std::is_integral<T>::value || std::is_enum<T>::value, int>::type;
template <typename T>
using IsFloatingPoint =
using EnableIfFloat =
typename std::enable_if<std::is_floating_point<T>::value, int>::type;
} // namespace time_internal
@ -178,15 +185,15 @@ inline Duration operator-(Duration lhs, Duration rhs) { return lhs -= rhs; }
// Multiplicative Operators
template <typename T>
inline Duration operator*(Duration lhs, T rhs) {
Duration operator*(Duration lhs, T rhs) {
return lhs *= rhs;
}
template <typename T>
inline Duration operator*(T lhs, Duration rhs) {
Duration operator*(T lhs, Duration rhs) {
return rhs *= lhs;
}
template <typename T>
inline Duration operator/(Duration lhs, T rhs) {
Duration operator/(Duration lhs, T rhs) {
return lhs /= rhs;
}
inline int64_t operator/(Duration lhs, Duration rhs) {
@ -322,27 +329,27 @@ constexpr Duration Hours(int64_t n);
// Example:
// auto a = absl::Seconds(1.5); // OK
// auto b = absl::Milliseconds(1500); // BETTER
template <typename T, time_internal::IsFloatingPoint<T> = 0>
template <typename T, time_internal::EnableIfFloat<T> = 0>
Duration Nanoseconds(T n) {
return n * Nanoseconds(1);
}
template <typename T, time_internal::IsFloatingPoint<T> = 0>
template <typename T, time_internal::EnableIfFloat<T> = 0>
Duration Microseconds(T n) {
return n * Microseconds(1);
}
template <typename T, time_internal::IsFloatingPoint<T> = 0>
template <typename T, time_internal::EnableIfFloat<T> = 0>
Duration Milliseconds(T n) {
return n * Milliseconds(1);
}
template <typename T, time_internal::IsFloatingPoint<T> = 0>
template <typename T, time_internal::EnableIfFloat<T> = 0>
Duration Seconds(T n) {
return n * Seconds(1);
}
template <typename T, time_internal::IsFloatingPoint<T> = 0>
template <typename T, time_internal::EnableIfFloat<T> = 0>
Duration Minutes(T n) {
return n * Minutes(1);
}
template <typename T, time_internal::IsFloatingPoint<T> = 0>
template <typename T, time_internal::EnableIfFloat<T> = 0>
Duration Hours(T n) {
return n * Hours(1);
}
@ -1154,10 +1161,16 @@ constexpr Duration FromInt64(int64_t v, std::ratio<1, N>) {
v / N, v % N * kTicksPerNanosecond * 1000 * 1000 * 1000 / N);
}
constexpr Duration FromInt64(int64_t v, std::ratio<60>) {
return Minutes(v);
return (v <= std::numeric_limits<int64_t>::max() / 60 &&
v >= std::numeric_limits<int64_t>::min() / 60)
? MakeDuration(v * 60)
: v > 0 ? InfiniteDuration() : -InfiniteDuration();
}
constexpr Duration FromInt64(int64_t v, std::ratio<3600>) {
return Hours(v);
return (v <= std::numeric_limits<int64_t>::max() / 3600 &&
v >= std::numeric_limits<int64_t>::min() / 3600)
? MakeDuration(v * 3600)
: v > 0 ? InfiniteDuration() : -InfiniteDuration();
}
// IsValidRep64<T>(0) is true if the expression `int64_t{std::declval<T>()}` is
@ -1220,6 +1233,24 @@ T ToChronoDuration(Duration d) {
}
} // namespace time_internal
constexpr Duration Nanoseconds(int64_t n) {
return time_internal::FromInt64(n, std::nano{});
}
constexpr Duration Microseconds(int64_t n) {
return time_internal::FromInt64(n, std::micro{});
}
constexpr Duration Milliseconds(int64_t n) {
return time_internal::FromInt64(n, std::milli{});
}
constexpr Duration Seconds(int64_t n) {
return time_internal::FromInt64(n, std::ratio<1>{});
}
constexpr Duration Minutes(int64_t n) {
return time_internal::FromInt64(n, std::ratio<60>{});
}
constexpr Duration Hours(int64_t n) {
return time_internal::FromInt64(n, std::ratio<3600>{});
}
constexpr bool operator<(Duration lhs, Duration rhs) {
return time_internal::GetRepHi(lhs) != time_internal::GetRepHi(rhs)
@ -1261,39 +1292,6 @@ constexpr Duration operator-(Duration d) {
time_internal::GetRepLo(d));
}
constexpr Duration Nanoseconds(int64_t n) {
return time_internal::MakeNormalizedDuration(
n / (1000 * 1000 * 1000),
n % (1000 * 1000 * 1000) * time_internal::kTicksPerNanosecond);
}
constexpr Duration Microseconds(int64_t n) {
return time_internal::MakeNormalizedDuration(
n / (1000 * 1000),
n % (1000 * 1000) * (1000 * time_internal::kTicksPerNanosecond));
}
constexpr Duration Milliseconds(int64_t n) {
return time_internal::MakeNormalizedDuration(
n / 1000, n % 1000 * (1000 * 1000 * time_internal::kTicksPerNanosecond));
}
constexpr Duration Seconds(int64_t n) { return time_internal::MakeDuration(n); }
constexpr Duration Minutes(int64_t n) {
return (n <= std::numeric_limits<int64_t>::max() / 60 &&
n >= std::numeric_limits<int64_t>::min() / 60)
? time_internal::MakeDuration(n * 60)
: n > 0 ? InfiniteDuration() : -InfiniteDuration();
}
constexpr Duration Hours(int64_t n) {
return (n <= std::numeric_limits<int64_t>::max() / 3600 &&
n >= std::numeric_limits<int64_t>::min() / 3600)
? time_internal::MakeDuration(n * 3600)
: n > 0 ? InfiniteDuration() : -InfiniteDuration();
}
constexpr Duration InfiniteDuration() {
return time_internal::MakeDuration(std::numeric_limits<int64_t>::max(), ~0U);
}

@ -0,0 +1,316 @@
// Copyright 2018 The Abseil Authors.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/time/time.h"
#if !defined(_WIN32)
#include <sys/time.h>
#endif // _WIN32
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstring>
#include <ctime>
#include <memory>
#include <string>
#include "absl/time/clock.h"
#include "absl/time/internal/test_util.h"
#include "benchmark/benchmark.h"
namespace {
//
// Addition/Subtraction of a duration
//
void BM_Time_Arithmetic(benchmark::State& state) {
const absl::Duration nano = absl::Nanoseconds(1);
const absl::Duration sec = absl::Seconds(1);
absl::Time t = absl::UnixEpoch();
while (state.KeepRunning()) {
benchmark::DoNotOptimize(t += nano);
benchmark::DoNotOptimize(t -= sec);
}
}
BENCHMARK(BM_Time_Arithmetic);
//
// Time difference
//
void BM_Time_Difference(benchmark::State& state) {
absl::Time start = absl::Now();
absl::Time end = start + absl::Nanoseconds(1);
absl::Duration diff;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(diff += end - start);
}
}
BENCHMARK(BM_Time_Difference);
//
// ToDateTime
//
// In each "ToDateTime" benchmark we switch between two instants
// separated by at least one transition in order to defeat any
// internal caching of previous results (e.g., see local_time_hint_).
//
// The "UTC" variants use UTC instead of the Google/local time zone.
//
void BM_Time_ToDateTime_Absl(benchmark::State& state) {
const absl::TimeZone tz =
absl::time_internal::LoadTimeZone("America/Los_Angeles");
absl::Time t = absl::FromUnixSeconds(1384569027);
absl::Time t2 = absl::FromUnixSeconds(1418962578);
while (state.KeepRunning()) {
std::swap(t, t2);
t += absl::Seconds(1);
benchmark::DoNotOptimize(t.In(tz));
}
}
BENCHMARK(BM_Time_ToDateTime_Absl);
void BM_Time_ToDateTime_Libc(benchmark::State& state) {
// No timezone support, so just use localtime.
time_t t = 1384569027;
time_t t2 = 1418962578;
while (state.KeepRunning()) {
std::swap(t, t2);
t += 1;
struct tm tm;
#if !defined(_WIN32)
benchmark::DoNotOptimize(localtime_r(&t, &tm));
#else // _WIN32
benchmark::DoNotOptimize(localtime_s(&tm, &t));
#endif // _WIN32
}
}
BENCHMARK(BM_Time_ToDateTime_Libc);
void BM_Time_ToDateTimeUTC_Absl(benchmark::State& state) {
const absl::TimeZone tz = absl::UTCTimeZone();
absl::Time t = absl::FromUnixSeconds(1384569027);
while (state.KeepRunning()) {
t += absl::Seconds(1);
benchmark::DoNotOptimize(t.In(tz));
}
}
BENCHMARK(BM_Time_ToDateTimeUTC_Absl);
void BM_Time_ToDateTimeUTC_Libc(benchmark::State& state) {
time_t t = 1384569027;
while (state.KeepRunning()) {
t += 1;
struct tm tm;
#if !defined(_WIN32)
benchmark::DoNotOptimize(gmtime_r(&t, &tm));
#else // _WIN32
benchmark::DoNotOptimize(gmtime_s(&tm, &t));
#endif // _WIN32
}
}
BENCHMARK(BM_Time_ToDateTimeUTC_Libc);
//
// FromUnixMicros
//
void BM_Time_FromUnixMicros(benchmark::State& state) {
int i = 0;
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::FromUnixMicros(i));
++i;
}
}
BENCHMARK(BM_Time_FromUnixMicros);
void BM_Time_ToUnixNanos(benchmark::State& state) {
const absl::Time t = absl::UnixEpoch() + absl::Seconds(123);
while (state.KeepRunning()) {
benchmark::DoNotOptimize(ToUnixNanos(t));
}
}
BENCHMARK(BM_Time_ToUnixNanos);
void BM_Time_ToUnixMicros(benchmark::State& state) {
const absl::Time t = absl::UnixEpoch() + absl::Seconds(123);
while (state.KeepRunning()) {
benchmark::DoNotOptimize(ToUnixMicros(t));
}
}
BENCHMARK(BM_Time_ToUnixMicros);
void BM_Time_ToUnixMillis(benchmark::State& state) {
const absl::Time t = absl::UnixEpoch() + absl::Seconds(123);
while (state.KeepRunning()) {
benchmark::DoNotOptimize(ToUnixMillis(t));
}
}
BENCHMARK(BM_Time_ToUnixMillis);
void BM_Time_ToUnixSeconds(benchmark::State& state) {
const absl::Time t = absl::UnixEpoch() + absl::Seconds(123);
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::ToUnixSeconds(t));
}
}
BENCHMARK(BM_Time_ToUnixSeconds);
//
// FromDateTime
//
// In each "FromDateTime" benchmark we switch between two YMDhms
// values separated by at least one transition in order to defeat any
// internal caching of previous results (e.g., see time_local_hint_).
//
// The "UTC" variants use UTC instead of the Google/local time zone.
// The "Day0" variants require normalization of the day of month.
//
void BM_Time_FromDateTime_Absl(benchmark::State& state) {
const absl::TimeZone tz =
absl::time_internal::LoadTimeZone("America/Los_Angeles");
int i = 0;
while (state.KeepRunning()) {
if ((i & 1) == 0) {
absl::FromDateTime(2014, 12, 18, 20, 16, 18, tz);
} else {
absl::FromDateTime(2013, 11, 15, 18, 30, 27, tz);
}
++i;
}
}
BENCHMARK(BM_Time_FromDateTime_Absl);
void BM_Time_FromDateTime_Libc(benchmark::State& state) {
// No timezone support, so just use localtime.
int i = 0;
while (state.KeepRunning()) {
struct tm tm;
if ((i & 1) == 0) {
tm.tm_year = 2014 - 1900;
tm.tm_mon = 12 - 1;
tm.tm_mday = 18;
tm.tm_hour = 20;
tm.tm_min = 16;
tm.tm_sec = 18;
} else {
tm.tm_year = 2013 - 1900;
tm.tm_mon = 11 - 1;
tm.tm_mday = 15;
tm.tm_hour = 18;
tm.tm_min = 30;
tm.tm_sec = 27;
}
tm.tm_isdst = -1;
mktime(&tm);
++i;
}
}
BENCHMARK(BM_Time_FromDateTime_Libc);
void BM_Time_FromDateTimeUTC_Absl(benchmark::State& state) {
const absl::TimeZone tz = absl::UTCTimeZone();
while (state.KeepRunning()) {
FromDateTime(2014, 12, 18, 20, 16, 18, tz);
}
}
BENCHMARK(BM_Time_FromDateTimeUTC_Absl);
void BM_Time_FromDateTimeDay0_Absl(benchmark::State& state) {
const absl::TimeZone tz =
absl::time_internal::LoadTimeZone("America/Los_Angeles");
int i = 0;
while (state.KeepRunning()) {
if ((i & 1) == 0) {
absl::FromDateTime(2014, 12, 0, 20, 16, 18, tz);
} else {
absl::FromDateTime(2013, 11, 0, 18, 30, 27, tz);
}
++i;
}
}
BENCHMARK(BM_Time_FromDateTimeDay0_Absl);
void BM_Time_FromDateTimeDay0_Libc(benchmark::State& state) {
// No timezone support, so just use localtime.
int i = 0;
while (state.KeepRunning()) {
struct tm tm;
if ((i & 1) == 0) {
tm.tm_year = 2014 - 1900;
tm.tm_mon = 12 - 1;
tm.tm_mday = 0;
tm.tm_hour = 20;
tm.tm_min = 16;
tm.tm_sec = 18;
} else {
tm.tm_year = 2013 - 1900;
tm.tm_mon = 11 - 1;
tm.tm_mday = 0;
tm.tm_hour = 18;
tm.tm_min = 30;
tm.tm_sec = 27;
}
tm.tm_isdst = -1;
mktime(&tm);
++i;
}
}
BENCHMARK(BM_Time_FromDateTimeDay0_Libc);
//
// To/FromTimespec
//
void BM_Time_ToTimespec(benchmark::State& state) {
absl::Time now = absl::Now();
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::ToTimespec(now));
}
}
BENCHMARK(BM_Time_ToTimespec);
void BM_Time_FromTimespec(benchmark::State& state) {
timespec ts = absl::ToTimespec(absl::Now());
while (state.KeepRunning()) {
if (++ts.tv_nsec == 1000 * 1000 * 1000) {
++ts.tv_sec;
ts.tv_nsec = 0;
}
benchmark::DoNotOptimize(absl::TimeFromTimespec(ts));
}
}
BENCHMARK(BM_Time_FromTimespec);
//
// Comparison with InfiniteFuture/Past
//
void BM_Time_InfiniteFuture(benchmark::State& state) {
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::InfiniteFuture());
}
}
BENCHMARK(BM_Time_InfiniteFuture);
void BM_Time_InfinitePast(benchmark::State& state) {
while (state.KeepRunning()) {
benchmark::DoNotOptimize(absl::InfinitePast());
}
}
BENCHMARK(BM_Time_InfinitePast);
} // namespace

@ -28,7 +28,7 @@ licenses(["notice"]) # Apache 2.0
cc_library(
name = "any",
hdrs = ["any.h"],
copts = ABSL_DEFAULT_COPTS + ABSL_EXCEPTIONS_FLAG,
copts = ABSL_DEFAULT_COPTS,
deps = [
":bad_any_cast",
"//absl/base:config",
@ -40,9 +40,19 @@ cc_library(
cc_library(
name = "bad_any_cast",
srcs = ["bad_any_cast.cc"],
hdrs = ["bad_any_cast.h"],
copts = ABSL_DEFAULT_COPTS,
deps = [":bad_any_cast_impl"],
)
cc_library(
name = "bad_any_cast_impl",
srcs = [
"bad_any_cast.cc",
"bad_any_cast.h",
],
copts = ABSL_EXCEPTIONS_FLAG + ABSL_DEFAULT_COPTS,
visibility = ["//visibility:private"],
deps = [
"//absl/base",
"//absl/base:config",
@ -206,7 +216,6 @@ cc_test(
],
)
cc_library(
name = "variant",
srcs = ["internal/variant.h"],

@ -170,25 +170,22 @@ TEST(OptionalExceptionSafety, EverythingThrowsSwap) {
TEST(OptionalExceptionSafety, NoThrowMoveSwap) {
// Tests the nothrow guarantee for optional of T with non-throwing move
auto nothrow_test =
MakeExceptionSafetyTester().WithInvariants(testing::nothrow_guarantee);
auto nothrow_test_empty = nothrow_test.WithInitialValue(MoveOptional());
auto nothrow_test_nonempty =
nothrow_test.WithInitialValue(MoveOptional(kInitialInteger));
auto swap_empty = [](MoveOptional* optional_ptr) {
{
auto empty = MoveOptional();
optional_ptr->swap(empty);
};
EXPECT_TRUE(nothrow_test_nonempty.Test(swap_empty));
auto swap_nonempty = [](MoveOptional* optional_ptr) {
auto nonempty =
MoveOptional(absl::in_place, kUpdatedInteger, testing::nothrow_ctor);
optional_ptr->swap(nonempty);
};
EXPECT_TRUE(nothrow_test_empty.Test(swap_nonempty));
EXPECT_TRUE(nothrow_test_nonempty.Test(swap_nonempty));
auto nonempty = MoveOptional(kInitialInteger);
EXPECT_TRUE(testing::TestNothrowOp([&]() { nonempty.swap(empty); }));
}
{
auto nonempty = MoveOptional(kUpdatedInteger);
auto empty = MoveOptional();
EXPECT_TRUE(testing::TestNothrowOp([&]() { empty.swap(nonempty); }));
}
{
auto nonempty_from = MoveOptional(kUpdatedInteger);
auto nonempty_to = MoveOptional(kInitialInteger);
EXPECT_TRUE(
testing::TestNothrowOp([&]() { nonempty_to.swap(nonempty_from); }));
}
}
TEST(OptionalExceptionSafety, CopyAssign) {
@ -251,32 +248,33 @@ TEST(OptionalExceptionSafety, MoveAssign) {
TEST(OptionalExceptionSafety, NothrowMoveAssign) {
// Tests the nothrow guarantee for optional of T with non-throwing move
auto nothrow_test =
MakeExceptionSafetyTester().WithInvariants(testing::nothrow_guarantee);
auto nothrow_test_empty = nothrow_test.WithInitialValue(MoveOptional());
auto nothrow_test_nonempty =
nothrow_test.WithInitialValue(MoveOptional(kInitialInteger));
auto moveassign_empty = [](MoveOptional* optional_ptr) {
{
auto empty = MoveOptional();
*optional_ptr = std::move(empty);
};
EXPECT_TRUE(nothrow_test_nonempty.Test(moveassign_empty));
auto moveassign_nonempty = [](MoveOptional* optional_ptr) {
auto nonempty =
MoveOptional(absl::in_place, kUpdatedInteger, testing::nothrow_ctor);
*optional_ptr = std::move(nonempty);
};
EXPECT_TRUE(nothrow_test_empty.Test(moveassign_nonempty));
EXPECT_TRUE(nothrow_test_nonempty.Test(moveassign_nonempty));
auto moveassign_thrower = [](MoveOptional* optional_ptr) {
auto thrower = MoveThrower(kUpdatedInteger, testing::nothrow_ctor);
*optional_ptr = std::move(thrower);
};
EXPECT_TRUE(nothrow_test_empty.Test(moveassign_thrower));
EXPECT_TRUE(nothrow_test_nonempty.Test(moveassign_thrower));
auto nonempty = MoveOptional(kInitialInteger);
EXPECT_TRUE(testing::TestNothrowOp([&]() { nonempty = std::move(empty); }));
}
{
auto nonempty = MoveOptional(kInitialInteger);
auto empty = MoveOptional();
EXPECT_TRUE(testing::TestNothrowOp([&]() { empty = std::move(nonempty); }));
}
{
auto nonempty_from = MoveOptional(kUpdatedInteger);
auto nonempty_to = MoveOptional(kInitialInteger);
EXPECT_TRUE(testing::TestNothrowOp(
[&]() { nonempty_to = std::move(nonempty_from); }));
}
{
auto thrower = MoveThrower(kUpdatedInteger);
auto empty = MoveOptional();
EXPECT_TRUE(testing::TestNothrowOp([&]() { empty = std::move(thrower); }));
}
{
auto thrower = MoveThrower(kUpdatedInteger);
auto nonempty = MoveOptional(kInitialInteger);
EXPECT_TRUE(
testing::TestNothrowOp([&]() { nonempty = std::move(thrower); }));
}
}
} // namespace

@ -279,7 +279,7 @@ class Span {
using size_type = size_t;
using difference_type = ptrdiff_t;
static const size_type npos = ~size_type{0};
static const size_type npos = ~(size_type(0));
constexpr Span() noexcept : Span(nullptr, 0) {}
constexpr Span(pointer array, size_type length) noexcept

@ -27,8 +27,8 @@ namespace absl {
namespace {
using ::testing::MakeExceptionSafetyTester;
using ::testing::nothrow_guarantee;
using ::testing::strong_guarantee;
using ::testing::TestNothrowOp;
using ::testing::TestThrowingCtor;
using Thrower = testing::ThrowingValue<>;
@ -120,7 +120,11 @@ testing::AssertionResult CheckInvariants(ThrowingVariant* v) {
return AssertionSuccess();
}
Thrower ExpectedThrower() { return Thrower(42); }
template <typename... Args>
Thrower ExpectedThrower(Args&&... args) {
return Thrower(42, args...);
}
ThrowerVec ExpectedThrowerVec() { return {Thrower(100), Thrower(200)}; }
ThrowingVariant ValuelessByException() {
ThrowingVariant v;
@ -193,18 +197,14 @@ TEST(VariantExceptionSafetyTest, CopyAssign) {
{
// - neither *this nor rhs holds a value
const ThrowingVariant rhs = ValuelessByException();
EXPECT_TRUE(MakeExceptionSafetyTester()
.WithInitialValue(ValuelessByException())
.WithInvariants(nothrow_guarantee)
.Test([&rhs](ThrowingVariant* lhs) { *lhs = rhs; }));
ThrowingVariant lhs = ValuelessByException();
EXPECT_TRUE(TestNothrowOp([&]() { lhs = rhs; }));
}
{
// - *this holds a value but rhs does not
const ThrowingVariant rhs = ValuelessByException();
EXPECT_TRUE(MakeExceptionSafetyTester()
.WithInitialValue(WithThrower())
.WithInvariants(nothrow_guarantee)
.Test([&rhs](ThrowingVariant* lhs) { *lhs = rhs; }));
ThrowingVariant lhs = WithThrower();
EXPECT_TRUE(TestNothrowOp([&]() { lhs = rhs; }));
}
// - index() == j
{
@ -237,10 +237,8 @@ TEST(VariantExceptionSafetyTest, CopyAssign) {
// should not throw because emplace() invokes Tj's copy ctor
// which should not throw.
const ThrowingVariant rhs(CopyNothrow{});
EXPECT_TRUE(MakeExceptionSafetyTester()
.WithInitialValue(WithThrower())
.WithInvariants(nothrow_guarantee)
.Test([&rhs](ThrowingVariant* lhs) { *lhs = rhs; }));
ThrowingVariant lhs = WithThrower();
EXPECT_TRUE(TestNothrowOp([&]() { lhs = rhs; }));
}
{
// is_nothrow_copy_constructible<Tj> == false &&
@ -281,23 +279,14 @@ TEST(VariantExceptionSafetyTest, MoveAssign) {
{
// - neither *this nor rhs holds a value
ThrowingVariant rhs = ValuelessByException();
EXPECT_TRUE(MakeExceptionSafetyTester()
.WithInitialValue(ValuelessByException())
.WithInvariants(nothrow_guarantee)
.Test([rhs](ThrowingVariant* lhs) mutable {
*lhs = std::move(rhs);
}));
ThrowingVariant lhs = ValuelessByException();
EXPECT_TRUE(TestNothrowOp([&]() { lhs = std::move(rhs); }));
}
{
// - *this holds a value but rhs does not
ThrowingVariant rhs = ValuelessByException();
EXPECT_TRUE(MakeExceptionSafetyTester()
.WithInitialValue(WithThrower())
.WithInvariants(nothrow_guarantee)
.Test([rhs](ThrowingVariant* lhs) mutable {
*lhs = std::move(rhs);
}));
ThrowingVariant lhs = WithThrower();
EXPECT_TRUE(TestNothrowOp([&]() { lhs = std::move(rhs); }));
}
{
// - index() == j
@ -310,13 +299,14 @@ TEST(VariantExceptionSafetyTest, MoveAssign) {
// Since Thrower's move assignment has basic guarantee, so should variant's.
auto tester = MakeExceptionSafetyTester()
.WithInitialValue(WithThrower())
.WithOperation([rhs](ThrowingVariant* lhs) mutable {
*lhs = std::move(rhs);
.WithOperation([&](ThrowingVariant* lhs) {
auto copy = rhs;
*lhs = std::move(copy);
});
EXPECT_TRUE(tester
.WithInvariants(
CheckInvariants,
[j](ThrowingVariant* lhs) { return lhs->index() == j; })
[&](ThrowingVariant* lhs) { return lhs->index() == j; })
.Test());
EXPECT_FALSE(tester.WithInvariants(strong_guarantee).Test());
}
@ -332,8 +322,9 @@ TEST(VariantExceptionSafetyTest, MoveAssign) {
[](ThrowingVariant* lhs) {
return lhs->valueless_by_exception();
})
.Test([rhs](ThrowingVariant* lhs) mutable {
*lhs = std::move(rhs);
.Test([&](ThrowingVariant* lhs) {
auto copy = rhs;
*lhs = std::move(copy);
}));
}
}
@ -365,8 +356,9 @@ TEST(VariantExceptionSafetyTest, ValueAssign) {
// move assign
auto move_tester = MakeExceptionSafetyTester()
.WithInitialValue(WithThrower())
.WithOperation([rhs](ThrowingVariant* lhs) mutable {
*lhs = std::move(rhs);
.WithOperation([&](ThrowingVariant* lhs) {
auto copy = rhs;
*lhs = std::move(copy);
});
EXPECT_TRUE(move_tester
.WithInvariants(CheckInvariants,
@ -388,19 +380,13 @@ TEST(VariantExceptionSafetyTest, ValueAssign) {
// invokes the copy/move constructor and it should not throw.
{
const CopyNothrow rhs;
EXPECT_TRUE(MakeExceptionSafetyTester()
.WithInitialValue(WithThrower())
.WithInvariants(nothrow_guarantee)
.Test([&rhs](ThrowingVariant* lhs) { *lhs = rhs; }));
ThrowingVariant lhs = WithThrower();
EXPECT_TRUE(TestNothrowOp([&]() { lhs = rhs; }));
}
{
MoveNothrow rhs;
EXPECT_TRUE(MakeExceptionSafetyTester()
.WithInitialValue(WithThrower())
.WithInvariants(nothrow_guarantee)
.Test([rhs](ThrowingVariant* lhs) mutable {
*lhs = std::move(rhs);
}));
ThrowingVariant lhs = WithThrower();
EXPECT_TRUE(TestNothrowOp([&]() { lhs = std::move(rhs); }));
}
// if is_nothrow_constructible_v<Tj, T> == false &&
// is_nothrow_move_constructible<Tj> == false
@ -423,8 +409,8 @@ TEST(VariantExceptionSafetyTest, ValueAssign) {
// move
auto move_tester = MakeExceptionSafetyTester()
.WithInitialValue(WithCopyNoThrow())
.WithOperation([rhs](ThrowingVariant* lhs) mutable {
*lhs = std::move(rhs);
.WithOperation([](ThrowingVariant* lhs) {
*lhs = ExpectedThrower(testing::nothrow_ctor);
});
EXPECT_TRUE(move_tester
.WithInvariants(CheckInvariants,
@ -477,21 +463,20 @@ TEST(VariantExceptionSafetyTest, Swap) {
// if both are valueless_by_exception(), no effect
{
ThrowingVariant rhs = ValuelessByException();
EXPECT_TRUE(
MakeExceptionSafetyTester()
.WithInitialValue(ValuelessByException())
.WithInvariants(nothrow_guarantee)
.Test([rhs](ThrowingVariant* lhs) mutable { lhs->swap(rhs); }));
ThrowingVariant lhs = ValuelessByException();
EXPECT_TRUE(TestNothrowOp([&]() { lhs.swap(rhs); }));
}
// if index() == rhs.index(), calls swap(get<i>(*this), get<i>(rhs))
// where i is index().
{
ThrowingVariant rhs = ExpectedThrower();
EXPECT_TRUE(
MakeExceptionSafetyTester()
.WithInitialValue(WithThrower())
.WithInvariants(CheckInvariants)
.Test([rhs](ThrowingVariant* lhs) mutable { lhs->swap(rhs); }));
EXPECT_TRUE(MakeExceptionSafetyTester()
.WithInitialValue(WithThrower())
.WithInvariants(CheckInvariants)
.Test([&](ThrowingVariant* lhs) {
auto copy = rhs;
lhs->swap(copy);
}));
}
// Otherwise, exchanges the value of rhs and *this. The exception safety
// involves variant in moved-from state which is not specified in the
@ -499,19 +484,23 @@ TEST(VariantExceptionSafetyTest, Swap) {
// overall strong guarantee. So, we are only checking basic guarantee here.
{
ThrowingVariant rhs = ExpectedThrower();
EXPECT_TRUE(
MakeExceptionSafetyTester()
.WithInitialValue(WithCopyNoThrow())
.WithInvariants(CheckInvariants)
.Test([rhs](ThrowingVariant* lhs) mutable { lhs->swap(rhs); }));
EXPECT_TRUE(MakeExceptionSafetyTester()
.WithInitialValue(WithCopyNoThrow())
.WithInvariants(CheckInvariants)
.Test([&](ThrowingVariant* lhs) {
auto copy = rhs;
lhs->swap(copy);
}));
}
{
ThrowingVariant rhs = ExpectedThrower();
EXPECT_TRUE(
MakeExceptionSafetyTester()
.WithInitialValue(WithCopyNoThrow())
.WithInvariants(CheckInvariants)
.Test([rhs](ThrowingVariant* lhs) mutable { rhs.swap(*lhs); }));
EXPECT_TRUE(MakeExceptionSafetyTester()
.WithInitialValue(WithCopyNoThrow())
.WithInvariants(CheckInvariants)
.Test([&](ThrowingVariant* lhs) {
auto copy = rhs;
copy.swap(*lhs);
}));
}
}

Loading…
Cancel
Save