Export of internal Abseil changes

--
77cd6291781bc39e8472c706163d6951fe2ae573 by Derek Mauro <dmauro@google.com>:

absl::uint128: Use intrinsics for more operations when available

This change also inlines the division and modulus operators when
intrinsics are available for better code generation.

Fixes #987

PiperOrigin-RevId: 389895706

--
fa23339584599e07ebcb4d0a857e2553b017757c by Abseil Team <absl-team@google.com>:

only hide retired flags if human-readable output is requested

PiperOrigin-RevId: 389835452

--
f1111f2b88359d4b253d4d81681c8a488458a36e by Martijn Vels <mvels@google.com>:

Add helpers IsFlat(), IsExternal(), etc to improve readability

PiperOrigin-RevId: 389779333

--
785b8712261e41695ebeeb64b4317f93b37adc11 by Martijn Vels <mvels@google.com>:

Split off 'concat' and 'btree' RepMemoryUsageLeaf and RepMemoryUsageDataEdge

PiperOrigin-RevId: 389701120

--
5264bffebffc2b377bf7e18f0ce69a3ed38c6629 by CJ Johnson <johnsoncj@google.com>:

Eagerly destroy `Callback` in `absl::Cleanup`

PiperOrigin-RevId: 389678813

--
a05312f0668458e97c50ca932c8f974c1508ebf2 by Abseil Team <absl-team@google.com>:

Have one instance of empty_group per program, rather than one per translation unit.

https://stackoverflow.com/questions/185624/static-variables-in-an-inlined-function

PiperOrigin-RevId: 389185845
GitOrigin-RevId: 77cd6291781bc39e8472c706163d6951fe2ae573
Change-Id: Iac8d9cb27707a9562c831c77a552d1fb4bb0405f
pull/1001/head
Abseil Team 3 years ago committed by Derek Mauro
parent bf31a10b65
commit 8e088c5f3c
  1. 8
      absl/cleanup/cleanup.h
  2. 44
      absl/cleanup/cleanup_test.cc
  3. 39
      absl/cleanup/internal/cleanup.h
  4. 6
      absl/container/internal/raw_hash_set.cc
  5. 8
      absl/container/internal/raw_hash_set.h
  6. 17
      absl/flags/internal/usage.cc
  7. 3
      absl/flags/internal/usage_test.cc
  8. 13
      absl/numeric/int128.cc
  9. 73
      absl/numeric/int128.h
  10. 182
      absl/strings/cord.cc
  11. 188
      absl/strings/cord_test.cc
  12. 25
      absl/strings/internal/cord_internal.h
  13. 12
      absl/strings/internal/cord_rep_btree.cc
  14. 8
      absl/strings/internal/cord_rep_btree.h
  15. 12
      absl/strings/internal/cord_rep_ring.cc
  16. 4
      absl/strings/internal/cord_rep_ring.h

@ -86,25 +86,25 @@ class ABSL_MUST_USE_RESULT Cleanup final {
"Callbacks that return values are not supported.");
public:
Cleanup(Callback callback) // NOLINT
: storage_(std::move(callback), /* is_callback_engaged = */ true) {}
Cleanup(Callback callback) : storage_(std::move(callback)) {} // NOLINT
Cleanup(Cleanup&& other) = default;
void Cancel() && {
ABSL_HARDENING_ASSERT(storage_.IsCallbackEngaged());
storage_.DisengageCallback();
storage_.DestroyCallback();
}
void Invoke() && {
ABSL_HARDENING_ASSERT(storage_.IsCallbackEngaged());
storage_.DisengageCallback();
storage_.InvokeCallback();
storage_.DestroyCallback();
}
~Cleanup() {
if (storage_.IsCallbackEngaged()) {
storage_.InvokeCallback();
storage_.DestroyCallback();
}
}

@ -264,4 +264,48 @@ TYPED_TEST(CleanupTest, Move) {
EXPECT_FALSE(called); // Destructor shouldn't invoke the callback
}
int DestructionCount = 0;
struct DestructionCounter {
void operator()() {}
~DestructionCounter() { ++DestructionCount; }
};
TYPED_TEST(CleanupTest, DestructorDestroys) {
{
auto cleanup =
absl::MakeCleanup(TypeParam::AsCallback(DestructionCounter()));
DestructionCount = 0;
}
EXPECT_EQ(DestructionCount, 1); // Engaged cleanup destroys
}
TYPED_TEST(CleanupTest, CancelDestroys) {
{
auto cleanup =
absl::MakeCleanup(TypeParam::AsCallback(DestructionCounter()));
DestructionCount = 0;
std::move(cleanup).Cancel();
EXPECT_EQ(DestructionCount, 1); // Cancel destroys
}
EXPECT_EQ(DestructionCount, 1); // Canceled cleanup does not double destroy
}
TYPED_TEST(CleanupTest, InvokeDestroys) {
{
auto cleanup =
absl::MakeCleanup(TypeParam::AsCallback(DestructionCounter()));
DestructionCount = 0;
std::move(cleanup).Invoke();
EXPECT_EQ(DestructionCount, 1); // Invoke destroys
}
EXPECT_EQ(DestructionCount, 1); // Invoked cleanup does not double destroy
}
} // namespace

@ -15,10 +15,12 @@
#ifndef ABSL_CLEANUP_INTERNAL_CLEANUP_H_
#define ABSL_CLEANUP_INTERNAL_CLEANUP_H_
#include <new>
#include <type_traits>
#include <utility>
#include "absl/base/internal/invoke.h"
#include "absl/base/macros.h"
#include "absl/base/thread_annotations.h"
#include "absl/utility/utility.h"
@ -45,14 +47,22 @@ class Storage {
public:
Storage() = delete;
Storage(Callback callback, bool is_callback_engaged)
: callback_(std::move(callback)),
is_callback_engaged_(is_callback_engaged) {}
explicit Storage(Callback callback) {
// Placement-new into a character buffer is used for eager destruction when
// the cleanup is invoked or cancelled. To ensure this optimizes well, the
// behavior is implemented locally instead of using an absl::optional.
::new (GetCallbackBuffer()) Callback(std::move(callback));
is_callback_engaged_ = true;
}
Storage(Storage&& other) {
ABSL_HARDENING_ASSERT(other.IsCallbackEngaged());
Storage(Storage&& other)
: callback_(std::move(other.callback_)),
is_callback_engaged_(
absl::exchange(other.is_callback_engaged_, false)) {}
::new (GetCallbackBuffer()) Callback(std::move(other.GetCallback()));
is_callback_engaged_ = true;
other.DestroyCallback();
}
Storage(const Storage& other) = delete;
@ -60,17 +70,26 @@ class Storage {
Storage& operator=(const Storage& other) = delete;
void* GetCallbackBuffer() { return static_cast<void*>(+callback_buffer_); }
Callback& GetCallback() {
return *reinterpret_cast<Callback*>(GetCallbackBuffer());
}
bool IsCallbackEngaged() const { return is_callback_engaged_; }
void DisengageCallback() { is_callback_engaged_ = false; }
void DestroyCallback() {
is_callback_engaged_ = false;
GetCallback().~Callback();
}
void InvokeCallback() ABSL_NO_THREAD_SAFETY_ANALYSIS {
std::move(callback_)();
std::move(GetCallback())();
}
private:
Callback callback_;
bool is_callback_engaged_;
alignas(Callback) char callback_buffer_[sizeof(Callback)];
};
} // namespace cleanup_internal

@ -23,6 +23,12 @@ namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
ABSL_CONST_INIT ABSL_DLL alignas(16) const ctrl_t kEmptyGroup[16] = {
ctrl_t::kSentinel, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty,
ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty,
ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty,
ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty};
constexpr size_t Group::kWidth;
// Returns "random" seed.

@ -291,13 +291,9 @@ static_assert(ctrl_t::kDeleted == static_cast<ctrl_t>(-2),
// A single block of empty control bytes for tables without any slots allocated.
// This enables removing a branch in the hot path of find().
ABSL_DLL extern const ctrl_t kEmptyGroup[16];
inline ctrl_t* EmptyGroup() {
alignas(16) static constexpr ctrl_t empty_group[] = {
ctrl_t::kSentinel, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty,
ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty,
ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty,
ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty};
return const_cast<ctrl_t*>(empty_group);
return const_cast<ctrl_t*>(kEmptyGroup);
}
// Mixes a randomly generated per-process seed with `hash` and `ctrl` to

@ -17,6 +17,7 @@
#include <stdint.h>
#include <algorithm>
#include <functional>
#include <map>
#include <ostream>
@ -255,9 +256,6 @@ void FlagsHelpImpl(std::ostream& out, PerFlagFilter filter_cb,
matching_flags;
flags_internal::ForEachFlag([&](absl::CommandLineFlag& flag) {
// Ignore retired flags.
if (flag.IsRetired()) return;
// If the flag has been stripped, pretend that it doesn't exist.
if (flag.Help() == flags_internal::kStrippedFlagHelp) return;
@ -275,6 +273,14 @@ void FlagsHelpImpl(std::ostream& out, PerFlagFilter filter_cb,
absl::string_view file_separator; // controls blank lines between files
for (auto& package : matching_flags) {
if (format == HelpFormat::kHumanReadable) {
// Hide packages with only retired flags
bool all_package_flags_are_retired = true;
for (const auto& flags_in_file : package.second) {
for (const auto* flag : flags_in_file.second) {
all_package_flags_are_retired &= flag->IsRetired();
}
}
if (all_package_flags_are_retired) continue;
out << package_separator;
package_separator = "\n\n";
}
@ -334,8 +340,11 @@ void FlagsHelpImpl(std::ostream& out,
// Produces the help message describing specific flag.
void FlagHelp(std::ostream& out, const CommandLineFlag& flag,
HelpFormat format) {
if (format == HelpFormat::kHumanReadable)
if (format == HelpFormat::kHumanReadable) {
// Ignore retired flags
if (flag.IsRetired()) return;
flags_internal::FlagHelpHumanReadable(flag, out);
}
}
// --------------------------------------------------------------------

@ -61,6 +61,9 @@ ABSL_FLAG(
"Even more long long long long long long long long long long long long "
"help message.");
ABSL_RETIRED_FLAG(int64_t, usage_reporting_test_flag_07, 1,
"usage_reporting_test_flag_07 help message");
namespace {
namespace flags = absl::flags_internal;

@ -138,28 +138,21 @@ uint128::uint128(float v) : uint128(MakeUint128FromFloat(v)) {}
uint128::uint128(double v) : uint128(MakeUint128FromFloat(v)) {}
uint128::uint128(long double v) : uint128(MakeUint128FromFloat(v)) {}
#if !defined(ABSL_HAVE_INTRINSIC_INT128)
uint128 operator/(uint128 lhs, uint128 rhs) {
#if defined(ABSL_HAVE_INTRINSIC_INT128)
return static_cast<unsigned __int128>(lhs) /
static_cast<unsigned __int128>(rhs);
#else // ABSL_HAVE_INTRINSIC_INT128
uint128 quotient = 0;
uint128 remainder = 0;
DivModImpl(lhs, rhs, &quotient, &remainder);
return quotient;
#endif // ABSL_HAVE_INTRINSIC_INT128
}
uint128 operator%(uint128 lhs, uint128 rhs) {
#if defined(ABSL_HAVE_INTRINSIC_INT128)
return static_cast<unsigned __int128>(lhs) %
static_cast<unsigned __int128>(rhs);
#else // ABSL_HAVE_INTRINSIC_INT128
uint128 quotient = 0;
uint128 remainder = 0;
DivModImpl(lhs, rhs, &quotient, &remainder);
return remainder;
#endif // ABSL_HAVE_INTRINSIC_INT128
}
#endif // !defined(ABSL_HAVE_INTRINSIC_INT128)
namespace {

@ -18,6 +18,10 @@
// -----------------------------------------------------------------------------
//
// This header file defines 128-bit integer types, `uint128` and `int128`.
//
// TODO(absl-team): This module is inconsistent as many inline `uint128` methods
// are defined in this file, while many inline `int128` methods are defined in
// the `int128_*_intrinsic.inc` files.
#ifndef ABSL_NUMERIC_INT128_H_
#define ABSL_NUMERIC_INT128_H_
@ -783,8 +787,13 @@ inline uint128::operator long double() const {
// Comparison operators.
inline bool operator==(uint128 lhs, uint128 rhs) {
#if defined(ABSL_HAVE_INTRINSIC_INT128)
return static_cast<unsigned __int128>(lhs) ==
static_cast<unsigned __int128>(rhs);
#else
return (Uint128Low64(lhs) == Uint128Low64(rhs) &&
Uint128High64(lhs) == Uint128High64(rhs));
#endif
}
inline bool operator!=(uint128 lhs, uint128 rhs) {
@ -819,52 +828,76 @@ constexpr inline int128 operator+(int128 val) {
}
inline uint128 operator-(uint128 val) {
#if defined(ABSL_HAVE_INTRINSIC_INT128)
return -static_cast<unsigned __int128>(val);
#else
uint64_t hi = ~Uint128High64(val);
uint64_t lo = ~Uint128Low64(val) + 1;
if (lo == 0) ++hi; // carry
return MakeUint128(hi, lo);
#endif
}
constexpr inline bool operator!(uint128 val) {
#if defined(ABSL_HAVE_INTRINSIC_INT128)
return !static_cast<unsigned __int128>(val);
#else
return !Uint128High64(val) && !Uint128Low64(val);
#endif
}
// Logical operators.
constexpr inline uint128 operator~(uint128 val) {
#if defined(ABSL_HAVE_INTRINSIC_INT128)
return ~static_cast<unsigned __int128>(val);
#else
return MakeUint128(~Uint128High64(val), ~Uint128Low64(val));
#endif
}
constexpr inline uint128 operator|(uint128 lhs, uint128 rhs) {
#if defined(ABSL_HAVE_INTRINSIC_INT128)
return static_cast<unsigned __int128>(lhs) |
static_cast<unsigned __int128>(rhs);
#else
return MakeUint128(Uint128High64(lhs) | Uint128High64(rhs),
Uint128Low64(lhs) | Uint128Low64(rhs));
Uint128Low64(lhs) | Uint128Low64(rhs));
#endif
}
constexpr inline uint128 operator&(uint128 lhs, uint128 rhs) {
#if defined(ABSL_HAVE_INTRINSIC_INT128)
return static_cast<unsigned __int128>(lhs) &
static_cast<unsigned __int128>(rhs);
#else
return MakeUint128(Uint128High64(lhs) & Uint128High64(rhs),
Uint128Low64(lhs) & Uint128Low64(rhs));
Uint128Low64(lhs) & Uint128Low64(rhs));
#endif
}
constexpr inline uint128 operator^(uint128 lhs, uint128 rhs) {
#if defined(ABSL_HAVE_INTRINSIC_INT128)
return static_cast<unsigned __int128>(lhs) ^
static_cast<unsigned __int128>(rhs);
#else
return MakeUint128(Uint128High64(lhs) ^ Uint128High64(rhs),
Uint128Low64(lhs) ^ Uint128Low64(rhs));
Uint128Low64(lhs) ^ Uint128Low64(rhs));
#endif
}
inline uint128& uint128::operator|=(uint128 other) {
hi_ |= other.hi_;
lo_ |= other.lo_;
*this = *this | other;
return *this;
}
inline uint128& uint128::operator&=(uint128 other) {
hi_ &= other.hi_;
lo_ &= other.lo_;
*this = *this & other;
return *this;
}
inline uint128& uint128::operator^=(uint128 other) {
hi_ ^= other.hi_;
lo_ ^= other.lo_;
*this = *this ^ other;
return *this;
}
@ -907,21 +940,31 @@ inline uint128 operator>>(uint128 lhs, int amount) {
}
inline uint128 operator+(uint128 lhs, uint128 rhs) {
#if defined(ABSL_HAVE_INTRINSIC_INT128)
return static_cast<unsigned __int128>(lhs) +
static_cast<unsigned __int128>(rhs);
#else
uint128 result = MakeUint128(Uint128High64(lhs) + Uint128High64(rhs),
Uint128Low64(lhs) + Uint128Low64(rhs));
if (Uint128Low64(result) < Uint128Low64(lhs)) { // check for carry
return MakeUint128(Uint128High64(result) + 1, Uint128Low64(result));
}
return result;
#endif
}
inline uint128 operator-(uint128 lhs, uint128 rhs) {
#if defined(ABSL_HAVE_INTRINSIC_INT128)
return static_cast<unsigned __int128>(lhs) -
static_cast<unsigned __int128>(rhs);
#else
uint128 result = MakeUint128(Uint128High64(lhs) - Uint128High64(rhs),
Uint128Low64(lhs) - Uint128Low64(rhs));
if (Uint128Low64(lhs) < Uint128Low64(rhs)) { // check for carry
return MakeUint128(Uint128High64(result) - 1, Uint128Low64(result));
}
return result;
#endif
}
inline uint128 operator*(uint128 lhs, uint128 rhs) {
@ -951,6 +994,18 @@ inline uint128 operator*(uint128 lhs, uint128 rhs) {
#endif // ABSL_HAVE_INTRINSIC128
}
#if defined(ABSL_HAVE_INTRINSIC_INT128)
inline uint128 operator/(uint128 lhs, uint128 rhs) {
return static_cast<unsigned __int128>(lhs) /
static_cast<unsigned __int128>(rhs);
}
inline uint128 operator%(uint128 lhs, uint128 rhs) {
return static_cast<unsigned __int128>(lhs) %
static_cast<unsigned __int128>(rhs);
}
#endif
// Increment/decrement operators.
inline uint128 uint128::operator++(int) {

@ -61,12 +61,6 @@ using ::absl::cord_internal::InlineData;
using ::absl::cord_internal::kMaxFlatLength;
using ::absl::cord_internal::kMinFlatLength;
using ::absl::cord_internal::BTREE;
using ::absl::cord_internal::CONCAT;
using ::absl::cord_internal::EXTERNAL;
using ::absl::cord_internal::FLAT;
using ::absl::cord_internal::SUBSTRING;
using ::absl::cord_internal::kInlinedVectorSize;
using ::absl::cord_internal::kMaxBytesToCopy;
@ -106,7 +100,7 @@ static inline bool btree_enabled() {
}
static inline bool IsRootBalanced(CordRep* node) {
if (node->tag != CONCAT) {
if (!node->IsConcat()) {
return true;
} else if (node->concat()->depth() <= 15) {
return true;
@ -143,7 +137,7 @@ static inline CordRep* VerifyTree(CordRep* node) {
// Return the depth of a node
static int Depth(const CordRep* rep) {
if (rep->tag == CONCAT) {
if (rep->IsConcat()) {
return rep->concat()->depth();
} else {
return 0;
@ -176,7 +170,7 @@ static CordRep* RawConcat(CordRep* left, CordRep* right) {
}
CordRepConcat* rep = new CordRepConcat();
rep->tag = CONCAT;
rep->tag = cord_internal::CONCAT;
SetConcatChildren(rep, left, right);
return rep;
@ -273,7 +267,7 @@ static CordRep* NewSubstring(CordRep* child, size_t offset, size_t length) {
CordRepSubstring* rep = new CordRepSubstring();
assert((offset + length) <= child->length);
rep->length = length;
rep->tag = SUBSTRING;
rep->tag = cord_internal::SUBSTRING;
rep->start = offset;
rep->child = child;
return VerifyTree(rep);
@ -347,7 +341,7 @@ inline void Cord::InlineRep::remove_prefix(size_t n) {
// Returns `rep` converted into a CordRepBtree.
// Directly returns `rep` if `rep` is already a CordRepBtree.
static CordRepBtree* ForceBtree(CordRep* rep) {
return rep->tag == BTREE ? rep->btree() : CordRepBtree::Create(rep);
return rep->IsBtree() ? rep->btree() : CordRepBtree::Create(rep);
}
void Cord::InlineRep::AppendTreeToInlined(CordRep* tree,
@ -425,7 +419,7 @@ void Cord::InlineRep::PrependTree(CordRep* tree, MethodIdentifier method) {
// written to region and the actual size increase will be written to size.
static inline bool PrepareAppendRegion(CordRep* root, char** region,
size_t* size, size_t max_length) {
if (root->tag == BTREE && root->refcount.IsOne()) {
if (root->IsBtree() && root->refcount.IsOne()) {
Span<char> span = root->btree()->GetAppendBuffer(max_length);
if (!span.empty()) {
*region = span.data();
@ -436,11 +430,11 @@ static inline bool PrepareAppendRegion(CordRep* root, char** region,
// Search down the right-hand path for a non-full FLAT node.
CordRep* dst = root;
while (dst->tag == CONCAT && dst->refcount.IsOne()) {
while (dst->IsConcat() && dst->refcount.IsOne()) {
dst = dst->concat()->right;
}
if (dst->tag < FLAT || !dst->refcount.IsOne()) {
if (!dst->IsFlat() || !dst->refcount.IsOne()) {
*region = nullptr;
*size = 0;
return false;
@ -506,19 +500,20 @@ void Cord::InlineRep::GetAppendRegion(char** region, size_t* size,
CommitTree(root, rep, scope, method);
}
// If the rep is a leaf, this will increment the value at total_mem_usage and
// will return true.
static bool RepMemoryUsageLeaf(const CordRep* rep, size_t* total_mem_usage) {
// Computes the memory side of the provided edge which must be a valid data edge
// for a btrtee, i.e., a FLAT, EXTERNAL or SUBSTRING of a FLAT or EXTERNAL node.
static bool RepMemoryUsageDataEdge(const CordRep* rep,
size_t* total_mem_usage) {
size_t maybe_sub_size = 0;
if (rep->tag == SUBSTRING) {
if (ABSL_PREDICT_FALSE(rep->IsSubstring())) {
maybe_sub_size = sizeof(cord_internal::CordRepSubstring);
rep = rep->substring()->child;
}
if (rep->tag >= FLAT) {
if (rep->IsFlat()) {
*total_mem_usage += maybe_sub_size + rep->flat()->AllocatedSize();
return true;
}
if (rep->tag == EXTERNAL) {
if (rep->IsExternal()) {
// We don't know anything about the embedded / bound data, but we can safely
// assume it is 'at least' a word / pointer to data. In the future we may
// choose to use the 'data' byte as a tag to identify the types of some
@ -531,6 +526,25 @@ static bool RepMemoryUsageLeaf(const CordRep* rep, size_t* total_mem_usage) {
return false;
}
// If the rep is a leaf, this will increment the value at total_mem_usage and
// will return true.
static bool RepMemoryUsageLeaf(const CordRep* rep, size_t* total_mem_usage) {
if (rep->IsFlat()) {
*total_mem_usage += rep->flat()->AllocatedSize();
return true;
}
if (rep->IsExternal()) {
// We don't know anything about the embedded / bound data, but we can safely
// assume it is 'at least' a word / pointer to data. In the future we may
// choose to use the 'data' byte as a tag to identify the types of some
// well-known externals, such as a std::string instance.
*total_mem_usage +=
sizeof(cord_internal::CordRepExternalImpl<intptr_t>) + rep->length;
return true;
}
return false;
}
void Cord::InlineRep::AssignSlow(const Cord::InlineRep& src) {
assert(&src != this);
assert(is_tree() || src.is_tree());
@ -634,7 +648,7 @@ Cord& Cord::operator=(absl::string_view src) {
}
if (tree != nullptr) {
CordzUpdateScope scope(contents_.cordz_info(), method);
if (tree->tag >= FLAT && tree->flat()->Capacity() >= length &&
if (tree->IsFlat() && tree->flat()->Capacity() >= length &&
tree->refcount.IsOne()) {
// Copy in place if the existing FLAT node is reusable.
memmove(tree->flat()->Data(), data, length);
@ -753,7 +767,7 @@ inline void Cord::AppendImpl(C&& src) {
contents_.AppendArray({src.contents_.data(), src_size}, method);
return;
}
if (src_tree->tag >= FLAT) {
if (src_tree->IsFlat()) {
// src tree just has one flat node.
contents_.AppendArray({src_tree->flat()->Data(), src_size}, method);
return;
@ -843,7 +857,7 @@ static CordRep* RemovePrefixFrom(CordRep* node, size_t n) {
if (n == 0) return CordRep::Ref(node);
absl::InlinedVector<CordRep*, kInlinedVectorSize> rhs_stack;
while (node->tag == CONCAT) {
while (node->IsConcat()) {
assert(n <= node->length);
if (n < node->concat()->left->length) {
// Push right to stack, descend left.
@ -862,7 +876,7 @@ static CordRep* RemovePrefixFrom(CordRep* node, size_t n) {
} else {
size_t start = n;
size_t len = node->length - n;
if (node->tag == SUBSTRING) {
if (node->IsSubstring()) {
// Consider in-place update of node, similar to in RemoveSuffixFrom().
start += node->substring()->start;
node = node->substring()->child;
@ -885,7 +899,7 @@ static CordRep* RemoveSuffixFrom(CordRep* node, size_t n) {
absl::InlinedVector<CordRep*, kInlinedVectorSize> lhs_stack;
bool inplace_ok = node->refcount.IsOne();
while (node->tag == CONCAT) {
while (node->IsConcat()) {
assert(n <= node->length);
if (n < node->concat()->right->length) {
// Push left to stack, descend right.
@ -902,7 +916,7 @@ static CordRep* RemoveSuffixFrom(CordRep* node, size_t n) {
if (n == 0) {
CordRep::Ref(node);
} else if (inplace_ok && node->tag != EXTERNAL) {
} else if (inplace_ok && !node->IsExternal()) {
// Consider making a new buffer if the current node capacity is much
// larger than the new length.
CordRep::Ref(node);
@ -910,7 +924,7 @@ static CordRep* RemoveSuffixFrom(CordRep* node, size_t n) {
} else {
size_t start = 0;
size_t len = node->length - n;
if (node->tag == SUBSTRING) {
if (node->IsSubstring()) {
start = node->substring()->start;
node = node->substring()->child;
}
@ -933,7 +947,7 @@ void Cord::RemovePrefix(size_t n) {
} else {
auto constexpr method = CordzUpdateTracker::kRemovePrefix;
CordzUpdateScope scope(contents_.cordz_info(), method);
if (tree->tag == BTREE) {
if (tree->IsBtree()) {
CordRep* old = tree;
tree = tree->btree()->SubTree(n, tree->length - n);
CordRep::Unref(old);
@ -956,7 +970,7 @@ void Cord::RemoveSuffix(size_t n) {
} else {
auto constexpr method = CordzUpdateTracker::kRemoveSuffix;
CordzUpdateScope scope(contents_.cordz_info(), method);
if (tree->tag == BTREE) {
if (tree->IsBtree()) {
CordRep* old = tree;
tree = tree->btree()->SubTree(0, tree->length - n);
CordRep::Unref(old);
@ -998,8 +1012,8 @@ static CordRep* NewSubRange(CordRep* node, size_t pos, size_t n) {
results.push_back(Concat(left, right));
} else if (pos == 0 && n == node->length) {
results.push_back(CordRep::Ref(node));
} else if (node->tag != CONCAT) {
if (node->tag == SUBSTRING) {
} else if (!node->IsConcat()) {
if (node->IsSubstring()) {
pos += node->substring()->start;
node = node->substring()->child;
}
@ -1051,7 +1065,7 @@ Cord Cord::Subcord(size_t pos, size_t new_size) const {
return sub_cord;
}
if (tree->tag == BTREE) {
if (tree->IsBtree()) {
tree = tree->btree()->SubTree(pos, new_size);
} else {
tree = NewSubRange(tree, pos, new_size);
@ -1076,7 +1090,7 @@ class CordForest {
CordRep* node = pending.back();
pending.pop_back();
CheckNode(node);
if (ABSL_PREDICT_FALSE(node->tag != CONCAT)) {
if (ABSL_PREDICT_FALSE(!node->IsConcat())) {
AddNode(node);
continue;
}
@ -1170,7 +1184,7 @@ class CordForest {
static void CheckNode(CordRep* node) {
ABSL_INTERNAL_CHECK(node->length != 0u, "");
if (node->tag == CONCAT) {
if (node->IsConcat()) {
ABSL_INTERNAL_CHECK(node->concat()->left != nullptr, "");
ABSL_INTERNAL_CHECK(node->concat()->right != nullptr, "");
ABSL_INTERNAL_CHECK(node->length == (node->concat()->left->length +
@ -1190,7 +1204,7 @@ class CordForest {
static CordRep* Rebalance(CordRep* node) {
VerifyTree(node);
assert(node->tag == CONCAT);
assert(node->IsConcat());
if (node->length == 0) {
return nullptr;
@ -1248,15 +1262,15 @@ inline absl::string_view Cord::InlineRep::FindFlatStartPiece() const {
}
CordRep* node = tree();
if (node->tag >= FLAT) {
if (node->IsFlat()) {
return absl::string_view(node->flat()->Data(), node->length);
}
if (node->tag == EXTERNAL) {
if (node->IsExternal()) {
return absl::string_view(node->external()->base, node->length);
}
if (node->tag == BTREE) {
if (node->IsBtree()) {
CordRepBtree* tree = node->btree();
int height = tree->height();
while (--height >= 0) {
@ -1266,7 +1280,7 @@ inline absl::string_view Cord::InlineRep::FindFlatStartPiece() const {
}
// Walk down the left branches until we hit a non-CONCAT node.
while (node->tag == CONCAT) {
while (node->IsConcat()) {
node = node->concat()->left;
}
@ -1275,16 +1289,16 @@ inline absl::string_view Cord::InlineRep::FindFlatStartPiece() const {
size_t length = node->length;
assert(length != 0);
if (node->tag == SUBSTRING) {
if (node->IsSubstring()) {
offset = node->substring()->start;
node = node->substring()->child;
}
if (node->tag >= FLAT) {
if (node->IsFlat()) {
return absl::string_view(node->flat()->Data() + offset, length);
}
assert((node->tag == EXTERNAL) && "Expect FLAT or EXTERNAL node here");
assert(node->IsExternal() && "Expect FLAT or EXTERNAL node here");
return absl::string_view(node->external()->base + offset, length);
}
@ -1478,7 +1492,7 @@ Cord::ChunkIterator& Cord::ChunkIterator::AdvanceStack() {
// Walk down the left branches until we hit a non-CONCAT node. Save the
// right children to the stack for subsequent traversal.
while (node->tag == CONCAT) {
while (node->IsConcat()) {
stack_of_right_children.push_back(node->concat()->right);
node = node->concat()->left;
}
@ -1486,15 +1500,15 @@ Cord::ChunkIterator& Cord::ChunkIterator::AdvanceStack() {
// Get the child node if we encounter a SUBSTRING.
size_t offset = 0;
size_t length = node->length;
if (node->tag == SUBSTRING) {
if (node->IsSubstring()) {
offset = node->substring()->start;
node = node->substring()->child;
}
assert(node->tag == EXTERNAL || node->tag >= FLAT);
assert(node->IsExternal() || node->IsFlat());
assert(length != 0);
const char* data =
node->tag == EXTERNAL ? node->external()->base : node->flat()->Data();
node->IsExternal() ? node->external()->base : node->flat()->Data();
current_chunk_ = absl::string_view(data + offset, length);
current_leaf_ = node;
return *this;
@ -1547,8 +1561,8 @@ Cord Cord::ChunkIterator::AdvanceAndReadBytes(size_t n) {
// Range to read is a proper subrange of the current chunk.
assert(current_leaf_ != nullptr);
CordRep* subnode = CordRep::Ref(current_leaf_);
const char* data = subnode->tag == EXTERNAL ? subnode->external()->base
: subnode->flat()->Data();
const char* data = subnode->IsExternal() ? subnode->external()->base
: subnode->flat()->Data();
subnode = NewSubstring(subnode, current_chunk_.data() - data, n);
subcord.contents_.EmplaceTree(VerifyTree(subnode), method);
RemoveChunkPrefix(n);
@ -1560,8 +1574,8 @@ Cord Cord::ChunkIterator::AdvanceAndReadBytes(size_t n) {
assert(current_leaf_ != nullptr);
CordRep* subnode = CordRep::Ref(current_leaf_);
if (current_chunk_.size() < subnode->length) {
const char* data = subnode->tag == EXTERNAL ? subnode->external()->base
: subnode->flat()->Data();
const char* data = subnode->IsExternal() ? subnode->external()->base
: subnode->flat()->Data();
subnode = NewSubstring(subnode, current_chunk_.data() - data,
current_chunk_.size());
}
@ -1599,7 +1613,7 @@ Cord Cord::ChunkIterator::AdvanceAndReadBytes(size_t n) {
// Walk down the appropriate branches until we hit a non-CONCAT node. Save the
// right children to the stack for subsequent traversal.
while (node->tag == CONCAT) {
while (node->IsConcat()) {
if (node->concat()->left->length > n) {
// Push right, descend left.
stack_of_right_children.push_back(node->concat()->right);
@ -1616,20 +1630,20 @@ Cord Cord::ChunkIterator::AdvanceAndReadBytes(size_t n) {
// Get the child node if we encounter a SUBSTRING.
size_t offset = 0;
size_t length = node->length;
if (node->tag == SUBSTRING) {
if (node->IsSubstring()) {
offset = node->substring()->start;
node = node->substring()->child;
}
// Range to read ends with a proper (possibly empty) subrange of the current
// chunk.
assert(node->tag == EXTERNAL || node->tag >= FLAT);
assert(node->IsExternal() || node->IsFlat());
assert(length > n);
if (n > 0) {
subnode = Concat(subnode, NewSubstring(CordRep::Ref(node), offset, n));
}
const char* data =
node->tag == EXTERNAL ? node->external()->base : node->flat()->Data();
node->IsExternal() ? node->external()->base : node->flat()->Data();
current_chunk_ = absl::string_view(data + offset + n, length - n);
current_leaf_ = node;
bytes_remaining_ -= n;
@ -1672,7 +1686,7 @@ void Cord::ChunkIterator::AdvanceBytesSlowPath(size_t n) {
// Walk down the appropriate branches until we hit a non-CONCAT node. Save the
// right children to the stack for subsequent traversal.
while (node->tag == CONCAT) {
while (node->IsConcat()) {
if (node->concat()->left->length > n) {
// Push right, descend left.
stack_of_right_children.push_back(node->concat()->right);
@ -1688,15 +1702,15 @@ void Cord::ChunkIterator::AdvanceBytesSlowPath(size_t n) {
// Get the child node if we encounter a SUBSTRING.
size_t offset = 0;
size_t length = node->length;
if (node->tag == SUBSTRING) {
if (node->IsSubstring()) {
offset = node->substring()->start;
node = node->substring()->child;
}
assert(node->tag == EXTERNAL || node->tag >= FLAT);
assert(node->IsExternal() || node->IsFlat());
assert(length > n);
const char* data =
node->tag == EXTERNAL ? node->external()->base : node->flat()->Data();
node->IsExternal() ? node->external()->base : node->flat()->Data();
current_chunk_ = absl::string_view(data + offset + n, length - n);
current_leaf_ = node;
bytes_remaining_ -= n;
@ -1712,15 +1726,15 @@ char Cord::operator[](size_t i) const {
while (true) {
assert(rep != nullptr);
assert(offset < rep->length);
if (rep->tag >= FLAT) {
if (rep->IsFlat()) {
// Get the "i"th character directly from the flat array.
return rep->flat()->Data()[offset];
} else if (rep->tag == BTREE) {
} else if (rep->IsBtree()) {
return rep->btree()->GetCharacter(offset);
} else if (rep->tag == EXTERNAL) {
} else if (rep->IsExternal()) {
// Get the "i"th character from the external array.
return rep->external()->base[offset];
} else if (rep->tag == CONCAT) {
} else if (rep->IsConcat()) {
// Recursively branch to the side of the concatenation that the "i"th
// character is on.
size_t left_length = rep->concat()->left->length;
@ -1732,7 +1746,7 @@ char Cord::operator[](size_t i) const {
}
} else {
// This must be a substring a node, so bypass it to get to the child.
assert(rep->tag == SUBSTRING);
assert(rep->IsSubstring());
offset += rep->substring()->start;
rep = rep->substring()->child;
}
@ -1769,25 +1783,25 @@ absl::string_view Cord::FlattenSlowPath() {
/* static */ bool Cord::GetFlatAux(CordRep* rep, absl::string_view* fragment) {
assert(rep != nullptr);
if (rep->tag >= FLAT) {
if (rep->IsFlat()) {
*fragment = absl::string_view(rep->flat()->Data(), rep->length);
return true;
} else if (rep->tag == EXTERNAL) {
} else if (rep->IsExternal()) {
*fragment = absl::string_view(rep->external()->base, rep->length);
return true;
} else if (rep->tag == BTREE) {
} else if (rep->IsBtree()) {
return rep->btree()->IsFlat(fragment);
} else if (rep->tag == SUBSTRING) {
} else if (rep->IsSubstring()) {
CordRep* child = rep->substring()->child;
if (child->tag >= FLAT) {
if (child->IsFlat()) {
*fragment = absl::string_view(
child->flat()->Data() + rep->substring()->start, rep->length);
return true;
} else if (child->tag == EXTERNAL) {
} else if (child->IsExternal()) {
*fragment = absl::string_view(
child->external()->base + rep->substring()->start, rep->length);
return true;
} else if (child->tag == BTREE) {
} else if (child->IsBtree()) {
return child->btree()->IsFlat(rep->substring()->start, rep->length,
fragment);
}
@ -1798,7 +1812,7 @@ absl::string_view Cord::FlattenSlowPath() {
/* static */ void Cord::ForEachChunkAux(
absl::cord_internal::CordRep* rep,
absl::FunctionRef<void(absl::string_view)> callback) {
if (rep->tag == BTREE) {
if (rep->IsBtree()) {
ChunkIterator it(rep), end;
while (it != end) {
callback(*it);
@ -1814,7 +1828,7 @@ absl::string_view Cord::FlattenSlowPath() {
absl::cord_internal::CordRep* stack[stack_max];
absl::cord_internal::CordRep* current_node = rep;
while (true) {
if (current_node->tag == CONCAT) {
if (current_node->IsConcat()) {
if (stack_pos == stack_max) {
// There's no more room on our stack array to add another right branch,
// and the idea is to avoid allocations, so call this function
@ -1861,23 +1875,23 @@ static void DumpNode(CordRep* rep, bool include_data, std::ostream* os,
*os << "]";
*os << " " << (IsRootBalanced(rep) ? 'b' : 'u');
*os << " " << std::setw(indent) << "";
if (rep->tag == CONCAT) {
if (rep->IsConcat()) {
*os << "CONCAT depth=" << Depth(rep) << "\n";
indent += kIndentStep;
indents.push_back(indent);
stack.push_back(rep->concat()->right);
rep = rep->concat()->left;
} else if (rep->tag == SUBSTRING) {
} else if (rep->IsSubstring()) {
*os << "SUBSTRING @ " << rep->substring()->start << "\n";
indent += kIndentStep;
rep = rep->substring()->child;
} else { // Leaf or ring
if (rep->tag == EXTERNAL) {
if (rep->IsExternal()) {
*os << "EXTERNAL [";
if (include_data)
*os << absl::CEscape(std::string(rep->external()->base, rep->length));
*os << "]\n";
} else if (rep->tag >= FLAT) {
} else if (rep->IsFlat()) {
*os << "FLAT cap=" << rep->flat()->Capacity() << " [";
if (include_data)
*os << absl::CEscape(std::string(rep->flat()->Data(), rep->length));
@ -1915,7 +1929,7 @@ static bool VerifyNode(CordRep* root, CordRep* start_node,
ABSL_INTERNAL_CHECK(node->length != 0, ReportError(root, node));
}
if (node->tag == CONCAT) {
if (node->IsConcat()) {
ABSL_INTERNAL_CHECK(node->concat()->left != nullptr,
ReportError(root, node));
ABSL_INTERNAL_CHECK(node->concat()->right != nullptr,
@ -1927,13 +1941,13 @@ static bool VerifyNode(CordRep* root, CordRep* start_node,
worklist.push_back(node->concat()->right);
worklist.push_back(node->concat()->left);
}
} else if (node->tag >= FLAT) {
} else if (node->IsFlat()) {
ABSL_INTERNAL_CHECK(node->length <= node->flat()->Capacity(),
ReportError(root, node));
} else if (node->tag == EXTERNAL) {
} else if (node->IsExternal()) {
ABSL_INTERNAL_CHECK(node->external()->base != nullptr,
ReportError(root, node));
} else if (node->tag == SUBSTRING) {
} else if (node->IsSubstring()) {
ABSL_INTERNAL_CHECK(
node->substring()->start < node->substring()->child->length,
ReportError(root, node));
@ -1962,7 +1976,7 @@ static bool VerifyNode(CordRep* root, CordRep* start_node,
while (true) {
const CordRep* next_node = nullptr;
if (cur_node->tag == CONCAT) {
if (cur_node->IsConcat()) {
total_mem_usage += sizeof(CordRepConcat);
const CordRep* left = cur_node->concat()->left;
if (!RepMemoryUsageLeaf(left, &total_mem_usage)) {
@ -1976,12 +1990,12 @@ static bool VerifyNode(CordRep* root, CordRep* start_node,
}
next_node = right;
}
} else if (cur_node->tag == BTREE) {
} else if (cur_node->IsBtree()) {
total_mem_usage += sizeof(CordRepBtree);
const CordRepBtree* node = cur_node->btree();
if (node->height() == 0) {
for (const CordRep* edge : node->Edges()) {
RepMemoryUsageLeaf(edge, &total_mem_usage);
RepMemoryUsageDataEdge(edge, &total_mem_usage);
}
} else {
for (const CordRep* edge : node->Edges()) {
@ -1990,7 +2004,7 @@ static bool VerifyNode(CordRep* root, CordRep* start_node,
}
} else {
// Since cur_node is not a leaf or a concat node it must be a substring.
assert(cur_node->tag == SUBSTRING);
assert(cur_node->IsSubstring());
total_mem_usage += sizeof(CordRepSubstring);
next_node = cur_node->substring()->child;
if (RepMemoryUsageLeaf(next_node, &total_mem_usage)) {

@ -206,7 +206,32 @@ class CordTestPeer {
ABSL_NAMESPACE_END
} // namespace absl
TEST(Cord, AllFlatSizes) {
// The CordTest fixture runs all tests with and without Cord Btree enabled.
class CordTest : public testing::TestWithParam<bool> {
public:
CordTest() : was_btree_(absl::cord_internal::cord_btree_enabled.load()) {
absl::cord_internal::cord_btree_enabled.store(UseBtree());
}
~CordTest() override {
absl::cord_internal::cord_btree_enabled.store(was_btree_);
}
// Returns true if test is running with btree enabled.
bool UseBtree() const { return GetParam(); }
// Returns human readable string representation of the test parameter.
static std::string ToString(testing::TestParamInfo<bool> param) {
return param.param ? "Btree" : "Concat";
}
private:
const bool was_btree_;
};
INSTANTIATE_TEST_SUITE_P(WithParam, CordTest, testing::Bool(),
CordTest::ToString);
TEST_P(CordTest, AllFlatSizes) {
using absl::strings_internal::CordTestAccess;
for (size_t s = 0; s < CordTestAccess::MaxFlatLength(); s++) {
@ -224,7 +249,7 @@ TEST(Cord, AllFlatSizes) {
// We create a Cord at least 128GB in size using the fact that Cords can
// internally reference-count; thus the Cord is enormous without actually
// consuming very much memory.
TEST(GigabyteCord, FromExternal) {
TEST_P(CordTest, GigabyteCordFromExternal) {
const size_t one_gig = 1024U * 1024U * 1024U;
size_t max_size = 2 * one_gig;
if (sizeof(max_size) > 4) max_size = 128 * one_gig;
@ -273,7 +298,7 @@ static absl::Cord MakeExternalCord(int size) {
extern bool my_unique_true_boolean;
bool my_unique_true_boolean = true;
TEST(Cord, Assignment) {
TEST_P(CordTest, Assignment) {
absl::Cord x(absl::string_view("hi there"));
absl::Cord y(x);
ASSERT_EQ(std::string(x), "hi there");
@ -327,7 +352,7 @@ TEST(Cord, Assignment) {
}
}
TEST(Cord, StartsEndsWith) {
TEST_P(CordTest, StartsEndsWith) {
absl::Cord x(absl::string_view("abcde"));
absl::Cord empty("");
@ -360,7 +385,7 @@ TEST(Cord, StartsEndsWith) {
ASSERT_TRUE(!empty.EndsWith("xyz"));
}
TEST(Cord, Subcord) {
TEST_P(CordTest, Subcord) {
RandomEngine rng(GTEST_FLAG_GET(random_seed));
const std::string s = RandomLowercaseString(&rng, 1024);
@ -421,7 +446,7 @@ TEST(Cord, Subcord) {
EXPECT_TRUE(sa.empty());
}
TEST(Cord, Swap) {
TEST_P(CordTest, Swap) {
absl::string_view a("Dexter");
absl::string_view b("Mandark");
absl::Cord x(a);
@ -453,7 +478,7 @@ static void VerifyCopyToString(const absl::Cord& cord) {
}
}
TEST(Cord, CopyToString) {
TEST_P(CordTest, CopyToString) {
VerifyCopyToString(absl::Cord());
VerifyCopyToString(absl::Cord("small cord"));
VerifyCopyToString(
@ -461,45 +486,45 @@ TEST(Cord, CopyToString) {
"copying ", "to ", "a ", "string."}));
}
TEST(TryFlat, Empty) {
TEST_P(CordTest, TryFlatEmpty) {
absl::Cord c;
EXPECT_EQ(c.TryFlat(), "");
}
TEST(TryFlat, Flat) {
TEST_P(CordTest, TryFlatFlat) {
absl::Cord c("hello");
EXPECT_EQ(c.TryFlat(), "hello");
}
TEST(TryFlat, SubstrInlined) {
TEST_P(CordTest, TryFlatSubstrInlined) {
absl::Cord c("hello");
c.RemovePrefix(1);
EXPECT_EQ(c.TryFlat(), "ello");
}
TEST(TryFlat, SubstrFlat) {
TEST_P(CordTest, TryFlatSubstrFlat) {
absl::Cord c("longer than 15 bytes");
absl::Cord sub = absl::CordTestPeer::MakeSubstring(c, 1, c.size() - 1);
EXPECT_EQ(sub.TryFlat(), "onger than 15 bytes");
}
TEST(TryFlat, Concat) {
TEST_P(CordTest, TryFlatConcat) {
absl::Cord c = absl::MakeFragmentedCord({"hel", "lo"});
EXPECT_EQ(c.TryFlat(), absl::nullopt);
}
TEST(TryFlat, External) {
TEST_P(CordTest, TryFlatExternal) {
absl::Cord c = absl::MakeCordFromExternal("hell", [](absl::string_view) {});
EXPECT_EQ(c.TryFlat(), "hell");
}
TEST(TryFlat, SubstrExternal) {
TEST_P(CordTest, TryFlatSubstrExternal) {
absl::Cord c = absl::MakeCordFromExternal("hell", [](absl::string_view) {});
absl::Cord sub = absl::CordTestPeer::MakeSubstring(c, 1, c.size() - 1);
EXPECT_EQ(sub.TryFlat(), "ell");
}
TEST(TryFlat, SubstrConcat) {
TEST_P(CordTest, TryFlatSubstrConcat) {
absl::Cord c = absl::MakeFragmentedCord({"hello", " world"});
absl::Cord sub = absl::CordTestPeer::MakeSubstring(c, 1, c.size() - 1);
EXPECT_EQ(sub.TryFlat(), absl::nullopt);
@ -507,7 +532,7 @@ TEST(TryFlat, SubstrConcat) {
EXPECT_EQ(c.TryFlat(), absl::nullopt);
}
TEST(TryFlat, CommonlyAssumedInvariants) {
TEST_P(CordTest, TryFlatCommonlyAssumedInvariants) {
// The behavior tested below is not part of the API contract of Cord, but it's
// something we intend to be true in our current implementation. This test
// exists to detect and prevent accidental breakage of the implementation.
@ -563,7 +588,7 @@ static void VerifyFlatten(absl::Cord c) {
EXPECT_TRUE(IsFlat(c));
}
TEST(Cord, Flatten) {
TEST_P(CordTest, Flatten) {
VerifyFlatten(absl::Cord());
VerifyFlatten(absl::Cord("small cord"));
VerifyFlatten(absl::Cord("larger than small buffer optimization"));
@ -617,7 +642,7 @@ class TestData {
};
} // namespace
TEST(Cord, MultipleLengths) {
TEST_P(CordTest, MultipleLengths) {
TestData d;
for (size_t i = 0; i < d.size(); i++) {
std::string a = d.data(i);
@ -693,7 +718,7 @@ TEST(Cord, MultipleLengths) {
namespace {
TEST(Cord, RemoveSuffixWithExternalOrSubstring) {
TEST_P(CordTest, RemoveSuffixWithExternalOrSubstring) {
absl::Cord cord = absl::MakeCordFromExternal(
"foo bar baz", [](absl::string_view s) { DoNothing(s, nullptr); });
@ -708,7 +733,7 @@ TEST(Cord, RemoveSuffixWithExternalOrSubstring) {
EXPECT_EQ("foo", std::string(cord));
}
TEST(Cord, RemoveSuffixMakesZeroLengthNode) {
TEST_P(CordTest, RemoveSuffixMakesZeroLengthNode) {
absl::Cord c;
c.Append(absl::Cord(std::string(100, 'x')));
absl::Cord other_ref = c; // Prevent inplace appends
@ -735,7 +760,7 @@ absl::Cord CordWithZedBlock(size_t size) {
}
// Establish that ZedBlock does what we think it does.
TEST(CordSpliceTest, ZedBlock) {
TEST_P(CordTest, CordSpliceTestZedBlock) {
absl::Cord blob = CordWithZedBlock(10);
EXPECT_EQ(10, blob.size());
std::string s;
@ -743,7 +768,7 @@ TEST(CordSpliceTest, ZedBlock) {
EXPECT_EQ("zzzzzzzzzz", s);
}
TEST(CordSpliceTest, ZedBlock0) {
TEST_P(CordTest, CordSpliceTestZedBlock0) {
absl::Cord blob = CordWithZedBlock(0);
EXPECT_EQ(0, blob.size());
std::string s;
@ -751,7 +776,7 @@ TEST(CordSpliceTest, ZedBlock0) {
EXPECT_EQ("", s);
}
TEST(CordSpliceTest, ZedBlockSuffix1) {
TEST_P(CordTest, CordSpliceTestZedBlockSuffix1) {
absl::Cord blob = CordWithZedBlock(10);
EXPECT_EQ(10, blob.size());
absl::Cord suffix(blob);
@ -763,7 +788,7 @@ TEST(CordSpliceTest, ZedBlockSuffix1) {
}
// Remove all of a prefix block
TEST(CordSpliceTest, ZedBlockSuffix0) {
TEST_P(CordTest, CordSpliceTestZedBlockSuffix0) {
absl::Cord blob = CordWithZedBlock(10);
EXPECT_EQ(10, blob.size());
absl::Cord suffix(blob);
@ -795,7 +820,7 @@ absl::Cord SpliceCord(const absl::Cord& blob, int64_t offset,
}
// Taking an empty suffix of a block breaks appending.
TEST(CordSpliceTest, RemoveEntireBlock1) {
TEST_P(CordTest, CordSpliceTestRemoveEntireBlock1) {
absl::Cord zero = CordWithZedBlock(10);
absl::Cord suffix(zero);
suffix.RemovePrefix(10);
@ -803,7 +828,7 @@ TEST(CordSpliceTest, RemoveEntireBlock1) {
result.Append(suffix);
}
TEST(CordSpliceTest, RemoveEntireBlock2) {
TEST_P(CordTest, CordSpliceTestRemoveEntireBlock2) {
absl::Cord zero = CordWithZedBlock(10);
absl::Cord prefix(zero);
prefix.RemoveSuffix(10);
@ -813,7 +838,7 @@ TEST(CordSpliceTest, RemoveEntireBlock2) {
result.Append(suffix);
}
TEST(CordSpliceTest, RemoveEntireBlock3) {
TEST_P(CordTest, CordSpliceTestRemoveEntireBlock3) {
absl::Cord blob = CordWithZedBlock(10);
absl::Cord block = BigCord(10, 'b');
blob = SpliceCord(blob, 0, block);
@ -844,7 +869,7 @@ void VerifyComparison(const CordCompareTestCase& test_case) {
<< "LHS=" << rhs_string << "; RHS=" << lhs_string;
}
TEST(Cord, Compare) {
TEST_P(CordTest, Compare) {
absl::Cord subcord("aaaaaBBBBBcccccDDDDD");
subcord = subcord.Subcord(3, 10);
@ -907,7 +932,7 @@ TEST(Cord, Compare) {
}
}
TEST(Cord, CompareAfterAssign) {
TEST_P(CordTest, CompareAfterAssign) {
absl::Cord a("aaaaaa1111111");
absl::Cord b("aaaaaa2222222");
a = "cccccc";
@ -936,7 +961,7 @@ static void TestCompare(const absl::Cord& c, const absl::Cord& d,
EXPECT_EQ(expected, sign(c.Compare(d))) << c << ", " << d;
}
TEST(Compare, ComparisonIsUnsigned) {
TEST_P(CordTest, CompareComparisonIsUnsigned) {
RandomEngine rng(GTEST_FLAG_GET(random_seed));
std::uniform_int_distribution<uint32_t> uniform_uint8(0, 255);
char x = static_cast<char>(uniform_uint8(rng));
@ -945,7 +970,7 @@ TEST(Compare, ComparisonIsUnsigned) {
absl::Cord(std::string(GetUniformRandomUpTo(&rng, 100), x ^ 0x80)), &rng);
}
TEST(Compare, RandomComparisons) {
TEST_P(CordTest, CompareRandomComparisons) {
const int kIters = 5000;
RandomEngine rng(GTEST_FLAG_GET(random_seed));
@ -1003,43 +1028,43 @@ void CompareOperators() {
EXPECT_FALSE(b <= a);
}
TEST(ComparisonOperators, Cord_Cord) {
TEST_P(CordTest, ComparisonOperators_Cord_Cord) {
CompareOperators<absl::Cord, absl::Cord>();
}
TEST(ComparisonOperators, Cord_StringPiece) {
TEST_P(CordTest, ComparisonOperators_Cord_StringPiece) {
CompareOperators<absl::Cord, absl::string_view>();
}
TEST(ComparisonOperators, StringPiece_Cord) {
TEST_P(CordTest, ComparisonOperators_StringPiece_Cord) {
CompareOperators<absl::string_view, absl::Cord>();
}
TEST(ComparisonOperators, Cord_string) {
TEST_P(CordTest, ComparisonOperators_Cord_string) {
CompareOperators<absl::Cord, std::string>();
}
TEST(ComparisonOperators, string_Cord) {
TEST_P(CordTest, ComparisonOperators_string_Cord) {
CompareOperators<std::string, absl::Cord>();
}
TEST(ComparisonOperators, stdstring_Cord) {
TEST_P(CordTest, ComparisonOperators_stdstring_Cord) {
CompareOperators<std::string, absl::Cord>();
}
TEST(ComparisonOperators, Cord_stdstring) {
TEST_P(CordTest, ComparisonOperators_Cord_stdstring) {
CompareOperators<absl::Cord, std::string>();
}
TEST(ComparisonOperators, charstar_Cord) {
TEST_P(CordTest, ComparisonOperators_charstar_Cord) {
CompareOperators<const char*, absl::Cord>();
}
TEST(ComparisonOperators, Cord_charstar) {
TEST_P(CordTest, ComparisonOperators_Cord_charstar) {
CompareOperators<absl::Cord, const char*>();
}
TEST(ConstructFromExternal, ReleaserInvoked) {
TEST_P(CordTest, ConstructFromExternalReleaserInvoked) {
// Empty external memory means the releaser should be called immediately.
{
bool invoked = false;
@ -1081,7 +1106,7 @@ TEST(ConstructFromExternal, ReleaserInvoked) {
}
}
TEST(ConstructFromExternal, CompareContents) {
TEST_P(CordTest, ConstructFromExternalCompareContents) {
RandomEngine rng(GTEST_FLAG_GET(random_seed));
for (int length = 1; length <= 2048; length *= 2) {
@ -1097,7 +1122,7 @@ TEST(ConstructFromExternal, CompareContents) {
}
}
TEST(ConstructFromExternal, LargeReleaser) {
TEST_P(CordTest, ConstructFromExternalLargeReleaser) {
RandomEngine rng(GTEST_FLAG_GET(random_seed));
constexpr size_t kLength = 256;
std::string data = RandomLowercaseString(&rng, kLength);
@ -1112,7 +1137,7 @@ TEST(ConstructFromExternal, LargeReleaser) {
EXPECT_TRUE(invoked);
}
TEST(ConstructFromExternal, FunctionPointerReleaser) {
TEST_P(CordTest, ConstructFromExternalFunctionPointerReleaser) {
static absl::string_view data("hello world");
static bool invoked;
auto* releaser =
@ -1129,7 +1154,7 @@ TEST(ConstructFromExternal, FunctionPointerReleaser) {
EXPECT_TRUE(invoked);
}
TEST(ConstructFromExternal, MoveOnlyReleaser) {
TEST_P(CordTest, ConstructFromExternalMoveOnlyReleaser) {
struct Releaser {
explicit Releaser(bool* invoked) : invoked(invoked) {}
Releaser(Releaser&& other) noexcept : invoked(other.invoked) {}
@ -1143,20 +1168,20 @@ TEST(ConstructFromExternal, MoveOnlyReleaser) {
EXPECT_TRUE(invoked);
}
TEST(ConstructFromExternal, NoArgLambda) {
TEST_P(CordTest, ConstructFromExternalNoArgLambda) {
bool invoked = false;
(void)absl::MakeCordFromExternal("dummy", [&invoked]() { invoked = true; });
EXPECT_TRUE(invoked);
}
TEST(ConstructFromExternal, StringViewArgLambda) {
TEST_P(CordTest, ConstructFromExternalStringViewArgLambda) {
bool invoked = false;
(void)absl::MakeCordFromExternal(
"dummy", [&invoked](absl::string_view) { invoked = true; });
EXPECT_TRUE(invoked);
}
TEST(ConstructFromExternal, NonTrivialReleaserDestructor) {
TEST_P(CordTest, ConstructFromExternalNonTrivialReleaserDestructor) {
struct Releaser {
explicit Releaser(bool* destroyed) : destroyed(destroyed) {}
~Releaser() { *destroyed = true; }
@ -1171,7 +1196,7 @@ TEST(ConstructFromExternal, NonTrivialReleaserDestructor) {
EXPECT_TRUE(destroyed);
}
TEST(ConstructFromExternal, ReferenceQualifierOverloads) {
TEST_P(CordTest, ConstructFromExternalReferenceQualifierOverloads) {
struct Releaser {
void operator()(absl::string_view) & { *lvalue_invoked = true; }
void operator()(absl::string_view) && { *rvalue_invoked = true; }
@ -1199,7 +1224,7 @@ TEST(ConstructFromExternal, ReferenceQualifierOverloads) {
EXPECT_TRUE(rvalue_invoked);
}
TEST(ExternalMemory, BasicUsage) {
TEST_P(CordTest, ExternalMemoryBasicUsage) {
static const char* strings[] = {"", "hello", "there"};
for (const char* str : strings) {
absl::Cord dst("(prefix)");
@ -1210,7 +1235,7 @@ TEST(ExternalMemory, BasicUsage) {
}
}
TEST(ExternalMemory, RemovePrefixSuffix) {
TEST_P(CordTest, ExternalMemoryRemovePrefixSuffix) {
// Exhaustively try all sub-strings.
absl::Cord cord = MakeComposite();
std::string s = std::string(cord);
@ -1225,7 +1250,7 @@ TEST(ExternalMemory, RemovePrefixSuffix) {
}
}
TEST(ExternalMemory, Get) {
TEST_P(CordTest, ExternalMemoryGet) {
absl::Cord cord("hello");
AddExternalMemory(" world!", &cord);
AddExternalMemory(" how are ", &cord);
@ -1244,16 +1269,16 @@ TEST(ExternalMemory, Get) {
// Additionally we have some whiteboxed expectations based on our knowledge of
// the layout and size of empty and inlined cords, and flat nodes.
TEST(CordMemoryUsage, Empty) {
TEST_P(CordTest, CordMemoryUsageEmpty) {
EXPECT_EQ(sizeof(absl::Cord), absl::Cord().EstimatedMemoryUsage());
}
TEST(CordMemoryUsage, Embedded) {
TEST_P(CordTest, CordMemoryUsageEmbedded) {
absl::Cord a("hello");
EXPECT_EQ(a.EstimatedMemoryUsage(), sizeof(absl::Cord));
}
TEST(CordMemoryUsage, EmbeddedAppend) {
TEST_P(CordTest, CordMemoryUsageEmbeddedAppend) {
absl::Cord a("a");
absl::Cord b("bcd");
EXPECT_EQ(b.EstimatedMemoryUsage(), sizeof(absl::Cord));
@ -1261,7 +1286,7 @@ TEST(CordMemoryUsage, EmbeddedAppend) {
EXPECT_EQ(a.EstimatedMemoryUsage(), sizeof(absl::Cord));
}
TEST(CordMemoryUsage, ExternalMemory) {
TEST_P(CordTest, CordMemoryUsageExternalMemory) {
static const int kLength = 1000;
absl::Cord cord;
AddExternalMemory(std::string(kLength, 'x'), &cord);
@ -1269,14 +1294,14 @@ TEST(CordMemoryUsage, ExternalMemory) {
EXPECT_LE(cord.EstimatedMemoryUsage(), kLength * 1.5);
}
TEST(CordMemoryUsage, Flat) {
TEST_P(CordTest, CordMemoryUsageFlat) {
static const int kLength = 125;
absl::Cord a(std::string(kLength, 'a'));
EXPECT_GT(a.EstimatedMemoryUsage(), kLength);
EXPECT_LE(a.EstimatedMemoryUsage(), kLength * 1.5);
}
TEST(CordMemoryUsage, AppendFlat) {
TEST_P(CordTest, CordMemoryUsageAppendFlat) {
using absl::strings_internal::CordTestAccess;
absl::Cord a(std::string(CordTestAccess::MaxFlatLength(), 'a'));
size_t length = a.EstimatedMemoryUsage();
@ -1286,9 +1311,32 @@ TEST(CordMemoryUsage, AppendFlat) {
EXPECT_LE(delta, CordTestAccess::MaxFlatLength() * 1.5);
}
TEST_P(CordTest, CordMemoryUsageAppendExternal) {
static const int kLength = 1000;
using absl::strings_internal::CordTestAccess;
absl::Cord a(std::string(CordTestAccess::MaxFlatLength(), 'a'));
size_t length = a.EstimatedMemoryUsage();
AddExternalMemory(std::string(kLength, 'b'), &a);
size_t delta = a.EstimatedMemoryUsage() - length;
EXPECT_GT(delta, kLength);
EXPECT_LE(delta, kLength * 1.5);
}
TEST_P(CordTest, CordMemoryUsageSubString) {
static const int kLength = 2000;
using absl::strings_internal::CordTestAccess;
absl::Cord a(std::string(kLength, 'a'));
size_t length = a.EstimatedMemoryUsage();
AddExternalMemory(std::string(kLength, 'b'), &a);
absl::Cord b = a.Subcord(0, kLength + kLength / 2);
size_t delta = b.EstimatedMemoryUsage() - length;
EXPECT_GT(delta, kLength);
EXPECT_LE(delta, kLength * 1.5);
}
// Regtest for a change that had to be rolled back because it expanded out
// of the InlineRep too soon, which was observable through MemoryUsage().
TEST(CordMemoryUsage, InlineRep) {
TEST_P(CordTest, CordMemoryUsageInlineRep) {
constexpr size_t kMaxInline = 15; // Cord::InlineRep::N
const std::string small_string(kMaxInline, 'x');
absl::Cord c1(small_string);
@ -1302,7 +1350,7 @@ TEST(CordMemoryUsage, InlineRep) {
} // namespace
// Regtest for 7510292 (fix a bug introduced by 7465150)
TEST(Cord, Concat_Append) {
TEST_P(CordTest, Concat_Append) {
// Create a rep of type CONCAT
absl::Cord s1("foobarbarbarbarbar");
s1.Append("abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefg");
@ -1317,7 +1365,7 @@ TEST(Cord, Concat_Append) {
EXPECT_EQ(s2.size(), size + 1);
}
TEST(Cord, DiabolicalGrowth) {
TEST_P(CordTest, DiabolicalGrowth) {
// This test exercises a diabolical Append(<one char>) on a cord, making the
// cord shared before each Append call resulting in a terribly fragmented
// resulting cord.
@ -1337,7 +1385,7 @@ TEST(Cord, DiabolicalGrowth) {
cord.EstimatedMemoryUsage());
}
TEST(MakeFragmentedCord, MakeFragmentedCordFromInitializerList) {
TEST_P(CordTest, MakeFragmentedCordFromInitializerList) {
absl::Cord fragmented =
absl::MakeFragmentedCord({"A ", "fragmented ", "Cord"});
@ -1357,7 +1405,7 @@ TEST(MakeFragmentedCord, MakeFragmentedCordFromInitializerList) {
ASSERT_TRUE(++chunk_it == fragmented.chunk_end());
}
TEST(MakeFragmentedCord, MakeFragmentedCordFromVector) {
TEST_P(CordTest, MakeFragmentedCordFromVector) {
std::vector<absl::string_view> chunks = {"A ", "fragmented ", "Cord"};
absl::Cord fragmented = absl::MakeFragmentedCord(chunks);
@ -1377,7 +1425,7 @@ TEST(MakeFragmentedCord, MakeFragmentedCordFromVector) {
ASSERT_TRUE(++chunk_it == fragmented.chunk_end());
}
TEST(CordChunkIterator, Traits) {
TEST_P(CordTest, CordChunkIteratorTraits) {
static_assert(std::is_copy_constructible<absl::Cord::ChunkIterator>::value,
"");
static_assert(std::is_copy_assignable<absl::Cord::ChunkIterator>::value, "");
@ -1458,7 +1506,7 @@ static void VerifyChunkIterator(const absl::Cord& cord,
EXPECT_TRUE(post_iter == cord.chunk_end()); // NOLINT
}
TEST(CordChunkIterator, Operations) {
TEST_P(CordTest, CordChunkIteratorOperations) {
absl::Cord empty_cord;
VerifyChunkIterator(empty_cord, 0);
@ -1628,7 +1676,7 @@ TEST(CordCharIterator, Operations) {
VerifyCharIterator(subcords);
}
TEST(Cord, StreamingOutput) {
TEST_P(CordTest, StreamingOutput) {
absl::Cord c =
absl::MakeFragmentedCord({"A ", "small ", "fragmented ", "Cord", "."});
std::stringstream output;
@ -1636,7 +1684,7 @@ TEST(Cord, StreamingOutput) {
EXPECT_EQ("A small fragmented Cord.", output.str());
}
TEST(Cord, ForEachChunk) {
TEST_P(CordTest, ForEachChunk) {
for (int num_elements : {1, 10, 200}) {
SCOPED_TRACE(num_elements);
std::vector<std::string> cord_chunks;
@ -1654,7 +1702,7 @@ TEST(Cord, ForEachChunk) {
}
}
TEST(Cord, SmallBufferAssignFromOwnData) {
TEST_P(CordTest, SmallBufferAssignFromOwnData) {
constexpr size_t kMaxInline = 15;
std::string contents = "small buff cord";
EXPECT_EQ(contents.size(), kMaxInline);
@ -1669,7 +1717,7 @@ TEST(Cord, SmallBufferAssignFromOwnData) {
}
}
TEST(Cord, Format) {
TEST_P(CordTest, Format) {
absl::Cord c;
absl::Format(&c, "There were %04d little %s.", 3, "pigs");
EXPECT_EQ(c, "There were 0003 little pigs.");
@ -1770,7 +1818,7 @@ struct LongView {
};
TEST(Cord, ConstinitConstructor) {
TEST_P(CordTest, ConstinitConstructor) {
TestConstinitConstructor(
absl::strings_internal::MakeStringConstant(ShortView{}));
TestConstinitConstructor(

@ -216,6 +216,14 @@ struct CordRep {
// padding space from the base class (clang and gcc do, MSVC does not, etc)
uint8_t storage[3];
// Returns true if this instance's tag matches the requested type.
constexpr bool IsRing() const { return tag == RING; }
constexpr bool IsConcat() const { return tag == CONCAT; }
constexpr bool IsSubstring() const { return tag == SUBSTRING; }
constexpr bool IsExternal() const { return tag == EXTERNAL; }
constexpr bool IsFlat() const { return tag >= FLAT; }
constexpr bool IsBtree() const { return tag == BTREE; }
inline CordRepRing* ring();
inline const CordRepRing* ring() const;
inline CordRepConcat* concat();
@ -226,7 +234,6 @@ struct CordRep {
inline const CordRepExternal* external() const;
inline CordRepFlat* flat();
inline const CordRepFlat* flat() const;
inline CordRepBtree* btree();
inline const CordRepBtree* btree() const;
@ -277,7 +284,7 @@ struct CordRepExternal : public CordRep {
ExternalReleaserInvoker releaser_invoker;
// Deletes (releases) the external rep.
// Requires rep != nullptr and rep->tag == EXTERNAL
// Requires rep != nullptr and rep->IsExternal()
static void Delete(CordRep* rep);
};
@ -320,7 +327,7 @@ struct CordRepExternalImpl
};
inline void CordRepExternal::Delete(CordRep* rep) {
assert(rep != nullptr && rep->tag == EXTERNAL);
assert(rep != nullptr && rep->IsExternal());
auto* rep_external = static_cast<CordRepExternal*>(rep);
assert(rep_external->releaser_invoker != nullptr);
rep_external->releaser_invoker(rep_external);
@ -531,32 +538,32 @@ class InlineData {
static_assert(sizeof(InlineData) == kMaxInline + 1, "");
inline CordRepConcat* CordRep::concat() {
assert(tag == CONCAT);
assert(IsConcat());
return static_cast<CordRepConcat*>(this);
}
inline const CordRepConcat* CordRep::concat() const {
assert(tag == CONCAT);
assert(IsConcat());
return static_cast<const CordRepConcat*>(this);
}
inline CordRepSubstring* CordRep::substring() {
assert(tag == SUBSTRING);
assert(IsSubstring());
return static_cast<CordRepSubstring*>(this);
}
inline const CordRepSubstring* CordRep::substring() const {
assert(tag == SUBSTRING);
assert(IsSubstring());
return static_cast<const CordRepSubstring*>(this);
}
inline CordRepExternal* CordRep::external() {
assert(tag == EXTERNAL);
assert(IsExternal());
return static_cast<CordRepExternal*>(this);
}
inline const CordRepExternal* CordRep::external() const {
assert(tag == EXTERNAL);
assert(IsExternal());
return static_cast<const CordRepExternal*>(this);
}

@ -79,7 +79,7 @@ void DumpAll(const CordRep* rep, bool include_contents, std::ostream& stream,
// indented by two spaces per recursive depth.
stream << std::string(depth * 2, ' ') << sharing << " (" << sptr << ") ";
if (rep->tag == BTREE) {
if (rep->IsBtree()) {
const CordRepBtree* node = rep->btree();
std::string label =
node->height() ? absl::StrCat("Node(", node->height(), ")") : "Leaf";
@ -378,7 +378,7 @@ bool CordRepBtree::IsValid(const CordRepBtree* tree, bool shallow) {
}
NODE_CHECK_VALID(tree != nullptr);
NODE_CHECK_EQ(tree->tag, BTREE);
NODE_CHECK_VALID(tree->IsBtree());
NODE_CHECK_VALID(tree->height() <= kMaxHeight);
NODE_CHECK_VALID(tree->begin() < tree->capacity());
NODE_CHECK_VALID(tree->end() <= tree->capacity());
@ -387,7 +387,7 @@ bool CordRepBtree::IsValid(const CordRepBtree* tree, bool shallow) {
for (CordRep* edge : tree->Edges()) {
NODE_CHECK_VALID(edge != nullptr);
if (tree->height() > 0) {
NODE_CHECK_VALID(edge->tag == BTREE);
NODE_CHECK_VALID(edge->IsBtree());
NODE_CHECK_VALID(edge->btree()->height() == tree->height() - 1);
} else {
NODE_CHECK_VALID(IsDataEdge(edge));
@ -889,7 +889,7 @@ Span<char> CordRepBtree::GetAppendBufferSlow(size_t size) {
}
CordRepBtree* CordRepBtree::CreateSlow(CordRep* rep) {
if (rep->tag == BTREE) return rep->btree();
if (rep->IsBtree()) return rep->btree();
CordRepBtree* node = nullptr;
auto consume = [&node](CordRep* r, size_t offset, size_t length) {
@ -905,7 +905,7 @@ CordRepBtree* CordRepBtree::CreateSlow(CordRep* rep) {
}
CordRepBtree* CordRepBtree::AppendSlow(CordRepBtree* tree, CordRep* rep) {
if (ABSL_PREDICT_TRUE(rep->tag == BTREE)) {
if (ABSL_PREDICT_TRUE(rep->IsBtree())) {
return MergeTrees(tree, rep->btree());
}
auto consume = [&tree](CordRep* r, size_t offset, size_t length) {
@ -917,7 +917,7 @@ CordRepBtree* CordRepBtree::AppendSlow(CordRepBtree* tree, CordRep* rep) {
}
CordRepBtree* CordRepBtree::PrependSlow(CordRepBtree* tree, CordRep* rep) {
if (ABSL_PREDICT_TRUE(rep->tag == BTREE)) {
if (ABSL_PREDICT_TRUE(rep->IsBtree())) {
return MergeTrees(rep->btree(), tree);
}
auto consume = [&tree](CordRep* r, size_t offset, size_t length) {

@ -153,7 +153,7 @@ class CordRepBtree : public CordRep {
};
// Creates a btree from the given input. Adopts a ref of `rep`.
// If the input `rep` is itself a btree, i.e., `tag == BTREE`, then this
// If the input `rep` is itself a btree, i.e., `IsBtree()`, then this
// function immediately returns `rep->btree()`. If the input is a valid data
// edge (see IsDataEdge()), then a new leaf node is returned containing `rep`
// as the sole data edge. Else, the input is assumed to be a (legacy) concat
@ -514,12 +514,12 @@ class CordRepBtree : public CordRep {
};
inline CordRepBtree* CordRep::btree() {
assert(tag == BTREE);
assert(IsBtree());
return static_cast<CordRepBtree*>(this);
}
inline const CordRepBtree* CordRep::btree() const {
assert(tag == BTREE);
assert(IsBtree());
return static_cast<const CordRepBtree*>(this);
}
@ -589,7 +589,7 @@ inline CordRepBtree* CordRepBtree::New(int height) {
inline CordRepBtree* CordRepBtree::New(CordRep* rep) {
CordRepBtree* tree = new CordRepBtree;
int height = rep->tag == BTREE ? rep->btree()->height() + 1 : 0;
int height = rep->IsBtree() ? rep->btree()->height() + 1 : 0;
tree->length = rep->length;
tree->InitInstance(height, /*begin=*/0, /*end=*/1);
tree->edges_[0] = rep;

@ -40,7 +40,7 @@ using index_type = CordRepRing::index_type;
enum class Direction { kForward, kReversed };
inline bool IsFlatOrExternal(CordRep* rep) {
return rep->tag >= FLAT || rep->tag == EXTERNAL;
return rep->IsFlat() || rep->IsExternal();
}
// Verifies that n + extra <= kMaxCapacity: throws std::length_error otherwise.
@ -229,7 +229,7 @@ void CordRepRing::SetCapacityForTesting(size_t capacity) {
}
void CordRepRing::Delete(CordRepRing* rep) {
assert(rep != nullptr && rep->tag == RING);
assert(rep != nullptr && rep->IsRing());
#if defined(__cpp_sized_deallocation)
size_t size = AllocSize(rep->capacity_);
rep->~CordRepRing();
@ -360,7 +360,7 @@ CordRepRing* CordRepRing::Create(CordRep* child, size_t extra) {
if (IsFlatOrExternal(child)) {
return CreateFromLeaf(child, 0, length, extra);
}
if (child->tag == RING) {
if (child->IsRing()) {
return Mutable(child->ring(), extra);
}
return CreateSlow(child, extra);
@ -433,7 +433,7 @@ CordRepRing* CordRepRing::AddRing(CordRepRing* rep, CordRepRing* ring,
CordRepRing* CordRepRing::AppendSlow(CordRepRing* rep, CordRep* child) {
Consume(child, [&rep](CordRep* child_arg, size_t offset, size_t len) {
if (child_arg->tag == RING) {
if (child_arg->IsRing()) {
rep = AddRing<AddMode::kAppend>(rep, child_arg->ring(), offset, len);
} else {
rep = AppendLeaf(rep, child_arg, offset, len);
@ -460,7 +460,7 @@ CordRepRing* CordRepRing::Append(CordRepRing* rep, CordRep* child) {
if (IsFlatOrExternal(child)) {
return AppendLeaf(rep, child, 0, length);
}
if (child->tag == RING) {
if (child->IsRing()) {
return AddRing<AddMode::kAppend>(rep, child->ring(), 0, length);
}
return AppendSlow(rep, child);
@ -496,7 +496,7 @@ CordRepRing* CordRepRing::Prepend(CordRepRing* rep, CordRep* child) {
if (IsFlatOrExternal(child)) {
return PrependLeaf(rep, child, 0, length);
}
if (child->tag == RING) {
if (child->IsRing()) {
return AddRing<AddMode::kPrepend>(rep, child->ring(), 0, length);
}
return PrependSlow(rep, child);

@ -570,12 +570,12 @@ inline CordRepRing::Position CordRepRing::FindTail(index_type head,
// Now that CordRepRing is defined, we can define CordRep's helper casts:
inline CordRepRing* CordRep::ring() {
assert(tag == RING);
assert(IsRing());
return static_cast<CordRepRing*>(this);
}
inline const CordRepRing* CordRep::ring() const {
assert(tag == RING);
assert(IsRing());
return static_cast<const CordRepRing*>(this);
}

Loading…
Cancel
Save