Project import generated by Copybara.

GitOrigin-RevId: d89dba27e3
Change-Id: I0eae80578a93a580820bc90d42e6b42faf7fde0a
lts_2018_06_20 20180600
Abseil Team 7 years ago committed by Shaindel Schwartz
parent e5be80532b
commit 6c7de165d1
  1. 13
      LTS.md
  2. 17
      WORKSPACE
  3. 2
      absl/algorithm/algorithm.h
  4. 2
      absl/algorithm/container.h
  5. 5
      absl/base/BUILD.bazel
  6. 2
      absl/base/bit_cast_test.cc
  7. 2
      absl/base/call_once.h
  8. 2
      absl/base/call_once_test.cc
  9. 2
      absl/base/casts.h
  10. 2
      absl/base/inline_variable_test.cc
  11. 2
      absl/base/inline_variable_test_a.cc
  12. 2
      absl/base/inline_variable_test_b.cc
  13. 2
      absl/base/internal/atomic_hook.h
  14. 2
      absl/base/internal/cycleclock.cc
  15. 2
      absl/base/internal/cycleclock.h
  16. 4
      absl/base/internal/direct_mmap.h
  17. 2
      absl/base/internal/endian.h
  18. 2
      absl/base/internal/endian_test.cc
  19. 2
      absl/base/internal/hide_ptr.h
  20. 6
      absl/base/internal/identity.h
  21. 2
      absl/base/internal/inline_variable_testing.h
  22. 2
      absl/base/internal/invoke.h
  23. 2
      absl/base/internal/low_level_alloc.cc
  24. 2
      absl/base/internal/low_level_alloc.h
  25. 2
      absl/base/internal/low_level_alloc_test.cc
  26. 2
      absl/base/internal/low_level_scheduling.h
  27. 2
      absl/base/internal/raw_logging.cc
  28. 2
      absl/base/internal/raw_logging.h
  29. 2
      absl/base/internal/scheduling_mode.h
  30. 2
      absl/base/internal/spinlock.cc
  31. 2
      absl/base/internal/spinlock.h
  32. 2
      absl/base/internal/spinlock_wait.cc
  33. 4
      absl/base/internal/spinlock_wait.h
  34. 2
      absl/base/internal/sysinfo.cc
  35. 2
      absl/base/internal/sysinfo.h
  36. 2
      absl/base/internal/sysinfo_test.cc
  37. 2
      absl/base/internal/thread_identity.cc
  38. 2
      absl/base/internal/thread_identity.h
  39. 2
      absl/base/internal/thread_identity_test.cc
  40. 2
      absl/base/internal/throw_delegate.cc
  41. 2
      absl/base/internal/throw_delegate.h
  42. 8
      absl/base/internal/unaligned_access.h
  43. 2
      absl/base/internal/unscaledcycleclock.cc
  44. 2
      absl/base/internal/unscaledcycleclock.h
  45. 2
      absl/base/invoke_test.cc
  46. 2
      absl/base/log_severity.h
  47. 9
      absl/base/macros.h
  48. 2
      absl/base/spinlock_test_common.cc
  49. 2
      absl/container/fixed_array.h
  50. 2
      absl/container/inlined_vector.h
  51. 37
      absl/container/inlined_vector_benchmark.cc
  52. 2
      absl/container/internal/test_instance_tracker.cc
  53. 2
      absl/container/internal/test_instance_tracker.h
  54. 2
      absl/debugging/failure_signal_handler.cc
  55. 2
      absl/debugging/failure_signal_handler.h
  56. 4
      absl/debugging/internal/address_is_readable.cc
  57. 2
      absl/debugging/internal/address_is_readable.h
  58. 2
      absl/debugging/internal/demangle.cc
  59. 2
      absl/debugging/internal/demangle.h
  60. 2
      absl/debugging/internal/demangle_test.cc
  61. 2
      absl/debugging/internal/elf_mem_image.cc
  62. 2
      absl/debugging/internal/elf_mem_image.h
  63. 2
      absl/debugging/internal/examine_stack.cc
  64. 2
      absl/debugging/internal/examine_stack.h
  65. 2
      absl/debugging/internal/stack_consumption.cc
  66. 2
      absl/debugging/internal/stack_consumption.h
  67. 2
      absl/debugging/internal/stack_consumption_test.cc
  68. 2
      absl/debugging/internal/stacktrace_aarch64-inl.inc
  69. 2
      absl/debugging/internal/stacktrace_arm-inl.inc
  70. 2
      absl/debugging/internal/stacktrace_generic-inl.inc
  71. 2
      absl/debugging/internal/stacktrace_powerpc-inl.inc
  72. 2
      absl/debugging/internal/stacktrace_unimplemented-inl.inc
  73. 2
      absl/debugging/internal/stacktrace_win32-inl.inc
  74. 2
      absl/debugging/internal/stacktrace_x86-inl.inc
  75. 4
      absl/debugging/internal/symbolize.h
  76. 2
      absl/debugging/internal/vdso_support.cc
  77. 2
      absl/debugging/internal/vdso_support.h
  78. 4
      absl/debugging/leak_check.cc
  79. 2
      absl/debugging/leak_check.h
  80. 2
      absl/debugging/stacktrace.cc
  81. 2
      absl/debugging/stacktrace.h
  82. 2
      absl/debugging/symbolize.h
  83. 2
      absl/debugging/symbolize_elf.inc
  84. 2
      absl/debugging/symbolize_unimplemented.inc
  85. 2
      absl/debugging/symbolize_win32.inc
  86. 14
      absl/memory/BUILD.bazel
  87. 19
      absl/memory/CMakeLists.txt
  88. 2
      absl/memory/memory.h
  89. 51
      absl/memory/memory_exception_safety_test.cc
  90. 2
      absl/meta/type_traits.h
  91. 2
      absl/numeric/int128.cc
  92. 2
      absl/numeric/int128.h
  93. 74
      absl/strings/BUILD.bazel
  94. 44
      absl/strings/CMakeLists.txt
  95. 2
      absl/strings/ascii.cc
  96. 2
      absl/strings/ascii.h
  97. 984
      absl/strings/charconv.cc
  98. 117
      absl/strings/charconv.h
  99. 204
      absl/strings/charconv_benchmark.cc
  100. 766
      absl/strings/charconv_test.cc
  101. Some files were not shown because too many files have changed in this diff Show More

@ -0,0 +1,13 @@
# Long Term Support (LTS) Branches
This repository contains periodic snapshots of the Abseil codebase that are
Long Term Support (LTS) branches. An LTS branch allows you to use a known
version of Abseil without interfering with other projects which may also, in
turn, use Abseil. (For more information about our releases, see the
[Abseil Release Management](https://abseil.io/about/releases) guide.)
## LTS Branches
The following lists LTS branches and the dates on which they have been released:
* [LTS Branch June 20, 2018](https://github.com/abseil/abseil-cpp/tree/lts_2018_06_20/)

@ -1,13 +1,13 @@
workspace(name = "com_google_absl")
# Bazel toolchains
http_archive(
name = "bazel_toolchains",
urls = [
"https://mirror.bazel.build/github.com/bazelbuild/bazel-toolchains/archive/f8847f64e6950e8ab9fde1c0aba768550b0d9ab2.tar.gz",
"https://github.com/bazelbuild/bazel-toolchains/archive/f8847f64e6950e8ab9fde1c0aba768550b0d9ab2.tar.gz",
],
strip_prefix = "bazel-toolchains-f8847f64e6950e8ab9fde1c0aba768550b0d9ab2",
sha256 = "794366f51fea224b3656a0b0f8f1518e739748646523a572fcd3d68614a0e670",
name = "bazel_toolchains",
urls = [
"https://mirror.bazel.build/github.com/bazelbuild/bazel-toolchains/archive/287b64e0a211fb7c23b74695f8d5f5205b61f4eb.tar.gz",
"https://github.com/bazelbuild/bazel-toolchains/archive/287b64e0a211fb7c23b74695f8d5f5205b61f4eb.tar.gz",
],
strip_prefix = "bazel-toolchains-287b64e0a211fb7c23b74695f8d5f5205b61f4eb",
sha256 = "aca8ac6afd7745027ee4a43032b51a725a61a75a30f02cc58681ee87e4dcdf4b",
)
# GoogleTest/GoogleMock framework. Used by most unit-tests.
@ -15,6 +15,7 @@ http_archive(
name = "com_google_googletest",
urls = ["https://github.com/google/googletest/archive/4e4df226fc197c0dda6e37f5c8c3845ca1e73a49.zip"],
strip_prefix = "googletest-4e4df226fc197c0dda6e37f5c8c3845ca1e73a49",
sha256 = "d4179caf54410968d1fff0b869e7d74803dd30209ee6645ccf1ca65ab6cf5e5a",
)
# Google benchmark.
@ -22,6 +23,7 @@ http_archive(
name = "com_github_google_benchmark",
urls = ["https://github.com/google/benchmark/archive/16703ff83c1ae6d53e5155df3bb3ab0bc96083be.zip"],
strip_prefix = "benchmark-16703ff83c1ae6d53e5155df3bb3ab0bc96083be",
sha256 = "59f918c8ccd4d74b6ac43484467b500f1d64b40cc1010daa055375b322a43ba3",
)
# RE2 regular-expression framework. Used by some unit-tests.
@ -29,4 +31,5 @@ http_archive(
name = "com_googlesource_code_re2",
urls = ["https://github.com/google/re2/archive/6cf8ccd82dbaab2668e9b13596c68183c9ecd13f.zip"],
strip_prefix = "re2-6cf8ccd82dbaab2668e9b13596c68183c9ecd13f",
sha256 = "279a852219dbfc504501775596089d30e9c0b29664ce4128b0ac4c841471a16a",
)

@ -27,6 +27,7 @@
#include <type_traits>
namespace absl {
inline namespace lts_2018_06_20 {
namespace algorithm_internal {
@ -145,6 +146,7 @@ ForwardIterator rotate(ForwardIterator first, ForwardIterator middle,
ForwardIterator>());
}
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_ALGORITHM_ALGORITHM_H_

@ -54,6 +54,7 @@
#include "absl/meta/type_traits.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace container_algorithm_internal {
@ -1637,6 +1638,7 @@ OutputIt c_partial_sum(const InputSequence& input, OutputIt output_first,
output_first, std::forward<BinaryOp>(op));
}
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_ALGORITHM_CONTAINER_H_

@ -371,11 +371,6 @@ cc_test(
size = "small",
srcs = ["internal/sysinfo_test.cc"],
copts = ABSL_TEST_COPTS,
tags = [
"no_test_android_arm",
"no_test_android_arm64",
"no_test_android_x86",
],
deps = [
":base",
"//absl/synchronization",

@ -22,6 +22,7 @@
#include "absl/base/macros.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace {
template <int N>
@ -104,4 +105,5 @@ TEST(BitCast, Double) {
}
} // namespace
} // inline namespace lts_2018_06_20
} // namespace absl

@ -39,6 +39,7 @@
#include "absl/base/port.h"
namespace absl {
inline namespace lts_2018_06_20 {
class once_flag;
@ -211,6 +212,7 @@ void call_once(absl::once_flag& flag, Callable&& fn, Args&&... args) {
}
}
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_BASE_CALL_ONCE_H_

@ -22,6 +22,7 @@
#include "absl/synchronization/mutex.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace {
absl::once_flag once;
@ -99,4 +100,5 @@ TEST(CallOnceTest, ExecutionCount) {
}
} // namespace
} // inline namespace lts_2018_06_20
} // namespace absl

@ -30,6 +30,7 @@
#include "absl/base/internal/identity.h"
namespace absl {
inline namespace lts_2018_06_20 {
// implicit_cast()
//
@ -135,6 +136,7 @@ inline Dest bit_cast(const Source& source) {
return dest;
}
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_BASE_CASTS_H_

@ -20,6 +20,7 @@
#include "gtest/gtest.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace inline_variable_testing_internal {
namespace {
@ -59,4 +60,5 @@ TEST(InlineVariableTest, FunPtrType) {
} // namespace
} // namespace inline_variable_testing_internal
} // inline namespace lts_2018_06_20
} // namespace absl

@ -15,6 +15,7 @@
#include "absl/base/internal/inline_variable_testing.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace inline_variable_testing_internal {
const Foo& get_foo_a() { return inline_variable_foo; }
@ -22,4 +23,5 @@ const Foo& get_foo_a() { return inline_variable_foo; }
const int& get_int_a() { return inline_variable_int; }
} // namespace inline_variable_testing_internal
} // inline namespace lts_2018_06_20
} // namespace absl

@ -15,6 +15,7 @@
#include "absl/base/internal/inline_variable_testing.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace inline_variable_testing_internal {
const Foo& get_foo_b() { return inline_variable_foo; }
@ -22,4 +23,5 @@ const Foo& get_foo_b() { return inline_variable_foo; }
const int& get_int_b() { return inline_variable_int; }
} // namespace inline_variable_testing_internal
} // inline namespace lts_2018_06_20
} // namespace absl

@ -28,6 +28,7 @@
#endif
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
template <typename T>
@ -160,6 +161,7 @@ class AtomicHook<ReturnType (*)(Args...)> {
#undef ABSL_HAVE_WORKING_ATOMIC_POINTER
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_BASE_INTERNAL_ATOMIC_HOOK_H_

@ -27,6 +27,7 @@
#include "absl/base/internal/unscaledcycleclock.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
#if ABSL_USE_UNSCALED_CYCLECLOCK
@ -78,4 +79,5 @@ double CycleClock::Frequency() {
#endif
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl

@ -46,6 +46,7 @@
#include <cstdint>
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
// -----------------------------------------------------------------------------
@ -72,6 +73,7 @@ class CycleClock {
};
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_BASE_INTERNAL_CYCLECLOCK_H_

@ -62,6 +62,7 @@ extern "C" void* __mmap2(void*, size_t, int, int, int, size_t);
#endif // __BIONIC__
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
// Platform specific logic extracted from
@ -122,6 +123,7 @@ inline int DirectMunmap(void* start, size_t length) {
}
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#else // !__linux__
@ -130,6 +132,7 @@ inline int DirectMunmap(void* start, size_t length) {
// actual mmap()/munmap() methods.
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
inline void* DirectMmap(void* start, size_t length, int prot, int flags, int fd,
@ -142,6 +145,7 @@ inline int DirectMunmap(void* start, size_t length) {
}
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // __linux__

@ -34,6 +34,7 @@
#include "absl/base/port.h"
namespace absl {
inline namespace lts_2018_06_20 {
// Use compiler byte-swapping intrinsics if they are available. 32-bit
// and 64-bit versions are available in Clang and GCC as of GCC 4.3.0.
@ -264,6 +265,7 @@ inline void Store64(void *p, uint64_t v) {
} // namespace big_endian
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_BASE_INTERNAL_ENDIAN_H_

@ -24,6 +24,7 @@
#include "absl/base/config.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace {
const uint64_t kInitialNumber{0x0123456789abcdef};
@ -276,4 +277,5 @@ TEST(EndianessTest, big_endian) {
}
} // namespace
} // inline namespace lts_2018_06_20
} // namespace absl

@ -18,6 +18,7 @@
#include <cstdint>
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
// Arbitrary value with high bits set. Xor'ing with it is unlikely
@ -42,6 +43,7 @@ inline T* UnhidePtr(uintptr_t hidden) {
}
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_BASE_INTERNAL_HIDE_PTR_H_

@ -17,6 +17,7 @@
#define ABSL_BASE_INTERNAL_IDENTITY_H_
namespace absl {
inline namespace lts_2018_06_20 {
namespace internal {
template <typename T>
@ -27,7 +28,8 @@ struct identity {
template <typename T>
using identity_t = typename identity<T>::type;
} // namespace internal
} // namespace absl
} // namespace internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_BASE_INTERNAL_IDENTITY_H_

@ -18,6 +18,7 @@
#include "absl/base/internal/inline_variable.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace inline_variable_testing_internal {
struct Foo {
@ -39,6 +40,7 @@ const int& get_int_a();
const int& get_int_b();
} // namespace inline_variable_testing_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_BASE_INLINE_VARIABLE_TESTING_H_

@ -43,6 +43,7 @@
// top of this file for the API documentation.
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
// The five classes below each implement one of the clauses from the definition
@ -183,6 +184,7 @@ InvokeT<F, Args...> Invoke(F&& f, Args&&... args) {
std::forward<Args>(args)...);
}
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_BASE_INTERNAL_INVOKE_H_

@ -63,6 +63,7 @@
#endif // __APPLE__
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
// A first-fit allocator with amortized logarithmic free() time.
@ -599,6 +600,7 @@ void *LowLevelAlloc::AllocWithArena(size_t request, Arena *arena) {
}
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_LOW_LEVEL_ALLOC_MISSING

@ -51,6 +51,7 @@
#include "absl/base/port.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
class LowLevelAlloc {
@ -115,5 +116,6 @@ class LowLevelAlloc {
};
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_BASE_INTERNAL_LOW_LEVEL_ALLOC_H_

@ -22,6 +22,7 @@
#include <utility>
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
namespace {
@ -148,6 +149,7 @@ static struct BeforeMain {
} // namespace
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl
int main(int argc, char *argv[]) {

@ -28,6 +28,7 @@ extern "C" bool __google_disable_rescheduling(void);
extern "C" void __google_enable_rescheduling(bool disable_result);
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
class SchedulingHelper; // To allow use of SchedulingGuard.
@ -100,5 +101,6 @@ inline void SchedulingGuard::EnableRescheduling(bool /* disable_result */) {
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_BASE_INTERNAL_LOW_LEVEL_SCHEDULING_H_

@ -181,6 +181,7 @@ void RawLogVA(absl::LogSeverity severity, const char* file, int line,
} // namespace
namespace absl {
inline namespace lts_2018_06_20 {
namespace raw_logging_internal {
void SafeWriteToStderr(const char *s, size_t len) {
#if defined(ABSL_HAVE_SYSCALL_WRITE)
@ -215,4 +216,5 @@ bool RawLoggingFullySupported() {
}
} // namespace raw_logging_internal
} // inline namespace lts_2018_06_20
} // namespace absl

@ -65,6 +65,7 @@
::absl::NormalizeLogSeverity(severity)
namespace absl {
inline namespace lts_2018_06_20 {
namespace raw_logging_internal {
// Helper function to implement ABSL_RAW_LOG
@ -132,6 +133,7 @@ using AbortHook = void (*)(const char* file, int line, const char* buf_start,
const char* prefix_end, const char* buf_end);
} // namespace raw_logging_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_BASE_INTERNAL_RAW_LOGGING_H_

@ -19,6 +19,7 @@
#define ABSL_BASE_INTERNAL_SCHEDULING_MODE_H_
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
// Used to describe how a thread may be scheduled. Typically associated with
@ -49,6 +50,7 @@ enum SchedulingMode {
};
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_BASE_INTERNAL_SCHEDULING_MODE_H_

@ -54,6 +54,7 @@
// holder to acquire the lock. There may be outstanding waiter(s).
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
ABSL_CONST_INIT static base_internal::AtomicHook<void (*)(const void *lock,
@ -225,4 +226,5 @@ uint64_t SpinLock::DecodeWaitCycles(uint32_t lock_value) {
}
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl

@ -45,6 +45,7 @@
#include "absl/base/thread_annotations.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
class LOCKABLE SpinLock {
@ -234,6 +235,7 @@ inline uint32_t SpinLock::TryLockInternal(uint32_t lock_value,
}
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_BASE_INTERNAL_SPINLOCK_H_

@ -30,6 +30,7 @@
#endif
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
// See spinlock_wait.h for spec.
@ -76,4 +77,5 @@ int SpinLockSuggestedDelayNS(int loop) {
}
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl

@ -24,6 +24,7 @@
#include "absl/base/internal/scheduling_mode.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
// SpinLockWait() waits until it can perform one of several transitions from
@ -62,6 +63,7 @@ void SpinLockDelay(std::atomic<uint32_t> *w, uint32_t value, int loop,
int SpinLockSuggestedDelayNS(int loop);
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl
// In some build configurations we pass --detect-odr-violations to the
@ -84,7 +86,7 @@ inline void absl::base_internal::SpinLockWake(std::atomic<uint32_t> *w,
inline void absl::base_internal::SpinLockDelay(
std::atomic<uint32_t> *w, uint32_t value, int loop,
base_internal::SchedulingMode scheduling_mode) {
absl::base_internal::SchedulingMode scheduling_mode) {
AbslInternalSpinLockDelay(w, value, loop, scheduling_mode);
}

@ -56,6 +56,7 @@
#include "absl/base/internal/unscaledcycleclock.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
static once_flag init_system_info_once;
@ -401,4 +402,5 @@ pid_t GetTID() {
#endif
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl

@ -33,6 +33,7 @@
#include "absl/base/port.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
// Nominal core processor cycles per second of each processor. This is _not_
@ -58,6 +59,7 @@ using pid_t = DWORD;
pid_t GetTID();
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_BASE_INTERNAL_SYSINFO_H_

@ -28,6 +28,7 @@
#include "absl/synchronization/mutex.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
namespace {
@ -95,4 +96,5 @@ TEST(SysinfoTest, LinuxGetTID) {
} // namespace
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl

@ -28,6 +28,7 @@
#include "absl/base/internal/spinlock.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
#if ABSL_THREAD_IDENTITY_MODE != ABSL_THREAD_IDENTITY_MODE_USE_CPP11
@ -120,4 +121,5 @@ ThreadIdentity* CurrentThreadIdentityIfPresent() {
#endif
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl

@ -33,6 +33,7 @@
#include "absl/base/internal/per_thread_tls.h"
namespace absl {
inline namespace lts_2018_06_20 {
struct SynchLocksHeld;
struct SynchWaitParams;
@ -236,5 +237,6 @@ inline ThreadIdentity* CurrentThreadIdentityIfPresent() {
#endif
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_BASE_INTERNAL_THREAD_IDENTITY_H_

@ -25,6 +25,7 @@
#include "absl/synchronization/mutex.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
namespace {
@ -123,4 +124,5 @@ TEST(ThreadIdentityTest, ReusedThreadIdentityMutexTest) {
} // namespace
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl

@ -22,6 +22,7 @@
#include "absl/base/internal/raw_logging.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
namespace {
@ -103,4 +104,5 @@ void ThrowStdBadFunctionCall() { Throw(std::bad_function_call()); }
void ThrowStdBadAlloc() { Throw(std::bad_alloc()); }
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl

@ -20,6 +20,7 @@
#include <string>
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
// Helper functions that allow throwing exceptions consistently from anywhere.
@ -66,6 +67,7 @@ namespace base_internal {
// [[noreturn]] void ThrowStdBadArrayNewLength();
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_BASE_INTERNAL_THROW_DELEGATE_H_

@ -65,6 +65,7 @@ void __sanitizer_unaligned_store64(void *p, uint64_t v);
} // extern "C"
namespace absl {
inline namespace lts_2018_06_20 {
inline uint16_t UnalignedLoad16(const void *p) {
return __sanitizer_unaligned_load16(p);
@ -90,6 +91,7 @@ inline void UnalignedStore64(void *p, uint64_t v) {
__sanitizer_unaligned_store64(p, v);
}
} // inline namespace lts_2018_06_20
} // namespace absl
#define ABSL_INTERNAL_UNALIGNED_LOAD16(_p) (absl::UnalignedLoad16(_p))
@ -158,6 +160,7 @@ inline void UnalignedStore64(void *p, uint64_t v) {
// so we do that.
namespace absl {
inline namespace lts_2018_06_20 {
namespace internal {
struct Unaligned16Struct {
@ -171,6 +174,7 @@ struct Unaligned32Struct {
} ABSL_ATTRIBUTE_PACKED;
} // namespace internal
} // inline namespace lts_2018_06_20
} // namespace absl
#define ABSL_INTERNAL_UNALIGNED_LOAD16(_p) \
@ -186,6 +190,7 @@ struct Unaligned32Struct {
(_val))
namespace absl {
inline namespace lts_2018_06_20 {
inline uint64_t UnalignedLoad64(const void *p) {
uint64_t t;
@ -195,6 +200,7 @@ inline uint64_t UnalignedLoad64(const void *p) {
inline void UnalignedStore64(void *p, uint64_t v) { memcpy(p, &v, sizeof v); }
} // inline namespace lts_2018_06_20
} // namespace absl
#define ABSL_INTERNAL_UNALIGNED_LOAD64(_p) (absl::UnalignedLoad64(_p))
@ -211,6 +217,7 @@ inline void UnalignedStore64(void *p, uint64_t v) { memcpy(p, &v, sizeof v); }
// unaligned loads and stores.
namespace absl {
inline namespace lts_2018_06_20 {
inline uint16_t UnalignedLoad16(const void *p) {
uint16_t t;
@ -236,6 +243,7 @@ inline void UnalignedStore32(void *p, uint32_t v) { memcpy(p, &v, sizeof v); }
inline void UnalignedStore64(void *p, uint64_t v) { memcpy(p, &v, sizeof v); }
} // inline namespace lts_2018_06_20
} // namespace absl
#define ABSL_INTERNAL_UNALIGNED_LOAD16(_p) (absl::UnalignedLoad16(_p))

@ -27,6 +27,7 @@
#include "absl/base/internal/sysinfo.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
#if defined(__i386__)
@ -96,6 +97,7 @@ double UnscaledCycleClock::Frequency() {
#endif
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_USE_UNSCALED_CYCLECLOCK

@ -84,6 +84,7 @@
#define ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY
#endif
namespace absl {
inline namespace lts_2018_06_20 {
namespace time_internal {
class UnscaledCycleClockWrapperForGetCurrentTime;
} // namespace time_internal
@ -113,6 +114,7 @@ class UnscaledCycleClock {
};
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_USE_UNSCALED_CYCLECLOCK

@ -25,6 +25,7 @@
#include "absl/strings/str_cat.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
namespace {
@ -197,4 +198,5 @@ TEST(InvokeTest, SfinaeFriendly) {
} // namespace
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl

@ -21,6 +21,7 @@
#include "absl/base/attributes.h"
namespace absl {
inline namespace lts_2018_06_20 {
// Four severity levels are defined. Logging APIs should terminate the program
// when a message is logged at severity `kFatal`; the other levels have no
@ -62,6 +63,7 @@ constexpr absl::LogSeverity NormalizeLogSeverity(int s) {
return NormalizeLogSeverity(static_cast<absl::LogSeverity>(s));
}
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_BASE_INTERNAL_LOG_SEVERITY_H_

@ -43,12 +43,14 @@
(sizeof(::absl::macros_internal::ArraySizeHelper(array)))
namespace absl {
inline namespace lts_2018_06_20 {
namespace macros_internal {
// Note: this internal template function declaration is used by ABSL_ARRAYSIZE.
// The function doesn't need a definition, as we only use its type.
template <typename T, size_t N>
auto ArraySizeHelper(const T (&array)[N]) -> char (&)[N];
} // namespace macros_internal
} // inline namespace lts_2018_06_20
} // namespace absl
// kLinkerInitialized
@ -72,11 +74,13 @@ auto ArraySizeHelper(const T (&array)[N]) -> char (&)[N];
// // Invocation
// static MyClass my_global(absl::base_internal::kLinkerInitialized);
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
enum LinkerInitialized {
kLinkerInitialized = 0,
};
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl
// ABSL_FALLTHROUGH_INTENDED
@ -194,8 +198,9 @@ enum LinkerInitialized {
#if defined(NDEBUG)
#define ABSL_ASSERT(expr) (false ? (void)(expr) : (void)0)
#else
#define ABSL_ASSERT(expr) \
(ABSL_PREDICT_TRUE((expr)) ? (void)0 : [] { assert(false && #expr); }())
#define ABSL_ASSERT(expr) \
(ABSL_PREDICT_TRUE((expr)) ? (void)0 \
: [] { assert(false && #expr); }()) // NOLINT
#endif
#endif // ABSL_BASE_MACROS_H_

@ -36,6 +36,7 @@ constexpr int32_t kNumThreads = 10;
constexpr int32_t kIters = 1000;
namespace absl {
inline namespace lts_2018_06_20 {
namespace base_internal {
// This is defined outside of anonymous namespace so that it can be
@ -263,4 +264,5 @@ TEST(SpinLockWithThreads, DoesNotDeadlock) {
} // namespace
} // namespace base_internal
} // inline namespace lts_2018_06_20
} // namespace absl

@ -50,6 +50,7 @@
#include "absl/memory/memory.h"
namespace absl {
inline namespace lts_2018_06_20 {
constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1);
@ -494,5 +495,6 @@ constexpr size_t FixedArray<T, N>::inline_elements;
template <typename T, size_t N>
constexpr size_t FixedArray<T, N>::kInlineBytesDefault;
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_CONTAINER_FIXED_ARRAY_H_

@ -53,6 +53,7 @@
#include "absl/memory/memory.h"
namespace absl {
inline namespace lts_2018_06_20 {
// -----------------------------------------------------------------------------
// InlinedVector
@ -1379,6 +1380,7 @@ auto InlinedVector<T, N, A>::InsertWithRange(const_iterator position,
return it_pair.first;
}
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_CONTAINER_INLINED_VECTOR_H_

@ -63,18 +63,34 @@ void BM_StdVectorFill(benchmark::State& state) {
}
BENCHMARK(BM_StdVectorFill)->Range(0, 1024);
// The purpose of the next two benchmarks is to verify that
// absl::InlinedVector is efficient when moving is more efficent than
// copying. To do so, we use strings that are larger than the short
// std::string optimization.
bool StringRepresentedInline(std::string s) {
const char* chars = s.data();
std::string s1 = std::move(s);
return s1.data() != chars;
}
int GetNonShortStringOptimizationSize() {
for (int i = 24; i <= 192; i *= 2) {
if (!StringRepresentedInline(std::string(i, 'A'))) {
return i;
}
}
ABSL_RAW_LOG(
FATAL,
"Failed to find a std::string larger than the short std::string optimization");
return -1;
}
void BM_InlinedVectorFillString(benchmark::State& state) {
const int len = state.range(0);
std::string strings[4] = {"a quite long string",
"another long string",
"012345678901234567",
"to cause allocation"};
const int no_sso = GetNonShortStringOptimizationSize();
std::string strings[4] = {std::string(no_sso, 'A'), std::string(no_sso, 'B'),
std::string(no_sso, 'C'), std::string(no_sso, 'D')};
for (auto _ : state) {
absl::InlinedVector<std::string, 8> v;
for (int i = 0; i < len; i++) {
@ -87,10 +103,10 @@ BENCHMARK(BM_InlinedVectorFillString)->Range(0, 1024);
void BM_StdVectorFillString(benchmark::State& state) {
const int len = state.range(0);
std::string strings[4] = {"a quite long string",
"another long string",
"012345678901234567",
"to cause allocation"};
const int no_sso = GetNonShortStringOptimizationSize();
std::string strings[4] = {std::string(no_sso, 'A'), std::string(no_sso, 'B'),
std::string(no_sso, 'C'), std::string(no_sso, 'D')};
for (auto _ : state) {
std::vector<std::string> v;
for (int i = 0; i < len; i++) {
@ -98,11 +114,6 @@ void BM_StdVectorFillString(benchmark::State& state) {
}
}
state.SetItemsProcessed(static_cast<int64_t>(state.iterations()) * len);
// The purpose of the benchmark is to verify that inlined vector is
// efficient when moving is more efficent than copying. To do so, we
// use strings that are larger than the small std::string optimization.
ABSL_RAW_CHECK(!StringRepresentedInline(strings[0]),
"benchmarked with strings that are too small");
}
BENCHMARK(BM_StdVectorFillString)->Range(0, 1024);

@ -15,6 +15,7 @@
#include "absl/container/internal/test_instance_tracker.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace test_internal {
int BaseCountedInstance::num_instances_ = 0;
int BaseCountedInstance::num_live_instances_ = 0;
@ -23,4 +24,5 @@ int BaseCountedInstance::num_copies_ = 0;
int BaseCountedInstance::num_swaps_ = 0;
} // namespace test_internal
} // inline namespace lts_2018_06_20
} // namespace absl

@ -19,6 +19,7 @@
#include <ostream>
namespace absl {
inline namespace lts_2018_06_20 {
namespace test_internal {
// A type that counts number of occurences of the type, the live occurrences of
@ -215,6 +216,7 @@ class MovableOnlyInstance : public BaseCountedInstance {
};
} // namespace test_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_TEST_INSTANCE_TRACKER_H_

@ -47,6 +47,7 @@
#endif
namespace absl {
inline namespace lts_2018_06_20 {
ABSL_CONST_INIT static FailureSignalHandlerOptions fsh_options;
@ -353,4 +354,5 @@ void InstallFailureSignalHandler(const FailureSignalHandlerOptions& options) {
}
}
} // inline namespace lts_2018_06_20
} // namespace absl

@ -45,6 +45,7 @@
#define ABSL_DEBUGGING_FAILURE_SIGNAL_HANDLER_H_
namespace absl {
inline namespace lts_2018_06_20 {
// FailureSignalHandlerOptions
//
@ -112,6 +113,7 @@ namespace debugging_internal {
const char* FailureSignalToString(int signo);
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_DEBUGGING_FAILURE_SIGNAL_HANDLER_H_

@ -20,12 +20,14 @@
#if !defined(__linux__) || defined(__ANDROID__)
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
// On platforms other than Linux, just return true.
bool AddressIsReadable(const void* /* addr */) { return true; }
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#else
@ -40,6 +42,7 @@ bool AddressIsReadable(const void* /* addr */) { return true; }
#include "absl/base/internal/raw_logging.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
// Pack a pid and two file descriptors into a 64-bit word,
@ -128,6 +131,7 @@ bool AddressIsReadable(const void *addr) {
}
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif

@ -17,6 +17,7 @@
#define ABSL_DEBUGGING_INTERNAL_ADDRESS_IS_READABLE_H_
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
// Return whether the byte at *addr is readable, without faulting.
@ -24,6 +25,7 @@ namespace debugging_internal {
bool AddressIsReadable(const void *addr);
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_DEBUGGING_INTERNAL_ADDRESS_IS_READABLE_H_

@ -24,6 +24,7 @@
#include <limits>
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
typedef struct {
@ -1859,4 +1860,5 @@ bool Demangle(const char *mangled, char *out, int out_size) {
}
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl

@ -54,6 +54,7 @@
#define ABSL_DEBUGGING_INTERNAL_DEMANGLE_H_
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
// Demangle `mangled`. On success, return true and write the
@ -62,6 +63,7 @@ namespace debugging_internal {
bool Demangle(const char *mangled, char *out, int out_size);
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_DEBUGGING_INTERNAL_DEMANGLE_H_

@ -23,6 +23,7 @@
#include "absl/memory/memory.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
namespace {
@ -188,4 +189,5 @@ TEST(DemangleRegression, DeeplyNestedArrayType) {
} // namespace
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl

@ -38,6 +38,7 @@
#define VERSYM_VERSION 0x7fff
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
namespace {
@ -375,6 +376,7 @@ void ElfMemImage::SymbolIterator::Update(int increment) {
}
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_HAVE_ELF_MEM_IMAGE

@ -39,6 +39,7 @@
#include <link.h> // for ElfW
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
// An in-memory ELF image (may not exist on disk).
@ -123,6 +124,7 @@ class ElfMemImage {
};
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_HAVE_ELF_MEM_IMAGE

@ -30,6 +30,7 @@
#include "absl/debugging/symbolize.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
// Returns the program counter from signal context, nullptr if
@ -146,4 +147,5 @@ void DumpPCAndFrameSizesAndStackTrace(
}
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl

@ -18,6 +18,7 @@
#define ABSL_DEBUGGING_INTERNAL_EXAMINE_STACK_H_
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
// Returns the program counter from signal context, or nullptr if
@ -33,6 +34,7 @@ void DumpPCAndFrameSizesAndStackTrace(
void (*writerfn)(const char*, void*), void* writerfn_arg);
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_DEBUGGING_INTERNAL_EXAMINE_STACK_H_

@ -27,6 +27,7 @@
#include "absl/base/internal/raw_logging.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
namespace {
@ -167,6 +168,7 @@ int GetSignalHandlerStackConsumption(void (*signal_handler)(int)) {
}
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_INTERNAL_HAVE_DEBUGGING_STACK_CONSUMPTION

@ -27,6 +27,7 @@
#define ABSL_INTERNAL_HAVE_DEBUGGING_STACK_CONSUMPTION 1
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
// Returns the stack consumption in bytes for the code exercised by
@ -38,6 +39,7 @@ namespace debugging_internal {
int GetSignalHandlerStackConsumption(void (*signal_handler)(int));
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_INTERNAL_HAVE_DEBUGGING_STACK_CONSUMPTION

@ -23,6 +23,7 @@
#include "absl/base/internal/raw_logging.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
namespace {
@ -43,6 +44,7 @@ TEST(SignalHandlerStackConsumptionTest, MeasuresStackConsumption) {
} // namespace
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_INTERNAL_HAVE_DEBUGGING_STACK_CONSUMPTION

@ -180,11 +180,13 @@ static int UnwindImpl(void** result, int* sizes, int max_depth, int skip_count,
}
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
bool StackTraceWorksForTest() {
return true;
}
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_

@ -113,11 +113,13 @@ static int UnwindImpl(void** result, int* sizes, int max_depth, int skip_count,
}
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
bool StackTraceWorksForTest() {
return false;
}
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_DEBUGGING_INTERNAL_STACKTRACE_ARM_INL_H_

@ -49,11 +49,13 @@ static int UnwindImpl(void** result, int* sizes, int max_depth, int skip_count,
}
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
bool StackTraceWorksForTest() {
return true;
}
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_DEBUGGING_INTERNAL_STACKTRACE_GENERIC_INL_H_

@ -233,11 +233,13 @@ static int UnwindImpl(void** result, int* sizes, int max_depth, int skip_count,
}
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
bool StackTraceWorksForTest() {
return true;
}
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_DEBUGGING_INTERNAL_STACKTRACE_POWERPC_INL_H_

@ -12,11 +12,13 @@ static int UnwindImpl(void** /* result */, int* /* sizes */,
}
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
bool StackTraceWorksForTest() {
return false;
}
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_DEBUGGING_INTERNAL_STACKTRACE_UNIMPLEMENTED_INL_H_

@ -73,11 +73,13 @@ static int UnwindImpl(void** result, int* sizes, int max_depth, int skip_count,
}
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
bool StackTraceWorksForTest() {
return false;
}
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_DEBUGGING_INTERNAL_STACKTRACE_WIN32_INL_H_

@ -327,11 +327,13 @@ static int UnwindImpl(void **result, int *sizes, int max_depth, int skip_count,
}
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
bool StackTraceWorksForTest() {
return true;
}
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_

@ -34,6 +34,7 @@
#include <string>
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
// Iterates over all sections, invoking callback on each with the section name
@ -52,11 +53,13 @@ bool GetSectionHeaderByName(int fd, const char *name, size_t name_len,
ElfW(Shdr) *out);
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_INTERNAL_HAVE_ELF_SYMBOLIZE
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
struct SymbolDecoratorArgs {
@ -118,6 +121,7 @@ bool GetFileMappingHint(const void** start,
const char** filename);
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_DEBUGGING_INTERNAL_SYMBOLIZE_H_

@ -38,6 +38,7 @@
#endif
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
ABSL_CONST_INIT
@ -187,6 +188,7 @@ static class VDSOInitHelper {
} vdso_init_helper;
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_HAVE_VDSO_SUPPORT

@ -53,6 +53,7 @@
#endif
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
// NOTE: this class may be used from within tcmalloc, and can not
@ -149,6 +150,7 @@ class VDSOSupport {
int GetCPU();
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_HAVE_ELF_MEM_IMAGE

@ -20,12 +20,14 @@
#ifndef LEAK_SANITIZER
namespace absl {
inline namespace lts_2018_06_20 {
bool HaveLeakSanitizer() { return false; }
void DoIgnoreLeak(const void*) { }
void RegisterLivePointers(const void*, size_t) { }
void UnRegisterLivePointers(const void*, size_t) { }
LeakCheckDisabler::LeakCheckDisabler() { }
LeakCheckDisabler::~LeakCheckDisabler() { }
} // inline namespace lts_2018_06_20
} // namespace absl
#else
@ -33,6 +35,7 @@ LeakCheckDisabler::~LeakCheckDisabler() { }
#include <sanitizer/lsan_interface.h>
namespace absl {
inline namespace lts_2018_06_20 {
bool HaveLeakSanitizer() { return true; }
void DoIgnoreLeak(const void* ptr) { __lsan_ignore_object(ptr); }
void RegisterLivePointers(const void* ptr, size_t size) {
@ -43,6 +46,7 @@ void UnRegisterLivePointers(const void* ptr, size_t size) {
}
LeakCheckDisabler::LeakCheckDisabler() { __lsan_disable(); }
LeakCheckDisabler::~LeakCheckDisabler() { __lsan_enable(); }
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // LEAK_SANITIZER

@ -33,6 +33,7 @@
#include <cstddef>
namespace absl {
inline namespace lts_2018_06_20 {
// HaveLeakSanitizer()
//
@ -104,6 +105,7 @@ void RegisterLivePointers(const void* ptr, size_t size);
// `RegisterLivePointers()`, enabling leak checking of those pointers.
void UnRegisterLivePointers(const void* ptr, size_t size);
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_DEBUGGING_LEAK_CHECK_H_

@ -56,6 +56,7 @@
#endif
namespace absl {
inline namespace lts_2018_06_20 {
namespace {
typedef int (*Unwinder)(void**, int*, int, int, const void*, int*);
@ -130,4 +131,5 @@ int DefaultStackUnwinder(void** pcs, int* sizes, int depth, int skip,
return n;
}
} // inline namespace lts_2018_06_20
} // namespace absl

@ -32,6 +32,7 @@
#define ABSL_DEBUGGING_STACKTRACE_H_
namespace absl {
inline namespace lts_2018_06_20 {
// GetStackFrames()
//
@ -220,6 +221,7 @@ namespace debugging_internal {
// working.
extern bool StackTraceWorksForTest();
} // namespace debugging_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_DEBUGGING_STACKTRACE_H_

@ -55,6 +55,7 @@
#include "absl/debugging/internal/symbolize.h"
namespace absl {
inline namespace lts_2018_06_20 {
// InitializeSymbolizer()
//
@ -92,6 +93,7 @@ void InitializeSymbolizer(const char* argv0);
// }
bool Symbolize(const void *pc, char *out, int out_size);
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_DEBUGGING_SYMBOLIZE_H_

@ -76,6 +76,7 @@
#include "absl/debugging/internal/vdso_support.h"
namespace absl {
inline namespace lts_2018_06_20 {
// Value of argv[0]. Used by MaybeInitializeObjFile().
static char *argv0_value = nullptr;
@ -1470,4 +1471,5 @@ bool Symbolize(const void *pc, char *out, int out_size) {
return ok;
}
} // inline namespace lts_2018_06_20
} // namespace absl

@ -17,6 +17,7 @@
#include "absl/base/internal/raw_logging.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace debugging_internal {
@ -32,4 +33,5 @@ bool RegisterFileMappingHint(const void *, const void *, uint64_t, const char *)
void InitializeSymbolizer(const char*) {}
bool Symbolize(const void *, char *, int) { return false; }
} // inline namespace lts_2018_06_20
} // namespace absl

@ -25,6 +25,7 @@
#include "absl/base/internal/raw_logging.h"
namespace absl {
inline namespace lts_2018_06_20 {
static HANDLE process = NULL;
@ -71,4 +72,5 @@ bool Symbolize(const void *pc, char *out, int out_size) {
return true;
}
} // inline namespace lts_2018_06_20
} // namespace absl

@ -18,6 +18,7 @@ load(
"//absl:copts.bzl",
"ABSL_DEFAULT_COPTS",
"ABSL_TEST_COPTS",
"ABSL_EXCEPTIONS_FLAG",
)
package(default_visibility = ["//visibility:public"])
@ -45,3 +46,16 @@ cc_test(
"@com_google_googletest//:gtest_main",
],
)
cc_test(
name = "memory_exception_safety_test",
srcs = [
"memory_exception_safety_test.cc",
],
copts = ABSL_TEST_COPTS + ABSL_EXCEPTIONS_FLAG,
deps = [
":memory",
"//absl/base:exception_safety_testing",
"@com_google_googletest//:gtest_main",
],
)

@ -49,4 +49,23 @@ absl_test(
)
# test memory_exception_safety_test
set(MEMORY_EXCEPTION_SAFETY_TEST_SRC "memory_exception_safety_test.cc")
set(MEMORY_EXCEPTION_SAFETY_TEST_PUBLIC_LIBRARIES
absl::memory
absl_base_internal_exception_safety_testing
)
absl_test(
TARGET
memory_exception_safety_test
SOURCES
${MEMORY_EXCEPTION_SAFETY_TEST_SRC}
PUBLIC_LIBRARIES
${MEMORY_EXCEPTION_SAFETY_TEST_PUBLIC_LIBRARIES}
PRIVATE_COMPILE_FLAGS
${ABSL_EXCEPTIONS_FLAG}
)

@ -34,6 +34,7 @@
#include "absl/meta/type_traits.h"
namespace absl {
inline namespace lts_2018_06_20 {
// -----------------------------------------------------------------------------
// Function Template: WrapUnique()
@ -636,6 +637,7 @@ struct default_allocator_is_nothrow : std::true_type {};
struct default_allocator_is_nothrow : std::false_type {};
#endif
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_MEMORY_MEMORY_H_

@ -0,0 +1,51 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/memory/memory.h"
#include "gtest/gtest.h"
#include "absl/base/internal/exception_safety_testing.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace {
using Thrower = ::testing::ThrowingValue<>;
TEST(MakeUnique, CheckForLeaks) {
constexpr int kValue = 321;
constexpr size_t kLength = 10;
auto tester = testing::MakeExceptionSafetyTester()
.WithInitialValue(Thrower(kValue))
// Ensures make_unique does not modify the input. The real
// test, though, is ConstructorTracker checking for leaks.
.WithInvariants(testing::strong_guarantee);
EXPECT_TRUE(tester.Test([](Thrower* thrower) {
static_cast<void>(absl::make_unique<Thrower>(*thrower));
}));
EXPECT_TRUE(tester.Test([](Thrower* thrower) {
static_cast<void>(absl::make_unique<Thrower>(std::move(*thrower)));
}));
// Test T[n] overload
EXPECT_TRUE(tester.Test([&](Thrower*) {
static_cast<void>(absl::make_unique<Thrower[]>(kLength));
}));
}
} // namespace
} // inline namespace lts_2018_06_20
} // namespace absl

@ -42,6 +42,7 @@
#include "absl/base/config.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace type_traits_internal {
template <typename... Ts>
@ -368,5 +369,6 @@ struct IsHashEnabled
IsHashable<Key>> {};
} // namespace type_traits_internal
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_META_TYPE_TRAITS_H_

@ -23,6 +23,7 @@
#include <type_traits>
namespace absl {
inline namespace lts_2018_06_20 {
const uint128 kuint128max = MakeUint128(std::numeric_limits<uint64_t>::max(),
std::numeric_limits<uint64_t>::max());
@ -222,4 +223,5 @@ std::ostream& operator<<(std::ostream& os, uint128 v) {
return os << rep;
}
} // inline namespace lts_2018_06_20
} // namespace absl

@ -37,6 +37,7 @@
#include "absl/base/port.h"
namespace absl {
inline namespace lts_2018_06_20 {
// uint128
@ -651,6 +652,7 @@ inline uint128& uint128::operator--() {
#include "absl/numeric/int128_no_intrinsic.inc"
#endif // ABSL_HAVE_INTRINSIC_INT128
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_NUMERIC_INT128_H_

@ -32,7 +32,12 @@ cc_library(
name = "strings",
srcs = [
"ascii.cc",
"charconv.cc",
"escaping.cc",
"internal/charconv_bigint.cc",
"internal/charconv_bigint.h",
"internal/charconv_parse.cc",
"internal/charconv_parse.h",
"internal/memutil.cc",
"internal/memutil.h",
"internal/stl_type_traits.h",
@ -48,6 +53,7 @@ cc_library(
],
hdrs = [
"ascii.h",
"charconv.h",
"escaping.h",
"match.h",
"numbers.h",
@ -144,11 +150,6 @@ cc_test(
size = "small",
srcs = ["ascii_test.cc"],
copts = ABSL_TEST_COPTS,
tags = [
"no_test_android_arm",
"no_test_android_arm64",
"no_test_android_x86",
],
visibility = ["//visibility:private"],
deps = [
":strings",
@ -398,12 +399,6 @@ cc_test(
"numbers_test.cc",
],
copts = ABSL_TEST_COPTS,
tags = [
"no_test_android_arm",
"no_test_android_arm64",
"no_test_android_x86",
"no_test_loonix",
],
visibility = ["//visibility:private"],
deps = [
":strings",
@ -429,11 +424,6 @@ cc_test(
name = "char_map_test",
srcs = ["internal/char_map_test.cc"],
copts = ABSL_TEST_COPTS,
tags = [
"no_test_android_arm",
"no_test_android_arm64",
"no_test_android_x86",
],
deps = [
":internal",
"@com_google_googletest//:gtest_main",
@ -450,3 +440,55 @@ cc_test(
"@com_github_google_benchmark//:benchmark_main",
],
)
cc_test(
name = "charconv_test",
srcs = ["charconv_test.cc"],
copts = ABSL_TEST_COPTS,
deps = [
":strings",
"//absl/base",
"@com_google_googletest//:gtest_main",
],
)
cc_test(
name = "charconv_parse_test",
srcs = [
"internal/charconv_parse.h",
"internal/charconv_parse_test.cc",
],
copts = ABSL_TEST_COPTS,
deps = [
":strings",
"//absl/base",
"@com_google_googletest//:gtest_main",
],
)
cc_test(
name = "charconv_bigint_test",
srcs = [
"internal/charconv_bigint.h",
"internal/charconv_bigint_test.cc",
"internal/charconv_parse.h",
],
copts = ABSL_TEST_COPTS,
deps = [
":strings",
"//absl/base",
"@com_google_googletest//:gtest_main",
],
)
cc_test(
name = "charconv_benchmark",
srcs = [
"charconv_benchmark.cc",
],
deps = [
":strings",
"//absl/base",
"@com_github_google_benchmark//:benchmark_main",
],
)

@ -17,6 +17,7 @@
list(APPEND STRINGS_PUBLIC_HEADERS
"ascii.h"
"charconv.h"
"escaping.h"
"match.h"
"numbers.h"
@ -33,6 +34,8 @@ list(APPEND STRINGS_PUBLIC_HEADERS
list(APPEND STRINGS_INTERNAL_HEADERS
"internal/bits.h"
"internal/char_map.h"
"internal/charconv_bigint.h"
"internal/charconv_parse.h"
"internal/memutil.h"
"internal/ostringstream.h"
"internal/resize_uninitialized.h"
@ -47,7 +50,10 @@ list(APPEND STRINGS_INTERNAL_HEADERS
# add string library
list(APPEND STRINGS_SRC
"ascii.cc"
"charconv.cc"
"escaping.cc"
"internal/charconv_bigint.cc"
"internal/charconv_parse.cc"
"internal/memutil.cc"
"internal/memutil.h"
"internal/utf8.cc"
@ -301,5 +307,43 @@ absl_test(
)
# test charconv_test
set(CHARCONV_TEST_SRC "charconv_test.cc")
set(CHARCONV_TEST_PUBLIC_LIBRARIES absl::strings)
absl_test(
TARGET
charconv_test
SOURCES
${CHARCONV_TEST_SRC}
PUBLIC_LIBRARIES
${CHARCONV_TEST_PUBLIC_LIBRARIES}
)
# test charconv_parse_test
set(CHARCONV_PARSE_TEST_SRC "internal/charconv_parse_test.cc")
set(CHARCONV_PARSE_TEST_PUBLIC_LIBRARIES absl::strings)
absl_test(
TARGET
charconv_parse_test
SOURCES
${CHARCONV_PARSE_TEST_SRC}
PUBLIC_LIBRARIES
${CHARCONV_PARSE_TEST_PUBLIC_LIBRARIES}
)
# test charconv_bigint_test
set(CHARCONV_BIGINT_TEST_SRC "internal/charconv_bigint_test.cc")
set(CHARCONV_BIGINT_TEST_PUBLIC_LIBRARIES absl::strings)
absl_test(
TARGET
charconv_bigint_test
SOURCES
${CHARCONV_BIGINT_TEST_SRC}
PUBLIC_LIBRARIES
${CHARCONV_BIGINT_TEST_PUBLIC_LIBRARIES}
)

@ -15,6 +15,7 @@
#include "absl/strings/ascii.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace ascii_internal {
// # Table generated by this Python code (bit 0x02 is currently unused):
@ -195,4 +196,5 @@ void RemoveExtraAsciiWhitespace(std::string* str) {
str->erase(output_it - &(*str)[0]);
}
} // inline namespace lts_2018_06_20
} // namespace absl

@ -59,6 +59,7 @@
#include "absl/strings/string_view.h"
namespace absl {
inline namespace lts_2018_06_20 {
namespace ascii_internal {
// Declaration for an array of bitfields holding character information.
@ -234,6 +235,7 @@ inline void StripAsciiWhitespace(std::string* str) {
// Removes leading, trailing, and consecutive internal whitespace.
void RemoveExtraAsciiWhitespace(std::string*);
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_STRINGS_ASCII_H_

@ -0,0 +1,984 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/charconv.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstring>
#include "absl/base/casts.h"
#include "absl/numeric/int128.h"
#include "absl/strings/internal/bits.h"
#include "absl/strings/internal/charconv_bigint.h"
#include "absl/strings/internal/charconv_parse.h"
// The macro ABSL_BIT_PACK_FLOATS is defined on x86-64, where IEEE floating
// point numbers have the same endianness in memory as a bitfield struct
// containing the corresponding parts.
//
// When set, we replace calls to ldexp() with manual bit packing, which is
// faster and is unaffected by floating point environment.
#ifdef ABSL_BIT_PACK_FLOATS
#error ABSL_BIT_PACK_FLOATS cannot be directly set
#elif defined(__x86_64__) || defined(_M_X64)
#define ABSL_BIT_PACK_FLOATS 1
#endif
// A note about subnormals:
//
// The code below talks about "normals" and "subnormals". A normal IEEE float
// has a fixed-width mantissa and power of two exponent. For example, a normal
// `double` has a 53-bit mantissa. Because the high bit is always 1, it is not
// stored in the representation. The implicit bit buys an extra bit of
// resolution in the datatype.
//
// The downside of this scheme is that there is a large gap between DBL_MIN and
// zero. (Large, at least, relative to the different between DBL_MIN and the
// next representable number). This gap is softened by the "subnormal" numbers,
// which have the same power-of-two exponent as DBL_MIN, but no implicit 53rd
// bit. An all-bits-zero exponent in the encoding represents subnormals. (Zero
// is represented as a subnormal with an all-bits-zero mantissa.)
//
// The code below, in calculations, represents the mantissa as a uint64_t. The
// end result normally has the 53rd bit set. It represents subnormals by using
// narrower mantissas.
namespace absl {
inline namespace lts_2018_06_20 {
namespace {
template <typename FloatType>
struct FloatTraits;
template <>
struct FloatTraits<double> {
// The number of mantissa bits in the given float type. This includes the
// implied high bit.
static constexpr int kTargetMantissaBits = 53;
// The largest supported IEEE exponent, in our integral mantissa
// representation.
//
// If `m` is the largest possible int kTargetMantissaBits bits wide, then
// m * 2**kMaxExponent is exactly equal to DBL_MAX.
static constexpr int kMaxExponent = 971;
// The smallest supported IEEE normal exponent, in our integral mantissa
// representation.
//
// If `m` is the smallest possible int kTargetMantissaBits bits wide, then
// m * 2**kMinNormalExponent is exactly equal to DBL_MIN.
static constexpr int kMinNormalExponent = -1074;
static double MakeNan(const char* tagp) {
// Support nan no matter which namespace it's in. Some platforms
// incorrectly don't put it in namespace std.
using namespace std; // NOLINT
return nan(tagp);
}
// Builds a nonzero floating point number out of the provided parts.
//
// This is intended to do the same operation as ldexp(mantissa, exponent),
// but using purely integer math, to avoid -ffastmath and floating
// point environment issues. Using type punning is also faster. We fall back
// to ldexp on a per-platform basis for portability.
//
// `exponent` must be between kMinNormalExponent and kMaxExponent.
//
// `mantissa` must either be exactly kTargetMantissaBits wide, in which case
// a normal value is made, or it must be less narrow than that, in which case
// `exponent` must be exactly kMinNormalExponent, and a subnormal value is
// made.
static double Make(uint64_t mantissa, int exponent, bool sign) {
#ifndef ABSL_BIT_PACK_FLOATS
// Support ldexp no matter which namespace it's in. Some platforms
// incorrectly don't put it in namespace std.
using namespace std; // NOLINT
return sign ? -ldexp(mantissa, exponent) : ldexp(mantissa, exponent);
#else
constexpr uint64_t kMantissaMask =
(uint64_t(1) << (kTargetMantissaBits - 1)) - 1;
uint64_t dbl = static_cast<uint64_t>(sign) << 63;
if (mantissa > kMantissaMask) {
// Normal value.
// Adjust by 1023 for the exponent representation bias, and an additional
// 52 due to the implied decimal point in the IEEE mantissa represenation.
dbl += uint64_t{exponent + 1023u + kTargetMantissaBits - 1} << 52;
mantissa &= kMantissaMask;
} else {
// subnormal value
assert(exponent == kMinNormalExponent);
}
dbl += mantissa;
return absl::bit_cast<double>(dbl);
#endif // ABSL_BIT_PACK_FLOATS
}
};
// Specialization of floating point traits for the `float` type. See the
// FloatTraits<double> specialization above for meaning of each of the following
// members and methods.
template <>
struct FloatTraits<float> {
static constexpr int kTargetMantissaBits = 24;
static constexpr int kMaxExponent = 104;
static constexpr int kMinNormalExponent = -149;
static float MakeNan(const char* tagp) {
// Support nanf no matter which namespace it's in. Some platforms
// incorrectly don't put it in namespace std.
using namespace std; // NOLINT
return nanf(tagp);
}
static float Make(uint32_t mantissa, int exponent, bool sign) {
#ifndef ABSL_BIT_PACK_FLOATS
// Support ldexpf no matter which namespace it's in. Some platforms
// incorrectly don't put it in namespace std.
using namespace std; // NOLINT
return sign ? -ldexpf(mantissa, exponent) : ldexpf(mantissa, exponent);
#else
constexpr uint32_t kMantissaMask =
(uint32_t(1) << (kTargetMantissaBits - 1)) - 1;
uint32_t flt = static_cast<uint32_t>(sign) << 31;
if (mantissa > kMantissaMask) {
// Normal value.
// Adjust by 127 for the exponent representation bias, and an additional
// 23 due to the implied decimal point in the IEEE mantissa represenation.
flt += uint32_t{exponent + 127u + kTargetMantissaBits - 1} << 23;
mantissa &= kMantissaMask;
} else {
// subnormal value
assert(exponent == kMinNormalExponent);
}
flt += mantissa;
return absl::bit_cast<float>(flt);
#endif // ABSL_BIT_PACK_FLOATS
}
};
// Decimal-to-binary conversions require coercing powers of 10 into a mantissa
// and a power of 2. The two helper functions Power10Mantissa(n) and
// Power10Exponent(n) perform this task. Together, these represent a hand-
// rolled floating point value which is equal to or just less than 10**n.
//
// The return values satisfy two range guarantees:
//
// Power10Mantissa(n) * 2**Power10Exponent(n) <= 10**n
// < (Power10Mantissa(n) + 1) * 2**Power10Exponent(n)
//
// 2**63 <= Power10Mantissa(n) < 2**64.
//
// Lookups into the power-of-10 table must first check the Power10Overflow() and
// Power10Underflow() functions, to avoid out-of-bounds table access.
//
// Indexes into these tables are biased by -kPower10TableMin, and the table has
// values in the range [kPower10TableMin, kPower10TableMax].
extern const uint64_t kPower10MantissaTable[];
extern const int16_t kPower10ExponentTable[];
// The smallest allowed value for use with the Power10Mantissa() and
// Power10Exponent() functions below. (If a smaller exponent is needed in
// calculations, the end result is guaranteed to underflow.)
constexpr int kPower10TableMin = -342;
// The largest allowed value for use with the Power10Mantissa() and
// Power10Exponent() functions below. (If a smaller exponent is needed in
// calculations, the end result is guaranteed to overflow.)
constexpr int kPower10TableMax = 308;
uint64_t Power10Mantissa(int n) {
return kPower10MantissaTable[n - kPower10TableMin];
}
int Power10Exponent(int n) {
return kPower10ExponentTable[n - kPower10TableMin];
}
// Returns true if n is large enough that 10**n always results in an IEEE
// overflow.
bool Power10Overflow(int n) { return n > kPower10TableMax; }
// Returns true if n is small enough that 10**n times a ParsedFloat mantissa
// always results in an IEEE underflow.
bool Power10Underflow(int n) { return n < kPower10TableMin; }
// Returns true if Power10Mantissa(n) * 2**Power10Exponent(n) is exactly equal
// to 10**n numerically. Put another way, this returns true if there is no
// truncation error in Power10Mantissa(n).
bool Power10Exact(int n) { return n >= 0 && n <= 27; }
// Sentinel exponent values for representing numbers too large or too close to
// zero to represent in a double.
constexpr int kOverflow = 99999;
constexpr int kUnderflow = -99999;
// Struct representing the calculated conversion result of a positive (nonzero)
// floating point number.
//
// The calculated number is mantissa * 2**exponent (mantissa is treated as an
// integer.) `mantissa` is chosen to be the correct width for the IEEE float
// representation being calculated. (`mantissa` will always have the same bit
// width for normal values, and narrower bit widths for subnormals.)
//
// If the result of conversion was an underflow or overflow, exponent is set
// to kUnderflow or kOverflow.
struct CalculatedFloat {
uint64_t mantissa = 0;
int exponent = 0;
};
// Returns the bit width of the given uint128. (Equivalently, returns 128
// minus the number of leading zero bits.)
int BitWidth(uint128 value) {
if (Uint128High64(value) == 0) {
return 64 - strings_internal::CountLeadingZeros64(Uint128Low64(value));
}
return 128 - strings_internal::CountLeadingZeros64(Uint128High64(value));
}
// Calculates how far to the right a mantissa needs to be shifted to create a
// properly adjusted mantissa for an IEEE floating point number.
//
// `mantissa_width` is the bit width of the mantissa to be shifted, and
// `binary_exponent` is the exponent of the number before the shift.
//
// This accounts for subnormal values, and will return a larger-than-normal
// shift if binary_exponent would otherwise be too low.
template <typename FloatType>
int NormalizedShiftSize(int mantissa_width, int binary_exponent) {
const int normal_shift =
mantissa_width - FloatTraits<FloatType>::kTargetMantissaBits;
const int minimum_shift =
FloatTraits<FloatType>::kMinNormalExponent - binary_exponent;
return std::max(normal_shift, minimum_shift);
}
// Right shifts a uint128 so that it has the requested bit width. (The
// resulting value will have 128 - bit_width leading zeroes.) The initial
// `value` must be wider than the requested bit width.
//
// Returns the number of bits shifted.
int TruncateToBitWidth(int bit_width, uint128* value) {
const int current_bit_width = BitWidth(*value);
const int shift = current_bit_width - bit_width;
*value >>= shift;
return shift;
}
// Checks if the given ParsedFloat represents one of the edge cases that are
// not dependent on number base: zero, infinity, or NaN. If so, sets *value
// the appropriate double, and returns true.
template <typename FloatType>
bool HandleEdgeCase(const strings_internal::ParsedFloat& input, bool negative,
FloatType* value) {
if (input.type == strings_internal::FloatType::kNan) {
// A bug in both clang and gcc would cause the compiler to optimize away the
// buffer we are building below. Declaring the buffer volatile avoids the
// issue, and has no measurable performance impact in microbenchmarks.
//
// https://bugs.llvm.org/show_bug.cgi?id=37778
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86113
constexpr ptrdiff_t kNanBufferSize = 128;
volatile char n_char_sequence[kNanBufferSize];
if (input.subrange_begin == nullptr) {
n_char_sequence[0] = '\0';
} else {
ptrdiff_t nan_size = input.subrange_end - input.subrange_begin;
nan_size = std::min(nan_size, kNanBufferSize - 1);
std::copy_n(input.subrange_begin, nan_size, n_char_sequence);
n_char_sequence[nan_size] = '\0';
}
char* nan_argument = const_cast<char*>(n_char_sequence);
*value = negative ? -FloatTraits<FloatType>::MakeNan(nan_argument)
: FloatTraits<FloatType>::MakeNan(nan_argument);
return true;
}
if (input.type == strings_internal::FloatType::kInfinity) {
*value = negative ? -std::numeric_limits<FloatType>::infinity()
: std::numeric_limits<FloatType>::infinity();
return true;
}
if (input.mantissa == 0) {
*value = negative ? -0.0 : 0.0;
return true;
}
return false;
}
// Given a CalculatedFloat result of a from_chars conversion, generate the
// correct output values.
//
// CalculatedFloat can represent an underflow or overflow, in which case the
// error code in *result is set. Otherwise, the calculated floating point
// number is stored in *value.
template <typename FloatType>
void EncodeResult(const CalculatedFloat& calculated, bool negative,
absl::from_chars_result* result, FloatType* value) {
if (calculated.exponent == kOverflow) {
result->ec = std::errc::result_out_of_range;
*value = negative ? -std::numeric_limits<FloatType>::max()
: std::numeric_limits<FloatType>::max();
return;
} else if (calculated.mantissa == 0 || calculated.exponent == kUnderflow) {
result->ec = std::errc::result_out_of_range;
*value = negative ? -0.0 : 0.0;
return;
}
*value = FloatTraits<FloatType>::Make(calculated.mantissa,
calculated.exponent, negative);
}
// Returns the given uint128 shifted to the right by `shift` bits, and rounds
// the remaining bits using round_to_nearest logic. The value is returned as a
// uint64_t, since this is the type used by this library for storing calculated
// floating point mantissas.
//
// It is expected that the width of the input value shifted by `shift` will
// be the correct bit-width for the target mantissa, which is strictly narrower
// than a uint64_t.
//
// If `input_exact` is false, then a nonzero error epsilon is assumed. For
// rounding purposes, the true value being rounded is strictly greater than the
// input value. The error may represent a single lost carry bit.
//
// When input_exact, shifted bits of the form 1000000... represent a tie, which
// is broken by rounding to even -- the rounding direction is chosen so the low
// bit of the returned value is 0.
//
// When !input_exact, shifted bits of the form 10000000... represent a value
// strictly greater than one half (due to the error epsilon), and so ties are
// always broken by rounding up.
//
// When !input_exact, shifted bits of the form 01111111... are uncertain;
// the true value may or may not be greater than 10000000..., due to the
// possible lost carry bit. The correct rounding direction is unknown. In this
// case, the result is rounded down, and `output_exact` is set to false.
//
// Zero and negative values of `shift` are accepted, in which case the word is
// shifted left, as necessary.
uint64_t ShiftRightAndRound(uint128 value, int shift, bool input_exact,
bool* output_exact) {
if (shift <= 0) {
*output_exact = input_exact;
return static_cast<uint64_t>(value << -shift);
}
if (shift >= 128) {
// Exponent is so small that we are shifting away all significant bits.
// Answer will not be representable, even as a subnormal, so return a zero
// mantissa (which represents underflow).
*output_exact = true;
return 0;
}
*output_exact = true;
const uint128 shift_mask = (uint128(1) << shift) - 1;
const uint128 halfway_point = uint128(1) << (shift - 1);
const uint128 shifted_bits = value & shift_mask;
value >>= shift;
if (shifted_bits > halfway_point) {
// Shifted bits greater than 10000... require rounding up.
return static_cast<uint64_t>(value + 1);
}
if (shifted_bits == halfway_point) {
// In exact mode, shifted bits of 10000... mean we're exactly halfway
// between two numbers, and we must round to even. So only round up if
// the low bit of `value` is set.
//
// In inexact mode, the nonzero error means the actual value is greater
// than the halfway point and we must alway round up.
if ((value & 1) == 1 || !input_exact) {
++value;
}
return static_cast<uint64_t>(value);
}
if (!input_exact && shifted_bits == halfway_point - 1) {
// Rounding direction is unclear, due to error.
*output_exact = false;
}
// Otherwise, round down.
return static_cast<uint64_t>(value);
}
// Checks if a floating point guess needs to be rounded up, using high precision
// math.
//
// `guess_mantissa` and `guess_exponent` represent a candidate guess for the
// number represented by `parsed_decimal`.
//
// The exact number represented by `parsed_decimal` must lie between the two
// numbers:
// A = `guess_mantissa * 2**guess_exponent`
// B = `(guess_mantissa + 1) * 2**guess_exponent`
//
// This function returns false if `A` is the better guess, and true if `B` is
// the better guess, with rounding ties broken by rounding to even.
bool MustRoundUp(uint64_t guess_mantissa, int guess_exponent,
const strings_internal::ParsedFloat& parsed_decimal) {
// 768 is the number of digits needed in the worst case. We could determine a
// better limit dynamically based on the value of parsed_decimal.exponent.
// This would optimize pathological input cases only. (Sane inputs won't have
// hundreds of digits of mantissa.)
absl::strings_internal::BigUnsigned<84> exact_mantissa;
int exact_exponent = exact_mantissa.ReadFloatMantissa(parsed_decimal, 768);
// Adjust the `guess` arguments to be halfway between A and B.
guess_mantissa = guess_mantissa * 2 + 1;
guess_exponent -= 1;
// In our comparison:
// lhs = exact = exact_mantissa * 10**exact_exponent
// = exact_mantissa * 5**exact_exponent * 2**exact_exponent
// rhs = guess = guess_mantissa * 2**guess_exponent
//
// Because we are doing integer math, we can't directly deal with negative
// exponents. We instead move these to the other side of the inequality.
absl::strings_internal::BigUnsigned<84>& lhs = exact_mantissa;
int comparison;
if (exact_exponent >= 0) {
lhs.MultiplyByFiveToTheNth(exact_exponent);
absl::strings_internal::BigUnsigned<84> rhs(guess_mantissa);
// There are powers of 2 on both sides of the inequality; reduce this to
// a single bit-shift.
if (exact_exponent > guess_exponent) {
lhs.ShiftLeft(exact_exponent - guess_exponent);
} else {
rhs.ShiftLeft(guess_exponent - exact_exponent);
}
comparison = Compare(lhs, rhs);
} else {
// Move the power of 5 to the other side of the equation, giving us:
// lhs = exact_mantissa * 2**exact_exponent
// rhs = guess_mantissa * 5**(-exact_exponent) * 2**guess_exponent
absl::strings_internal::BigUnsigned<84> rhs =
absl::strings_internal::BigUnsigned<84>::FiveToTheNth(-exact_exponent);
rhs.MultiplyBy(guess_mantissa);
if (exact_exponent > guess_exponent) {
lhs.ShiftLeft(exact_exponent - guess_exponent);
} else {
rhs.ShiftLeft(guess_exponent - exact_exponent);
}
comparison = Compare(lhs, rhs);
}
if (comparison < 0) {
return false;
} else if (comparison > 0) {
return true;
} else {
// When lhs == rhs, the decimal input is exactly between A and B.
// Round towards even -- round up only if the low bit of the initial
// `guess_mantissa` was a 1. We shifted guess_mantissa left 1 bit at
// the beginning of this function, so test the 2nd bit here.
return (guess_mantissa & 2) == 2;
}
}
// Constructs a CalculatedFloat from a given mantissa and exponent, but
// with the following normalizations applied:
//
// If rounding has caused mantissa to increase just past the allowed bit
// width, shift and adjust exponent.
//
// If exponent is too high, sets kOverflow.
//
// If mantissa is zero (representing a non-zero value not representable, even
// as a subnormal), sets kUnderflow.
template <typename FloatType>
CalculatedFloat CalculatedFloatFromRawValues(uint64_t mantissa, int exponent) {
CalculatedFloat result;
if (mantissa == uint64_t(1) << FloatTraits<FloatType>::kTargetMantissaBits) {
mantissa >>= 1;
exponent += 1;
}
if (exponent > FloatTraits<FloatType>::kMaxExponent) {
result.exponent = kOverflow;
} else if (mantissa == 0) {
result.exponent = kUnderflow;
} else {
result.exponent = exponent;
result.mantissa = mantissa;
}
return result;
}
template <typename FloatType>
CalculatedFloat CalculateFromParsedHexadecimal(
const strings_internal::ParsedFloat& parsed_hex) {
uint64_t mantissa = parsed_hex.mantissa;
int exponent = parsed_hex.exponent;
int mantissa_width = 64 - strings_internal::CountLeadingZeros64(mantissa);
const int shift = NormalizedShiftSize<FloatType>(mantissa_width, exponent);
bool result_exact;
exponent += shift;
mantissa = ShiftRightAndRound(mantissa, shift,
/* input exact= */ true, &result_exact);
// ParseFloat handles rounding in the hexadecimal case, so we don't have to
// check `result_exact` here.
return CalculatedFloatFromRawValues<FloatType>(mantissa, exponent);
}
template <typename FloatType>
CalculatedFloat CalculateFromParsedDecimal(
const strings_internal::ParsedFloat& parsed_decimal) {
CalculatedFloat result;
// Large or small enough decimal exponents will always result in overflow
// or underflow.
if (Power10Underflow(parsed_decimal.exponent)) {
result.exponent = kUnderflow;
return result;
} else if (Power10Overflow(parsed_decimal.exponent)) {
result.exponent = kOverflow;
return result;
}
// Otherwise convert our power of 10 into a power of 2 times an integer
// mantissa, and multiply this by our parsed decimal mantissa.
uint128 wide_binary_mantissa = parsed_decimal.mantissa;
wide_binary_mantissa *= Power10Mantissa(parsed_decimal.exponent);
int binary_exponent = Power10Exponent(parsed_decimal.exponent);
// Discard bits that are inaccurate due to truncation error. The magic
// `mantissa_width` constants below are justified in charconv_algorithm.md.
// They represent the number of bits in `wide_binary_mantissa` that are
// guaranteed to be unaffected by error propagation.
bool mantissa_exact;
int mantissa_width;
if (parsed_decimal.subrange_begin) {
// Truncated mantissa
mantissa_width = 58;
mantissa_exact = false;
binary_exponent +=
TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
} else if (!Power10Exact(parsed_decimal.exponent)) {
// Exact mantissa, truncated power of ten
mantissa_width = 63;
mantissa_exact = false;
binary_exponent +=
TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
} else {
// Product is exact
mantissa_width = BitWidth(wide_binary_mantissa);
mantissa_exact = true;
}
// Shift into an FloatType-sized mantissa, and round to nearest.
const int shift =
NormalizedShiftSize<FloatType>(mantissa_width, binary_exponent);
bool result_exact;
binary_exponent += shift;
uint64_t binary_mantissa = ShiftRightAndRound(wide_binary_mantissa, shift,
mantissa_exact, &result_exact);
if (!result_exact) {
// We could not determine the rounding direction using int128 math. Use
// full resolution math instead.
if (MustRoundUp(binary_mantissa, binary_exponent, parsed_decimal)) {
binary_mantissa += 1;
}
}
return CalculatedFloatFromRawValues<FloatType>(binary_mantissa,
binary_exponent);
}
template <typename FloatType>
from_chars_result FromCharsImpl(const char* first, const char* last,
FloatType& value, chars_format fmt_flags) {
from_chars_result result;
result.ptr = first; // overwritten on successful parse
result.ec = std::errc();
bool negative = false;
if (first != last && *first == '-') {
++first;
negative = true;
}
// If the `hex` flag is *not* set, then we will accept a 0x prefix and try
// to parse a hexadecimal float.
if ((fmt_flags & chars_format::hex) == chars_format{} && last - first >= 2 &&
*first == '0' && (first[1] == 'x' || first[1] == 'X')) {
const char* hex_first = first + 2;
strings_internal::ParsedFloat hex_parse =
strings_internal::ParseFloat<16>(hex_first, last, fmt_flags);
if (hex_parse.end == nullptr ||
hex_parse.type != strings_internal::FloatType::kNumber) {
// Either we failed to parse a hex float after the "0x", or we read
// "0xinf" or "0xnan" which we don't want to match.
//
// However, a std::string that begins with "0x" also begins with "0", which
// is normally a valid match for the number zero. So we want these
// strings to match zero unless fmt_flags is `scientific`. (This flag
// means an exponent is required, which the std::string "0" does not have.)
if (fmt_flags == chars_format::scientific) {
result.ec = std::errc::invalid_argument;
} else {
result.ptr = first + 1;
value = negative ? -0.0 : 0.0;
}
return result;
}
// We matched a value.
result.ptr = hex_parse.end;
if (HandleEdgeCase(hex_parse, negative, &value)) {
return result;
}
CalculatedFloat calculated =
CalculateFromParsedHexadecimal<FloatType>(hex_parse);
EncodeResult(calculated, negative, &result, &value);
return result;
}
// Otherwise, we choose the number base based on the flags.
if ((fmt_flags & chars_format::hex) == chars_format::hex) {
strings_internal::ParsedFloat hex_parse =
strings_internal::ParseFloat<16>(first, last, fmt_flags);
if (hex_parse.end == nullptr) {
result.ec = std::errc::invalid_argument;
return result;
}
result.ptr = hex_parse.end;
if (HandleEdgeCase(hex_parse, negative, &value)) {
return result;
}
CalculatedFloat calculated =
CalculateFromParsedHexadecimal<FloatType>(hex_parse);
EncodeResult(calculated, negative, &result, &value);
return result;
} else {
strings_internal::ParsedFloat decimal_parse =
strings_internal::ParseFloat<10>(first, last, fmt_flags);
if (decimal_parse.end == nullptr) {
result.ec = std::errc::invalid_argument;
return result;
}
result.ptr = decimal_parse.end;
if (HandleEdgeCase(decimal_parse, negative, &value)) {
return result;
}
CalculatedFloat calculated =
CalculateFromParsedDecimal<FloatType>(decimal_parse);
EncodeResult(calculated, negative, &result, &value);
return result;
}
return result;
}
} // namespace
from_chars_result from_chars(const char* first, const char* last, double& value,
chars_format fmt) {
return FromCharsImpl(first, last, value, fmt);
}
from_chars_result from_chars(const char* first, const char* last, float& value,
chars_format fmt) {
return FromCharsImpl(first, last, value, fmt);
}
namespace {
// Table of powers of 10, from kPower10TableMin to kPower10TableMax.
//
// kPower10MantissaTable[i - kPower10TableMin] stores the 64-bit mantissa (high
// bit always on), and kPower10ExponentTable[i - kPower10TableMin] stores the
// power-of-two exponent. For a given number i, this gives the unique mantissa
// and exponent such that mantissa * 2**exponent <= 10**i < (mantissa + 1) *
// 2**exponent.
const uint64_t kPower10MantissaTable[] = {
0xeef453d6923bd65aU, 0x9558b4661b6565f8U, 0xbaaee17fa23ebf76U,
0xe95a99df8ace6f53U, 0x91d8a02bb6c10594U, 0xb64ec836a47146f9U,
0xe3e27a444d8d98b7U, 0x8e6d8c6ab0787f72U, 0xb208ef855c969f4fU,
0xde8b2b66b3bc4723U, 0x8b16fb203055ac76U, 0xaddcb9e83c6b1793U,
0xd953e8624b85dd78U, 0x87d4713d6f33aa6bU, 0xa9c98d8ccb009506U,
0xd43bf0effdc0ba48U, 0x84a57695fe98746dU, 0xa5ced43b7e3e9188U,
0xcf42894a5dce35eaU, 0x818995ce7aa0e1b2U, 0xa1ebfb4219491a1fU,
0xca66fa129f9b60a6U, 0xfd00b897478238d0U, 0x9e20735e8cb16382U,
0xc5a890362fddbc62U, 0xf712b443bbd52b7bU, 0x9a6bb0aa55653b2dU,
0xc1069cd4eabe89f8U, 0xf148440a256e2c76U, 0x96cd2a865764dbcaU,
0xbc807527ed3e12bcU, 0xeba09271e88d976bU, 0x93445b8731587ea3U,
0xb8157268fdae9e4cU, 0xe61acf033d1a45dfU, 0x8fd0c16206306babU,
0xb3c4f1ba87bc8696U, 0xe0b62e2929aba83cU, 0x8c71dcd9ba0b4925U,
0xaf8e5410288e1b6fU, 0xdb71e91432b1a24aU, 0x892731ac9faf056eU,
0xab70fe17c79ac6caU, 0xd64d3d9db981787dU, 0x85f0468293f0eb4eU,
0xa76c582338ed2621U, 0xd1476e2c07286faaU, 0x82cca4db847945caU,
0xa37fce126597973cU, 0xcc5fc196fefd7d0cU, 0xff77b1fcbebcdc4fU,
0x9faacf3df73609b1U, 0xc795830d75038c1dU, 0xf97ae3d0d2446f25U,
0x9becce62836ac577U, 0xc2e801fb244576d5U, 0xf3a20279ed56d48aU,
0x9845418c345644d6U, 0xbe5691ef416bd60cU, 0xedec366b11c6cb8fU,
0x94b3a202eb1c3f39U, 0xb9e08a83a5e34f07U, 0xe858ad248f5c22c9U,
0x91376c36d99995beU, 0xb58547448ffffb2dU, 0xe2e69915b3fff9f9U,
0x8dd01fad907ffc3bU, 0xb1442798f49ffb4aU, 0xdd95317f31c7fa1dU,
0x8a7d3eef7f1cfc52U, 0xad1c8eab5ee43b66U, 0xd863b256369d4a40U,
0x873e4f75e2224e68U, 0xa90de3535aaae202U, 0xd3515c2831559a83U,
0x8412d9991ed58091U, 0xa5178fff668ae0b6U, 0xce5d73ff402d98e3U,
0x80fa687f881c7f8eU, 0xa139029f6a239f72U, 0xc987434744ac874eU,
0xfbe9141915d7a922U, 0x9d71ac8fada6c9b5U, 0xc4ce17b399107c22U,
0xf6019da07f549b2bU, 0x99c102844f94e0fbU, 0xc0314325637a1939U,
0xf03d93eebc589f88U, 0x96267c7535b763b5U, 0xbbb01b9283253ca2U,
0xea9c227723ee8bcbU, 0x92a1958a7675175fU, 0xb749faed14125d36U,
0xe51c79a85916f484U, 0x8f31cc0937ae58d2U, 0xb2fe3f0b8599ef07U,
0xdfbdcece67006ac9U, 0x8bd6a141006042bdU, 0xaecc49914078536dU,
0xda7f5bf590966848U, 0x888f99797a5e012dU, 0xaab37fd7d8f58178U,
0xd5605fcdcf32e1d6U, 0x855c3be0a17fcd26U, 0xa6b34ad8c9dfc06fU,
0xd0601d8efc57b08bU, 0x823c12795db6ce57U, 0xa2cb1717b52481edU,
0xcb7ddcdda26da268U, 0xfe5d54150b090b02U, 0x9efa548d26e5a6e1U,
0xc6b8e9b0709f109aU, 0xf867241c8cc6d4c0U, 0x9b407691d7fc44f8U,
0xc21094364dfb5636U, 0xf294b943e17a2bc4U, 0x979cf3ca6cec5b5aU,
0xbd8430bd08277231U, 0xece53cec4a314ebdU, 0x940f4613ae5ed136U,
0xb913179899f68584U, 0xe757dd7ec07426e5U, 0x9096ea6f3848984fU,
0xb4bca50b065abe63U, 0xe1ebce4dc7f16dfbU, 0x8d3360f09cf6e4bdU,
0xb080392cc4349decU, 0xdca04777f541c567U, 0x89e42caaf9491b60U,
0xac5d37d5b79b6239U, 0xd77485cb25823ac7U, 0x86a8d39ef77164bcU,
0xa8530886b54dbdebU, 0xd267caa862a12d66U, 0x8380dea93da4bc60U,
0xa46116538d0deb78U, 0xcd795be870516656U, 0x806bd9714632dff6U,
0xa086cfcd97bf97f3U, 0xc8a883c0fdaf7df0U, 0xfad2a4b13d1b5d6cU,
0x9cc3a6eec6311a63U, 0xc3f490aa77bd60fcU, 0xf4f1b4d515acb93bU,
0x991711052d8bf3c5U, 0xbf5cd54678eef0b6U, 0xef340a98172aace4U,
0x9580869f0e7aac0eU, 0xbae0a846d2195712U, 0xe998d258869facd7U,
0x91ff83775423cc06U, 0xb67f6455292cbf08U, 0xe41f3d6a7377eecaU,
0x8e938662882af53eU, 0xb23867fb2a35b28dU, 0xdec681f9f4c31f31U,
0x8b3c113c38f9f37eU, 0xae0b158b4738705eU, 0xd98ddaee19068c76U,
0x87f8a8d4cfa417c9U, 0xa9f6d30a038d1dbcU, 0xd47487cc8470652bU,
0x84c8d4dfd2c63f3bU, 0xa5fb0a17c777cf09U, 0xcf79cc9db955c2ccU,
0x81ac1fe293d599bfU, 0xa21727db38cb002fU, 0xca9cf1d206fdc03bU,
0xfd442e4688bd304aU, 0x9e4a9cec15763e2eU, 0xc5dd44271ad3cdbaU,
0xf7549530e188c128U, 0x9a94dd3e8cf578b9U, 0xc13a148e3032d6e7U,
0xf18899b1bc3f8ca1U, 0x96f5600f15a7b7e5U, 0xbcb2b812db11a5deU,
0xebdf661791d60f56U, 0x936b9fcebb25c995U, 0xb84687c269ef3bfbU,
0xe65829b3046b0afaU, 0x8ff71a0fe2c2e6dcU, 0xb3f4e093db73a093U,
0xe0f218b8d25088b8U, 0x8c974f7383725573U, 0xafbd2350644eeacfU,
0xdbac6c247d62a583U, 0x894bc396ce5da772U, 0xab9eb47c81f5114fU,
0xd686619ba27255a2U, 0x8613fd0145877585U, 0xa798fc4196e952e7U,
0xd17f3b51fca3a7a0U, 0x82ef85133de648c4U, 0xa3ab66580d5fdaf5U,
0xcc963fee10b7d1b3U, 0xffbbcfe994e5c61fU, 0x9fd561f1fd0f9bd3U,
0xc7caba6e7c5382c8U, 0xf9bd690a1b68637bU, 0x9c1661a651213e2dU,
0xc31bfa0fe5698db8U, 0xf3e2f893dec3f126U, 0x986ddb5c6b3a76b7U,
0xbe89523386091465U, 0xee2ba6c0678b597fU, 0x94db483840b717efU,
0xba121a4650e4ddebU, 0xe896a0d7e51e1566U, 0x915e2486ef32cd60U,
0xb5b5ada8aaff80b8U, 0xe3231912d5bf60e6U, 0x8df5efabc5979c8fU,
0xb1736b96b6fd83b3U, 0xddd0467c64bce4a0U, 0x8aa22c0dbef60ee4U,
0xad4ab7112eb3929dU, 0xd89d64d57a607744U, 0x87625f056c7c4a8bU,
0xa93af6c6c79b5d2dU, 0xd389b47879823479U, 0x843610cb4bf160cbU,
0xa54394fe1eedb8feU, 0xce947a3da6a9273eU, 0x811ccc668829b887U,
0xa163ff802a3426a8U, 0xc9bcff6034c13052U, 0xfc2c3f3841f17c67U,
0x9d9ba7832936edc0U, 0xc5029163f384a931U, 0xf64335bcf065d37dU,
0x99ea0196163fa42eU, 0xc06481fb9bcf8d39U, 0xf07da27a82c37088U,
0x964e858c91ba2655U, 0xbbe226efb628afeaU, 0xeadab0aba3b2dbe5U,
0x92c8ae6b464fc96fU, 0xb77ada0617e3bbcbU, 0xe55990879ddcaabdU,
0x8f57fa54c2a9eab6U, 0xb32df8e9f3546564U, 0xdff9772470297ebdU,
0x8bfbea76c619ef36U, 0xaefae51477a06b03U, 0xdab99e59958885c4U,
0x88b402f7fd75539bU, 0xaae103b5fcd2a881U, 0xd59944a37c0752a2U,
0x857fcae62d8493a5U, 0xa6dfbd9fb8e5b88eU, 0xd097ad07a71f26b2U,
0x825ecc24c873782fU, 0xa2f67f2dfa90563bU, 0xcbb41ef979346bcaU,
0xfea126b7d78186bcU, 0x9f24b832e6b0f436U, 0xc6ede63fa05d3143U,
0xf8a95fcf88747d94U, 0x9b69dbe1b548ce7cU, 0xc24452da229b021bU,
0xf2d56790ab41c2a2U, 0x97c560ba6b0919a5U, 0xbdb6b8e905cb600fU,
0xed246723473e3813U, 0x9436c0760c86e30bU, 0xb94470938fa89bceU,
0xe7958cb87392c2c2U, 0x90bd77f3483bb9b9U, 0xb4ecd5f01a4aa828U,
0xe2280b6c20dd5232U, 0x8d590723948a535fU, 0xb0af48ec79ace837U,
0xdcdb1b2798182244U, 0x8a08f0f8bf0f156bU, 0xac8b2d36eed2dac5U,
0xd7adf884aa879177U, 0x86ccbb52ea94baeaU, 0xa87fea27a539e9a5U,
0xd29fe4b18e88640eU, 0x83a3eeeef9153e89U, 0xa48ceaaab75a8e2bU,
0xcdb02555653131b6U, 0x808e17555f3ebf11U, 0xa0b19d2ab70e6ed6U,
0xc8de047564d20a8bU, 0xfb158592be068d2eU, 0x9ced737bb6c4183dU,
0xc428d05aa4751e4cU, 0xf53304714d9265dfU, 0x993fe2c6d07b7fabU,
0xbf8fdb78849a5f96U, 0xef73d256a5c0f77cU, 0x95a8637627989aadU,
0xbb127c53b17ec159U, 0xe9d71b689dde71afU, 0x9226712162ab070dU,
0xb6b00d69bb55c8d1U, 0xe45c10c42a2b3b05U, 0x8eb98a7a9a5b04e3U,
0xb267ed1940f1c61cU, 0xdf01e85f912e37a3U, 0x8b61313bbabce2c6U,
0xae397d8aa96c1b77U, 0xd9c7dced53c72255U, 0x881cea14545c7575U,
0xaa242499697392d2U, 0xd4ad2dbfc3d07787U, 0x84ec3c97da624ab4U,
0xa6274bbdd0fadd61U, 0xcfb11ead453994baU, 0x81ceb32c4b43fcf4U,
0xa2425ff75e14fc31U, 0xcad2f7f5359a3b3eU, 0xfd87b5f28300ca0dU,
0x9e74d1b791e07e48U, 0xc612062576589ddaU, 0xf79687aed3eec551U,
0x9abe14cd44753b52U, 0xc16d9a0095928a27U, 0xf1c90080baf72cb1U,
0x971da05074da7beeU, 0xbce5086492111aeaU, 0xec1e4a7db69561a5U,
0x9392ee8e921d5d07U, 0xb877aa3236a4b449U, 0xe69594bec44de15bU,
0x901d7cf73ab0acd9U, 0xb424dc35095cd80fU, 0xe12e13424bb40e13U,
0x8cbccc096f5088cbU, 0xafebff0bcb24aafeU, 0xdbe6fecebdedd5beU,
0x89705f4136b4a597U, 0xabcc77118461cefcU, 0xd6bf94d5e57a42bcU,
0x8637bd05af6c69b5U, 0xa7c5ac471b478423U, 0xd1b71758e219652bU,
0x83126e978d4fdf3bU, 0xa3d70a3d70a3d70aU, 0xccccccccccccccccU,
0x8000000000000000U, 0xa000000000000000U, 0xc800000000000000U,
0xfa00000000000000U, 0x9c40000000000000U, 0xc350000000000000U,
0xf424000000000000U, 0x9896800000000000U, 0xbebc200000000000U,
0xee6b280000000000U, 0x9502f90000000000U, 0xba43b74000000000U,
0xe8d4a51000000000U, 0x9184e72a00000000U, 0xb5e620f480000000U,
0xe35fa931a0000000U, 0x8e1bc9bf04000000U, 0xb1a2bc2ec5000000U,
0xde0b6b3a76400000U, 0x8ac7230489e80000U, 0xad78ebc5ac620000U,
0xd8d726b7177a8000U, 0x878678326eac9000U, 0xa968163f0a57b400U,
0xd3c21bcecceda100U, 0x84595161401484a0U, 0xa56fa5b99019a5c8U,
0xcecb8f27f4200f3aU, 0x813f3978f8940984U, 0xa18f07d736b90be5U,
0xc9f2c9cd04674edeU, 0xfc6f7c4045812296U, 0x9dc5ada82b70b59dU,
0xc5371912364ce305U, 0xf684df56c3e01bc6U, 0x9a130b963a6c115cU,
0xc097ce7bc90715b3U, 0xf0bdc21abb48db20U, 0x96769950b50d88f4U,
0xbc143fa4e250eb31U, 0xeb194f8e1ae525fdU, 0x92efd1b8d0cf37beU,
0xb7abc627050305adU, 0xe596b7b0c643c719U, 0x8f7e32ce7bea5c6fU,
0xb35dbf821ae4f38bU, 0xe0352f62a19e306eU, 0x8c213d9da502de45U,
0xaf298d050e4395d6U, 0xdaf3f04651d47b4cU, 0x88d8762bf324cd0fU,
0xab0e93b6efee0053U, 0xd5d238a4abe98068U, 0x85a36366eb71f041U,
0xa70c3c40a64e6c51U, 0xd0cf4b50cfe20765U, 0x82818f1281ed449fU,
0xa321f2d7226895c7U, 0xcbea6f8ceb02bb39U, 0xfee50b7025c36a08U,
0x9f4f2726179a2245U, 0xc722f0ef9d80aad6U, 0xf8ebad2b84e0d58bU,
0x9b934c3b330c8577U, 0xc2781f49ffcfa6d5U, 0xf316271c7fc3908aU,
0x97edd871cfda3a56U, 0xbde94e8e43d0c8ecU, 0xed63a231d4c4fb27U,
0x945e455f24fb1cf8U, 0xb975d6b6ee39e436U, 0xe7d34c64a9c85d44U,
0x90e40fbeea1d3a4aU, 0xb51d13aea4a488ddU, 0xe264589a4dcdab14U,
0x8d7eb76070a08aecU, 0xb0de65388cc8ada8U, 0xdd15fe86affad912U,
0x8a2dbf142dfcc7abU, 0xacb92ed9397bf996U, 0xd7e77a8f87daf7fbU,
0x86f0ac99b4e8dafdU, 0xa8acd7c0222311bcU, 0xd2d80db02aabd62bU,
0x83c7088e1aab65dbU, 0xa4b8cab1a1563f52U, 0xcde6fd5e09abcf26U,
0x80b05e5ac60b6178U, 0xa0dc75f1778e39d6U, 0xc913936dd571c84cU,
0xfb5878494ace3a5fU, 0x9d174b2dcec0e47bU, 0xc45d1df942711d9aU,
0xf5746577930d6500U, 0x9968bf6abbe85f20U, 0xbfc2ef456ae276e8U,
0xefb3ab16c59b14a2U, 0x95d04aee3b80ece5U, 0xbb445da9ca61281fU,
0xea1575143cf97226U, 0x924d692ca61be758U, 0xb6e0c377cfa2e12eU,
0xe498f455c38b997aU, 0x8edf98b59a373fecU, 0xb2977ee300c50fe7U,
0xdf3d5e9bc0f653e1U, 0x8b865b215899f46cU, 0xae67f1e9aec07187U,
0xda01ee641a708de9U, 0x884134fe908658b2U, 0xaa51823e34a7eedeU,
0xd4e5e2cdc1d1ea96U, 0x850fadc09923329eU, 0xa6539930bf6bff45U,
0xcfe87f7cef46ff16U, 0x81f14fae158c5f6eU, 0xa26da3999aef7749U,
0xcb090c8001ab551cU, 0xfdcb4fa002162a63U, 0x9e9f11c4014dda7eU,
0xc646d63501a1511dU, 0xf7d88bc24209a565U, 0x9ae757596946075fU,
0xc1a12d2fc3978937U, 0xf209787bb47d6b84U, 0x9745eb4d50ce6332U,
0xbd176620a501fbffU, 0xec5d3fa8ce427affU, 0x93ba47c980e98cdfU,
0xb8a8d9bbe123f017U, 0xe6d3102ad96cec1dU, 0x9043ea1ac7e41392U,
0xb454e4a179dd1877U, 0xe16a1dc9d8545e94U, 0x8ce2529e2734bb1dU,
0xb01ae745b101e9e4U, 0xdc21a1171d42645dU, 0x899504ae72497ebaU,
0xabfa45da0edbde69U, 0xd6f8d7509292d603U, 0x865b86925b9bc5c2U,
0xa7f26836f282b732U, 0xd1ef0244af2364ffU, 0x8335616aed761f1fU,
0xa402b9c5a8d3a6e7U, 0xcd036837130890a1U, 0x802221226be55a64U,
0xa02aa96b06deb0fdU, 0xc83553c5c8965d3dU, 0xfa42a8b73abbf48cU,
0x9c69a97284b578d7U, 0xc38413cf25e2d70dU, 0xf46518c2ef5b8cd1U,
0x98bf2f79d5993802U, 0xbeeefb584aff8603U, 0xeeaaba2e5dbf6784U,
0x952ab45cfa97a0b2U, 0xba756174393d88dfU, 0xe912b9d1478ceb17U,
0x91abb422ccb812eeU, 0xb616a12b7fe617aaU, 0xe39c49765fdf9d94U,
0x8e41ade9fbebc27dU, 0xb1d219647ae6b31cU, 0xde469fbd99a05fe3U,
0x8aec23d680043beeU, 0xada72ccc20054ae9U, 0xd910f7ff28069da4U,
0x87aa9aff79042286U, 0xa99541bf57452b28U, 0xd3fa922f2d1675f2U,
0x847c9b5d7c2e09b7U, 0xa59bc234db398c25U, 0xcf02b2c21207ef2eU,
0x8161afb94b44f57dU, 0xa1ba1ba79e1632dcU, 0xca28a291859bbf93U,
0xfcb2cb35e702af78U, 0x9defbf01b061adabU, 0xc56baec21c7a1916U,
0xf6c69a72a3989f5bU, 0x9a3c2087a63f6399U, 0xc0cb28a98fcf3c7fU,
0xf0fdf2d3f3c30b9fU, 0x969eb7c47859e743U, 0xbc4665b596706114U,
0xeb57ff22fc0c7959U, 0x9316ff75dd87cbd8U, 0xb7dcbf5354e9beceU,
0xe5d3ef282a242e81U, 0x8fa475791a569d10U, 0xb38d92d760ec4455U,
0xe070f78d3927556aU, 0x8c469ab843b89562U, 0xaf58416654a6babbU,
0xdb2e51bfe9d0696aU, 0x88fcf317f22241e2U, 0xab3c2fddeeaad25aU,
0xd60b3bd56a5586f1U, 0x85c7056562757456U, 0xa738c6bebb12d16cU,
0xd106f86e69d785c7U, 0x82a45b450226b39cU, 0xa34d721642b06084U,
0xcc20ce9bd35c78a5U, 0xff290242c83396ceU, 0x9f79a169bd203e41U,
0xc75809c42c684dd1U, 0xf92e0c3537826145U, 0x9bbcc7a142b17ccbU,
0xc2abf989935ddbfeU, 0xf356f7ebf83552feU, 0x98165af37b2153deU,
0xbe1bf1b059e9a8d6U, 0xeda2ee1c7064130cU, 0x9485d4d1c63e8be7U,
0xb9a74a0637ce2ee1U, 0xe8111c87c5c1ba99U, 0x910ab1d4db9914a0U,
0xb54d5e4a127f59c8U, 0xe2a0b5dc971f303aU, 0x8da471a9de737e24U,
0xb10d8e1456105dadU, 0xdd50f1996b947518U, 0x8a5296ffe33cc92fU,
0xace73cbfdc0bfb7bU, 0xd8210befd30efa5aU, 0x8714a775e3e95c78U,
0xa8d9d1535ce3b396U, 0xd31045a8341ca07cU, 0x83ea2b892091e44dU,
0xa4e4b66b68b65d60U, 0xce1de40642e3f4b9U, 0x80d2ae83e9ce78f3U,
0xa1075a24e4421730U, 0xc94930ae1d529cfcU, 0xfb9b7cd9a4a7443cU,
0x9d412e0806e88aa5U, 0xc491798a08a2ad4eU, 0xf5b5d7ec8acb58a2U,
0x9991a6f3d6bf1765U, 0xbff610b0cc6edd3fU, 0xeff394dcff8a948eU,
0x95f83d0a1fb69cd9U, 0xbb764c4ca7a4440fU, 0xea53df5fd18d5513U,
0x92746b9be2f8552cU, 0xb7118682dbb66a77U, 0xe4d5e82392a40515U,
0x8f05b1163ba6832dU, 0xb2c71d5bca9023f8U, 0xdf78e4b2bd342cf6U,
0x8bab8eefb6409c1aU, 0xae9672aba3d0c320U, 0xda3c0f568cc4f3e8U,
0x8865899617fb1871U, 0xaa7eebfb9df9de8dU, 0xd51ea6fa85785631U,
0x8533285c936b35deU, 0xa67ff273b8460356U, 0xd01fef10a657842cU,
0x8213f56a67f6b29bU, 0xa298f2c501f45f42U, 0xcb3f2f7642717713U,
0xfe0efb53d30dd4d7U, 0x9ec95d1463e8a506U, 0xc67bb4597ce2ce48U,
0xf81aa16fdc1b81daU, 0x9b10a4e5e9913128U, 0xc1d4ce1f63f57d72U,
0xf24a01a73cf2dccfU, 0x976e41088617ca01U, 0xbd49d14aa79dbc82U,
0xec9c459d51852ba2U, 0x93e1ab8252f33b45U, 0xb8da1662e7b00a17U,
0xe7109bfba19c0c9dU, 0x906a617d450187e2U, 0xb484f9dc9641e9daU,
0xe1a63853bbd26451U, 0x8d07e33455637eb2U, 0xb049dc016abc5e5fU,
0xdc5c5301c56b75f7U, 0x89b9b3e11b6329baU, 0xac2820d9623bf429U,
0xd732290fbacaf133U, 0x867f59a9d4bed6c0U, 0xa81f301449ee8c70U,
0xd226fc195c6a2f8cU, 0x83585d8fd9c25db7U, 0xa42e74f3d032f525U,
0xcd3a1230c43fb26fU, 0x80444b5e7aa7cf85U, 0xa0555e361951c366U,
0xc86ab5c39fa63440U, 0xfa856334878fc150U, 0x9c935e00d4b9d8d2U,
0xc3b8358109e84f07U, 0xf4a642e14c6262c8U, 0x98e7e9cccfbd7dbdU,
0xbf21e44003acdd2cU, 0xeeea5d5004981478U, 0x95527a5202df0ccbU,
0xbaa718e68396cffdU, 0xe950df20247c83fdU, 0x91d28b7416cdd27eU,
0xb6472e511c81471dU, 0xe3d8f9e563a198e5U, 0x8e679c2f5e44ff8fU,
};
const int16_t kPower10ExponentTable[] = {
-1200, -1196, -1193, -1190, -1186, -1183, -1180, -1176, -1173, -1170, -1166,
-1163, -1160, -1156, -1153, -1150, -1146, -1143, -1140, -1136, -1133, -1130,
-1127, -1123, -1120, -1117, -1113, -1110, -1107, -1103, -1100, -1097, -1093,
-1090, -1087, -1083, -1080, -1077, -1073, -1070, -1067, -1063, -1060, -1057,
-1053, -1050, -1047, -1043, -1040, -1037, -1034, -1030, -1027, -1024, -1020,
-1017, -1014, -1010, -1007, -1004, -1000, -997, -994, -990, -987, -984,
-980, -977, -974, -970, -967, -964, -960, -957, -954, -950, -947,
-944, -940, -937, -934, -931, -927, -924, -921, -917, -914, -911,
-907, -904, -901, -897, -894, -891, -887, -884, -881, -877, -874,
-871, -867, -864, -861, -857, -854, -851, -847, -844, -841, -838,
-834, -831, -828, -824, -821, -818, -814, -811, -808, -804, -801,
-798, -794, -791, -788, -784, -781, -778, -774, -771, -768, -764,
-761, -758, -754, -751, -748, -744, -741, -738, -735, -731, -728,
-725, -721, -718, -715, -711, -708, -705, -701, -698, -695, -691,
-688, -685, -681, -678, -675, -671, -668, -665, -661, -658, -655,
-651, -648, -645, -642, -638, -635, -632, -628, -625, -622, -618,
-615, -612, -608, -605, -602, -598, -595, -592, -588, -585, -582,
-578, -575, -572, -568, -565, -562, -558, -555, -552, -549, -545,
-542, -539, -535, -532, -529, -525, -522, -519, -515, -512, -509,
-505, -502, -499, -495, -492, -489, -485, -482, -479, -475, -472,
-469, -465, -462, -459, -455, -452, -449, -446, -442, -439, -436,
-432, -429, -426, -422, -419, -416, -412, -409, -406, -402, -399,
-396, -392, -389, -386, -382, -379, -376, -372, -369, -366, -362,
-359, -356, -353, -349, -346, -343, -339, -336, -333, -329, -326,
-323, -319, -316, -313, -309, -306, -303, -299, -296, -293, -289,
-286, -283, -279, -276, -273, -269, -266, -263, -259, -256, -253,
-250, -246, -243, -240, -236, -233, -230, -226, -223, -220, -216,
-213, -210, -206, -203, -200, -196, -193, -190, -186, -183, -180,
-176, -173, -170, -166, -163, -160, -157, -153, -150, -147, -143,
-140, -137, -133, -130, -127, -123, -120, -117, -113, -110, -107,
-103, -100, -97, -93, -90, -87, -83, -80, -77, -73, -70,
-67, -63, -60, -57, -54, -50, -47, -44, -40, -37, -34,
-30, -27, -24, -20, -17, -14, -10, -7, -4, 0, 3,
6, 10, 13, 16, 20, 23, 26, 30, 33, 36, 39,
43, 46, 49, 53, 56, 59, 63, 66, 69, 73, 76,
79, 83, 86, 89, 93, 96, 99, 103, 106, 109, 113,
116, 119, 123, 126, 129, 132, 136, 139, 142, 146, 149,
152, 156, 159, 162, 166, 169, 172, 176, 179, 182, 186,
189, 192, 196, 199, 202, 206, 209, 212, 216, 219, 222,
226, 229, 232, 235, 239, 242, 245, 249, 252, 255, 259,
262, 265, 269, 272, 275, 279, 282, 285, 289, 292, 295,
299, 302, 305, 309, 312, 315, 319, 322, 325, 328, 332,
335, 338, 342, 345, 348, 352, 355, 358, 362, 365, 368,
372, 375, 378, 382, 385, 388, 392, 395, 398, 402, 405,
408, 412, 415, 418, 422, 425, 428, 431, 435, 438, 441,
445, 448, 451, 455, 458, 461, 465, 468, 471, 475, 478,
481, 485, 488, 491, 495, 498, 501, 505, 508, 511, 515,
518, 521, 524, 528, 531, 534, 538, 541, 544, 548, 551,
554, 558, 561, 564, 568, 571, 574, 578, 581, 584, 588,
591, 594, 598, 601, 604, 608, 611, 614, 617, 621, 624,
627, 631, 634, 637, 641, 644, 647, 651, 654, 657, 661,
664, 667, 671, 674, 677, 681, 684, 687, 691, 694, 697,
701, 704, 707, 711, 714, 717, 720, 724, 727, 730, 734,
737, 740, 744, 747, 750, 754, 757, 760, 764, 767, 770,
774, 777, 780, 784, 787, 790, 794, 797, 800, 804, 807,
810, 813, 817, 820, 823, 827, 830, 833, 837, 840, 843,
847, 850, 853, 857, 860, 863, 867, 870, 873, 877, 880,
883, 887, 890, 893, 897, 900, 903, 907, 910, 913, 916,
920, 923, 926, 930, 933, 936, 940, 943, 946, 950, 953,
956, 960,
};
} // namespace
} // inline namespace lts_2018_06_20
} // namespace absl

@ -0,0 +1,117 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_STRINGS_CHARCONV_H_
#define ABSL_STRINGS_CHARCONV_H_
#include <system_error> // NOLINT(build/c++11)
namespace absl {
inline namespace lts_2018_06_20 {
// Workalike compatibilty version of std::chars_format from C++17.
//
// This is an bitfield enumerator which can be passed to absl::from_chars to
// configure the std::string-to-float conversion.
enum class chars_format {
scientific = 1,
fixed = 2,
hex = 4,
general = fixed | scientific,
};
// The return result of a std::string-to-number conversion.
//
// `ec` will be set to `invalid_argument` if a well-formed number was not found
// at the start of the input range, `result_out_of_range` if a well-formed
// number was found, but it was out of the representable range of the requested
// type, or to std::errc() otherwise.
//
// If a well-formed number was found, `ptr` is set to one past the sequence of
// characters that were successfully parsed. If none was found, `ptr` is set
// to the `first` argument to from_chars.
struct from_chars_result {
const char* ptr;
std::errc ec;
};
// Workalike compatibilty version of std::from_chars from C++17. Currently
// this only supports the `double` and `float` types.
//
// This interface incorporates the proposed resolutions for library issues
// DR 3800 and DR 3801. If these are adopted with different wording,
// Abseil's behavior will change to match the standard. (The behavior most
// likely to change is for DR 3801, which says what `value` will be set to in
// the case of overflow and underflow. Code that wants to avoid possible
// breaking changes in this area should not depend on `value` when the returned
// from_chars_result indicates a range error.)
//
// Searches the range [first, last) for the longest matching pattern beginning
// at `first` that represents a floating point number. If one is found, store
// the result in `value`.
//
// The matching pattern format is almost the same as that of strtod(), except
// that C locale is not respected, and an initial '+' character in the input
// range will never be matched.
//
// If `fmt` is set, it must be one of the enumerator values of the chars_format.
// (This is despite the fact that chars_format is a bitmask type.) If set to
// `scientific`, a matching number must contain an exponent. If set to `fixed`,
// then an exponent will never match. (For example, the std::string "1e5" will be
// parsed as "1".) If set to `hex`, then a hexadecimal float is parsed in the
// format that strtod() accepts, except that a "0x" prefix is NOT matched.
// (In particular, in `hex` mode, the input "0xff" results in the largest
// matching pattern "0".)
absl::from_chars_result from_chars(const char* first, const char* last,
double& value, // NOLINT
chars_format fmt = chars_format::general);
absl::from_chars_result from_chars(const char* first, const char* last,
float& value, // NOLINT
chars_format fmt = chars_format::general);
// std::chars_format is specified as a bitmask type, which means the following
// operations must be provided:
inline constexpr chars_format operator&(chars_format lhs, chars_format rhs) {
return static_cast<chars_format>(static_cast<int>(lhs) &
static_cast<int>(rhs));
}
inline constexpr chars_format operator|(chars_format lhs, chars_format rhs) {
return static_cast<chars_format>(static_cast<int>(lhs) |
static_cast<int>(rhs));
}
inline constexpr chars_format operator^(chars_format lhs, chars_format rhs) {
return static_cast<chars_format>(static_cast<int>(lhs) ^
static_cast<int>(rhs));
}
inline constexpr chars_format operator~(chars_format arg) {
return static_cast<chars_format>(~static_cast<int>(arg));
}
inline chars_format& operator&=(chars_format& lhs, chars_format rhs) {
lhs = lhs & rhs;
return lhs;
}
inline chars_format& operator|=(chars_format& lhs, chars_format rhs) {
lhs = lhs | rhs;
return lhs;
}
inline chars_format& operator^=(chars_format& lhs, chars_format rhs) {
lhs = lhs ^ rhs;
return lhs;
}
} // inline namespace lts_2018_06_20
} // namespace absl
#endif // ABSL_STRINGS_CHARCONV_H_

@ -0,0 +1,204 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/charconv.h"
#include <cstdlib>
#include <cstring>
#include <string>
#include "benchmark/benchmark.h"
namespace {
void BM_Strtod_Pi(benchmark::State& state) {
const char* pi = "3.14159";
for (auto s : state) {
benchmark::DoNotOptimize(pi);
benchmark::DoNotOptimize(strtod(pi, nullptr));
}
}
BENCHMARK(BM_Strtod_Pi);
void BM_Absl_Pi(benchmark::State& state) {
const char* pi = "3.14159";
const char* pi_end = pi + strlen(pi);
for (auto s : state) {
benchmark::DoNotOptimize(pi);
double v;
absl::from_chars(pi, pi_end, v);
benchmark::DoNotOptimize(v);
}
}
BENCHMARK(BM_Absl_Pi);
void BM_Strtod_Pi_float(benchmark::State& state) {
const char* pi = "3.14159";
for (auto s : state) {
benchmark::DoNotOptimize(pi);
benchmark::DoNotOptimize(strtof(pi, nullptr));
}
}
BENCHMARK(BM_Strtod_Pi_float);
void BM_Absl_Pi_float(benchmark::State& state) {
const char* pi = "3.14159";
const char* pi_end = pi + strlen(pi);
for (auto s : state) {
benchmark::DoNotOptimize(pi);
float v;
absl::from_chars(pi, pi_end, v);
benchmark::DoNotOptimize(v);
}
}
BENCHMARK(BM_Absl_Pi_float);
void BM_Strtod_HardLarge(benchmark::State& state) {
const char* num = "272104041512242479.e200";
for (auto s : state) {
benchmark::DoNotOptimize(num);
benchmark::DoNotOptimize(strtod(num, nullptr));
}
}
BENCHMARK(BM_Strtod_HardLarge);
void BM_Absl_HardLarge(benchmark::State& state) {
const char* numstr = "272104041512242479.e200";
const char* numstr_end = numstr + strlen(numstr);
for (auto s : state) {
benchmark::DoNotOptimize(numstr);
double v;
absl::from_chars(numstr, numstr_end, v);
benchmark::DoNotOptimize(v);
}
}
BENCHMARK(BM_Absl_HardLarge);
void BM_Strtod_HardSmall(benchmark::State& state) {
const char* num = "94080055902682397.e-242";
for (auto s : state) {
benchmark::DoNotOptimize(num);
benchmark::DoNotOptimize(strtod(num, nullptr));
}
}
BENCHMARK(BM_Strtod_HardSmall);
void BM_Absl_HardSmall(benchmark::State& state) {
const char* numstr = "94080055902682397.e-242";
const char* numstr_end = numstr + strlen(numstr);
for (auto s : state) {
benchmark::DoNotOptimize(numstr);
double v;
absl::from_chars(numstr, numstr_end, v);
benchmark::DoNotOptimize(v);
}
}
BENCHMARK(BM_Absl_HardSmall);
void BM_Strtod_HugeMantissa(benchmark::State& state) {
std::string huge(200, '3');
const char* num = huge.c_str();
for (auto s : state) {
benchmark::DoNotOptimize(num);
benchmark::DoNotOptimize(strtod(num, nullptr));
}
}
BENCHMARK(BM_Strtod_HugeMantissa);
void BM_Absl_HugeMantissa(benchmark::State& state) {
std::string huge(200, '3');
const char* num = huge.c_str();
const char* num_end = num + 200;
for (auto s : state) {
benchmark::DoNotOptimize(num);
double v;
absl::from_chars(num, num_end, v);
benchmark::DoNotOptimize(v);
}
}
BENCHMARK(BM_Absl_HugeMantissa);
std::string MakeHardCase(int length) {
// The number 1.1521...e-297 is exactly halfway between 12345 * 2**-1000 and
// the next larger representable number. The digits of this number are in
// the std::string below.
const std::string digits =
"1."
"152113937042223790993097181572444900347587985074226836242307364987727724"
"831384300183638649152607195040591791364113930628852279348613864894524591"
"272746490313676832900762939595690019745859128071117417798540258114233761"
"012939937017879509401007964861774960297319002612457273148497158989073482"
"171377406078223015359818300988676687994537274548940612510414856761641652"
"513434981938564294004070500716200446656421722229202383105446378511678258"
"370570631774499359748259931676320916632111681001853983492795053244971606"
"922718923011680846577744433974087653954904214152517799883551075537146316"
"168973685866425605046988661997658648354773076621610279716804960009043764"
"038392994055171112475093876476783502487512538082706095923790634572014823"
"78877699375152587890625" +
std::string(5000, '0');
// generate the hard cases on either side for the given length.
// Lengths between 3 and 1000 are reasonable.
return digits.substr(0, length) + "1e-297";
}
void BM_Strtod_Big_And_Difficult(benchmark::State& state) {
std::string testcase = MakeHardCase(state.range(0));
const char* begin = testcase.c_str();
for (auto s : state) {
benchmark::DoNotOptimize(begin);
benchmark::DoNotOptimize(strtod(begin, nullptr));
}
}
BENCHMARK(BM_Strtod_Big_And_Difficult)->Range(3, 5000);
void BM_Absl_Big_And_Difficult(benchmark::State& state) {
std::string testcase = MakeHardCase(state.range(0));
const char* begin = testcase.c_str();
const char* end = begin + testcase.size();
for (auto s : state) {
benchmark::DoNotOptimize(begin);
double v;
absl::from_chars(begin, end, v);
benchmark::DoNotOptimize(v);
}
}
BENCHMARK(BM_Absl_Big_And_Difficult)->Range(3, 5000);
} // namespace
// ------------------------------------------------------------------------
// Benchmark Time CPU Iterations
// ------------------------------------------------------------------------
// BM_Strtod_Pi 96 ns 96 ns 6337454
// BM_Absl_Pi 35 ns 35 ns 20031996
// BM_Strtod_Pi_float 91 ns 91 ns 7745851
// BM_Absl_Pi_float 35 ns 35 ns 20430298
// BM_Strtod_HardLarge 133 ns 133 ns 5288341
// BM_Absl_HardLarge 181 ns 181 ns 3855615
// BM_Strtod_HardSmall 279 ns 279 ns 2517243
// BM_Absl_HardSmall 287 ns 287 ns 2458744
// BM_Strtod_HugeMantissa 433 ns 433 ns 1604293
// BM_Absl_HugeMantissa 160 ns 160 ns 4403671
// BM_Strtod_Big_And_Difficult/3 236 ns 236 ns 2942496
// BM_Strtod_Big_And_Difficult/8 232 ns 232 ns 2983796
// BM_Strtod_Big_And_Difficult/64 437 ns 437 ns 1591951
// BM_Strtod_Big_And_Difficult/512 1738 ns 1738 ns 402519
// BM_Strtod_Big_And_Difficult/4096 3943 ns 3943 ns 176128
// BM_Strtod_Big_And_Difficult/5000 4397 ns 4397 ns 157878
// BM_Absl_Big_And_Difficult/3 39 ns 39 ns 17799583
// BM_Absl_Big_And_Difficult/8 43 ns 43 ns 16096859
// BM_Absl_Big_And_Difficult/64 550 ns 550 ns 1259717
// BM_Absl_Big_And_Difficult/512 4167 ns 4167 ns 171414
// BM_Absl_Big_And_Difficult/4096 9160 ns 9159 ns 76297
// BM_Absl_Big_And_Difficult/5000 9738 ns 9738 ns 70140

@ -0,0 +1,766 @@
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/charconv.h"
#include <cstdlib>
#include <string>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/strings/str_cat.h"
#ifdef _MSC_FULL_VER
#define ABSL_COMPILER_DOES_EXACT_ROUNDING 0
#define ABSL_STRTOD_HANDLES_NAN_CORRECTLY 0
#else
#define ABSL_COMPILER_DOES_EXACT_ROUNDING 1
#define ABSL_STRTOD_HANDLES_NAN_CORRECTLY 1
#endif
namespace {
#if ABSL_COMPILER_DOES_EXACT_ROUNDING
// Tests that the given std::string is accepted by absl::from_chars, and that it
// converts exactly equal to the given number.
void TestDoubleParse(absl::string_view str, double expected_number) {
SCOPED_TRACE(str);
double actual_number = 0.0;
absl::from_chars_result result =
absl::from_chars(str.data(), str.data() + str.length(), actual_number);
EXPECT_EQ(result.ec, std::errc());
EXPECT_EQ(result.ptr, str.data() + str.length());
EXPECT_EQ(actual_number, expected_number);
}
void TestFloatParse(absl::string_view str, float expected_number) {
SCOPED_TRACE(str);
float actual_number = 0.0;
absl::from_chars_result result =
absl::from_chars(str.data(), str.data() + str.length(), actual_number);
EXPECT_EQ(result.ec, std::errc());
EXPECT_EQ(result.ptr, str.data() + str.length());
EXPECT_EQ(actual_number, expected_number);
}
// Tests that the given double or single precision floating point literal is
// parsed correctly by absl::from_chars.
//
// These convenience macros assume that the C++ compiler being used also does
// fully correct decimal-to-binary conversions.
#define FROM_CHARS_TEST_DOUBLE(number) \
{ \
TestDoubleParse(#number, number); \
TestDoubleParse("-" #number, -number); \
}
#define FROM_CHARS_TEST_FLOAT(number) \
{ \
TestFloatParse(#number, number##f); \
TestFloatParse("-" #number, -number##f); \
}
TEST(FromChars, NearRoundingCases) {
// Cases from "A Program for Testing IEEE Decimal-Binary Conversion"
// by Vern Paxson.
// Forms that should round towards zero. (These are the hardest cases for
// each decimal mantissa size.)
FROM_CHARS_TEST_DOUBLE(5.e125);
FROM_CHARS_TEST_DOUBLE(69.e267);
FROM_CHARS_TEST_DOUBLE(999.e-026);
FROM_CHARS_TEST_DOUBLE(7861.e-034);
FROM_CHARS_TEST_DOUBLE(75569.e-254);
FROM_CHARS_TEST_DOUBLE(928609.e-261);
FROM_CHARS_TEST_DOUBLE(9210917.e080);
FROM_CHARS_TEST_DOUBLE(84863171.e114);
FROM_CHARS_TEST_DOUBLE(653777767.e273);
FROM_CHARS_TEST_DOUBLE(5232604057.e-298);
FROM_CHARS_TEST_DOUBLE(27235667517.e-109);
FROM_CHARS_TEST_DOUBLE(653532977297.e-123);
FROM_CHARS_TEST_DOUBLE(3142213164987.e-294);
FROM_CHARS_TEST_DOUBLE(46202199371337.e-072);
FROM_CHARS_TEST_DOUBLE(231010996856685.e-073);
FROM_CHARS_TEST_DOUBLE(9324754620109615.e212);
FROM_CHARS_TEST_DOUBLE(78459735791271921.e049);
FROM_CHARS_TEST_DOUBLE(272104041512242479.e200);
FROM_CHARS_TEST_DOUBLE(6802601037806061975.e198);
FROM_CHARS_TEST_DOUBLE(20505426358836677347.e-221);
FROM_CHARS_TEST_DOUBLE(836168422905420598437.e-234);
FROM_CHARS_TEST_DOUBLE(4891559871276714924261.e222);
FROM_CHARS_TEST_FLOAT(5.e-20);
FROM_CHARS_TEST_FLOAT(67.e14);
FROM_CHARS_TEST_FLOAT(985.e15);
FROM_CHARS_TEST_FLOAT(7693.e-42);
FROM_CHARS_TEST_FLOAT(55895.e-16);
FROM_CHARS_TEST_FLOAT(996622.e-44);
FROM_CHARS_TEST_FLOAT(7038531.e-32);
FROM_CHARS_TEST_FLOAT(60419369.e-46);
FROM_CHARS_TEST_FLOAT(702990899.e-20);
FROM_CHARS_TEST_FLOAT(6930161142.e-48);
FROM_CHARS_TEST_FLOAT(25933168707.e-13);
FROM_CHARS_TEST_FLOAT(596428896559.e20);
// Similarly, forms that should round away from zero.
FROM_CHARS_TEST_DOUBLE(9.e-265);
FROM_CHARS_TEST_DOUBLE(85.e-037);
FROM_CHARS_TEST_DOUBLE(623.e100);
FROM_CHARS_TEST_DOUBLE(3571.e263);
FROM_CHARS_TEST_DOUBLE(81661.e153);
FROM_CHARS_TEST_DOUBLE(920657.e-023);
FROM_CHARS_TEST_DOUBLE(4603285.e-024);
FROM_CHARS_TEST_DOUBLE(87575437.e-309);
FROM_CHARS_TEST_DOUBLE(245540327.e122);
FROM_CHARS_TEST_DOUBLE(6138508175.e120);
FROM_CHARS_TEST_DOUBLE(83356057653.e193);
FROM_CHARS_TEST_DOUBLE(619534293513.e124);
FROM_CHARS_TEST_DOUBLE(2335141086879.e218);
FROM_CHARS_TEST_DOUBLE(36167929443327.e-159);
FROM_CHARS_TEST_DOUBLE(609610927149051.e-255);
FROM_CHARS_TEST_DOUBLE(3743626360493413.e-165);
FROM_CHARS_TEST_DOUBLE(94080055902682397.e-242);
FROM_CHARS_TEST_DOUBLE(899810892172646163.e283);
FROM_CHARS_TEST_DOUBLE(7120190517612959703.e120);
FROM_CHARS_TEST_DOUBLE(25188282901709339043.e-252);
FROM_CHARS_TEST_DOUBLE(308984926168550152811.e-052);
FROM_CHARS_TEST_DOUBLE(6372891218502368041059.e064);
FROM_CHARS_TEST_FLOAT(3.e-23);
FROM_CHARS_TEST_FLOAT(57.e18);
FROM_CHARS_TEST_FLOAT(789.e-35);
FROM_CHARS_TEST_FLOAT(2539.e-18);
FROM_CHARS_TEST_FLOAT(76173.e28);
FROM_CHARS_TEST_FLOAT(887745.e-11);
FROM_CHARS_TEST_FLOAT(5382571.e-37);
FROM_CHARS_TEST_FLOAT(82381273.e-35);
FROM_CHARS_TEST_FLOAT(750486563.e-38);
FROM_CHARS_TEST_FLOAT(3752432815.e-39);
FROM_CHARS_TEST_FLOAT(75224575729.e-45);
FROM_CHARS_TEST_FLOAT(459926601011.e15);
}
#undef FROM_CHARS_TEST_DOUBLE
#undef FROM_CHARS_TEST_FLOAT
#endif
float ToFloat(absl::string_view s) {
float f;
absl::from_chars(s.data(), s.data() + s.size(), f);
return f;
}
double ToDouble(absl::string_view s) {
double d;
absl::from_chars(s.data(), s.data() + s.size(), d);
return d;
}
// A duplication of the test cases in "NearRoundingCases" above, but with
// expected values expressed with integers, using ldexp/ldexpf. These test
// cases will work even on compilers that do not accurately round floating point
// literals.
TEST(FromChars, NearRoundingCasesExplicit) {
EXPECT_EQ(ToDouble("5.e125"), ldexp(6653062250012735, 365));
EXPECT_EQ(ToDouble("69.e267"), ldexp(4705683757438170, 841));
EXPECT_EQ(ToDouble("999.e-026"), ldexp(6798841691080350, -129));
EXPECT_EQ(ToDouble("7861.e-034"), ldexp(8975675289889240, -153));
EXPECT_EQ(ToDouble("75569.e-254"), ldexp(6091718967192243, -880));
EXPECT_EQ(ToDouble("928609.e-261"), ldexp(7849264900213743, -900));
EXPECT_EQ(ToDouble("9210917.e080"), ldexp(8341110837370930, 236));
EXPECT_EQ(ToDouble("84863171.e114"), ldexp(4625202867375927, 353));
EXPECT_EQ(ToDouble("653777767.e273"), ldexp(5068902999763073, 884));
EXPECT_EQ(ToDouble("5232604057.e-298"), ldexp(5741343011915040, -1010));
EXPECT_EQ(ToDouble("27235667517.e-109"), ldexp(6707124626673586, -380));
EXPECT_EQ(ToDouble("653532977297.e-123"), ldexp(7078246407265384, -422));
EXPECT_EQ(ToDouble("3142213164987.e-294"), ldexp(8219991337640559, -988));
EXPECT_EQ(ToDouble("46202199371337.e-072"), ldexp(5224462102115359, -246));
EXPECT_EQ(ToDouble("231010996856685.e-073"), ldexp(5224462102115359, -247));
EXPECT_EQ(ToDouble("9324754620109615.e212"), ldexp(5539753864394442, 705));
EXPECT_EQ(ToDouble("78459735791271921.e049"), ldexp(8388176519442766, 166));
EXPECT_EQ(ToDouble("272104041512242479.e200"), ldexp(5554409530847367, 670));
EXPECT_EQ(ToDouble("6802601037806061975.e198"), ldexp(5554409530847367, 668));
EXPECT_EQ(ToDouble("20505426358836677347.e-221"),
ldexp(4524032052079546, -722));
EXPECT_EQ(ToDouble("836168422905420598437.e-234"),
ldexp(5070963299887562, -760));
EXPECT_EQ(ToDouble("4891559871276714924261.e222"),
ldexp(6452687840519111, 757));
EXPECT_EQ(ToFloat("5.e-20"), ldexpf(15474250, -88));
EXPECT_EQ(ToFloat("67.e14"), ldexpf(12479722, 29));
EXPECT_EQ(ToFloat("985.e15"), ldexpf(14333636, 36));
EXPECT_EQ(ToFloat("7693.e-42"), ldexpf(10979816, -150));
EXPECT_EQ(ToFloat("55895.e-16"), ldexpf(12888509, -61));
EXPECT_EQ(ToFloat("996622.e-44"), ldexpf(14224264, -150));
EXPECT_EQ(ToFloat("7038531.e-32"), ldexpf(11420669, -107));
EXPECT_EQ(ToFloat("60419369.e-46"), ldexpf(8623340, -150));
EXPECT_EQ(ToFloat("702990899.e-20"), ldexpf(16209866, -61));
EXPECT_EQ(ToFloat("6930161142.e-48"), ldexpf(9891056, -150));
EXPECT_EQ(ToFloat("25933168707.e-13"), ldexpf(11138211, -32));
EXPECT_EQ(ToFloat("596428896559.e20"), ldexpf(12333860, 82));
EXPECT_EQ(ToDouble("9.e-265"), ldexp(8168427841980010, -930));
EXPECT_EQ(ToDouble("85.e-037"), ldexp(6360455125664090, -169));
EXPECT_EQ(ToDouble("623.e100"), ldexp(6263531988747231, 289));
EXPECT_EQ(ToDouble("3571.e263"), ldexp(6234526311072170, 833));
EXPECT_EQ(ToDouble("81661.e153"), ldexp(6696636728760206, 472));
EXPECT_EQ(ToDouble("920657.e-023"), ldexp(5975405561110124, -109));
EXPECT_EQ(ToDouble("4603285.e-024"), ldexp(5975405561110124, -110));
EXPECT_EQ(ToDouble("87575437.e-309"), ldexp(8452160731874668, -1053));
EXPECT_EQ(ToDouble("245540327.e122"), ldexp(4985336549131723, 381));
EXPECT_EQ(ToDouble("6138508175.e120"), ldexp(4985336549131723, 379));
EXPECT_EQ(ToDouble("83356057653.e193"), ldexp(5986732817132056, 625));
EXPECT_EQ(ToDouble("619534293513.e124"), ldexp(4798406992060657, 399));
EXPECT_EQ(ToDouble("2335141086879.e218"), ldexp(5419088166961646, 713));
EXPECT_EQ(ToDouble("36167929443327.e-159"), ldexp(8135819834632444, -536));
EXPECT_EQ(ToDouble("609610927149051.e-255"), ldexp(4576664294594737, -850));
EXPECT_EQ(ToDouble("3743626360493413.e-165"), ldexp(6898586531774201, -549));
EXPECT_EQ(ToDouble("94080055902682397.e-242"), ldexp(6273271706052298, -800));
EXPECT_EQ(ToDouble("899810892172646163.e283"), ldexp(7563892574477827, 947));
EXPECT_EQ(ToDouble("7120190517612959703.e120"), ldexp(5385467232557565, 409));
EXPECT_EQ(ToDouble("25188282901709339043.e-252"),
ldexp(5635662608542340, -825));
EXPECT_EQ(ToDouble("308984926168550152811.e-052"),
ldexp(5644774693823803, -157));
EXPECT_EQ(ToDouble("6372891218502368041059.e064"),
ldexp(4616868614322430, 233));
EXPECT_EQ(ToFloat("3.e-23"), ldexpf(9507380, -98));
EXPECT_EQ(ToFloat("57.e18"), ldexpf(12960300, 42));
EXPECT_EQ(ToFloat("789.e-35"), ldexpf(10739312, -130));
EXPECT_EQ(ToFloat("2539.e-18"), ldexpf(11990089, -72));
EXPECT_EQ(ToFloat("76173.e28"), ldexpf(9845130, 86));
EXPECT_EQ(ToFloat("887745.e-11"), ldexpf(9760860, -40));
EXPECT_EQ(ToFloat("5382571.e-37"), ldexpf(11447463, -124));
EXPECT_EQ(ToFloat("82381273.e-35"), ldexpf(8554961, -113));
EXPECT_EQ(ToFloat("750486563.e-38"), ldexpf(9975678, -120));
EXPECT_EQ(ToFloat("3752432815.e-39"), ldexpf(9975678, -121));
EXPECT_EQ(ToFloat("75224575729.e-45"), ldexpf(13105970, -137));
EXPECT_EQ(ToFloat("459926601011.e15"), ldexpf(12466336, 65));
}
// Common test logic for converting a std::string which lies exactly halfway between
// two target floats.
//
// mantissa and exponent represent the precise value between two floating point
// numbers, `expected_low` and `expected_high`. The floating point
// representation to parse in `StrCat(mantissa, "e", exponent)`.
//
// This function checks that an input just slightly less than the exact value
// is rounded down to `expected_low`, and an input just slightly greater than
// the exact value is rounded up to `expected_high`.
//
// The exact value should round to `expected_half`, which must be either
// `expected_low` or `expected_high`.
template <typename FloatType>
void TestHalfwayValue(const std::string& mantissa, int exponent,
FloatType expected_low, FloatType expected_high,
FloatType expected_half) {
std::string low_rep = mantissa;
low_rep[low_rep.size() - 1] -= 1;
absl::StrAppend(&low_rep, std::string(1000, '9'), "e", exponent);
FloatType actual_low = 0;
absl::from_chars(low_rep.data(), low_rep.data() + low_rep.size(), actual_low);
EXPECT_EQ(expected_low, actual_low);
std::string high_rep = absl::StrCat(mantissa, std::string(1000, '0'), "1e", exponent);
FloatType actual_high = 0;
absl::from_chars(high_rep.data(), high_rep.data() + high_rep.size(),
actual_high);
EXPECT_EQ(expected_high, actual_high);
std::string halfway_rep = absl::StrCat(mantissa, "e", exponent);
FloatType actual_half = 0;
absl::from_chars(halfway_rep.data(), halfway_rep.data() + halfway_rep.size(),
actual_half);
EXPECT_EQ(expected_half, actual_half);
}
TEST(FromChars, DoubleRounding) {
const double zero = 0.0;
const double first_subnormal = nextafter(zero, 1.0);
const double second_subnormal = nextafter(first_subnormal, 1.0);
const double first_normal = DBL_MIN;
const double last_subnormal = nextafter(first_normal, 0.0);
const double second_normal = nextafter(first_normal, 1.0);
const double last_normal = DBL_MAX;
const double penultimate_normal = nextafter(last_normal, 0.0);
// Various test cases for numbers between two representable floats. Each
// call to TestHalfwayValue tests a number just below and just above the
// halfway point, as well as the number exactly between them.
// Test between zero and first_subnormal. Round-to-even tie rounds down.
TestHalfwayValue(
"2."
"470328229206232720882843964341106861825299013071623822127928412503377536"
"351043759326499181808179961898982823477228588654633283551779698981993873"
"980053909390631503565951557022639229085839244910518443593180284993653615"
"250031937045767824921936562366986365848075700158576926990370631192827955"
"855133292783433840935197801553124659726357957462276646527282722005637400"
"648549997709659947045402082816622623785739345073633900796776193057750674"
"017632467360096895134053553745851666113422376667860416215968046191446729"
"184030053005753084904876539171138659164623952491262365388187963623937328"
"042389101867234849766823508986338858792562830275599565752445550725518931"
"369083625477918694866799496832404970582102851318545139621383772282614543"
"7693412532098591327667236328125",
-324, zero, first_subnormal, zero);
// first_subnormal and second_subnormal. Round-to-even tie rounds up.
TestHalfwayValue(
"7."
"410984687618698162648531893023320585475897039214871466383785237510132609"
"053131277979497545424539885696948470431685765963899850655339096945981621"
"940161728171894510697854671067917687257517734731555330779540854980960845"
"750095811137303474765809687100959097544227100475730780971111893578483867"
"565399878350301522805593404659373979179073872386829939581848166016912201"
"945649993128979841136206248449867871357218035220901702390328579173252022"
"052897402080290685402160661237554998340267130003581248647904138574340187"
"552090159017259254714629617513415977493871857473787096164563890871811984"
"127167305601704549300470526959016576377688490826798697257336652176556794"
"107250876433756084600398490497214911746308553955635418864151316847843631"
"3080237596295773983001708984375",
-324, first_subnormal, second_subnormal, second_subnormal);
// last_subnormal and first_normal. Round-to-even tie rounds up.
TestHalfwayValue(
"2."
"225073858507201136057409796709131975934819546351645648023426109724822222"
"021076945516529523908135087914149158913039621106870086438694594645527657"
"207407820621743379988141063267329253552286881372149012981122451451889849"
"057222307285255133155755015914397476397983411801999323962548289017107081"
"850690630666655994938275772572015763062690663332647565300009245888316433"
"037779791869612049497390377829704905051080609940730262937128958950003583"
"799967207254304360284078895771796150945516748243471030702609144621572289"
"880258182545180325707018860872113128079512233426288368622321503775666622"
"503982534335974568884423900265498198385487948292206894721689831099698365"
"846814022854243330660339850886445804001034933970427567186443383770486037"
"86162277173854562306587467901408672332763671875",
-308, last_subnormal, first_normal, first_normal);
// first_normal and second_normal. Round-to-even tie rounds down.
TestHalfwayValue(
"2."
"225073858507201630123055637955676152503612414573018013083228724049586647"
"606759446192036794116886953213985520549032000903434781884412325572184367"
"563347617020518175998922941393629966742598285899994830148971433555578567"
"693279306015978183162142425067962460785295885199272493577688320732492479"
"924816869232247165964934329258783950102250973957579510571600738343645738"
"494324192997092179207389919761694314131497173265255020084997973676783743"
"155205818804439163810572367791175177756227497413804253387084478193655533"
"073867420834526162513029462022730109054820067654020201547112002028139700"
"141575259123440177362244273712468151750189745559978653234255886219611516"
"335924167958029604477064946470184777360934300451421683607013647479513962"
"13837722826145437693412532098591327667236328125",
-308, first_normal, second_normal, first_normal);
// penultimate_normal and last_normal. Round-to-even rounds down.
TestHalfwayValue(
"1."
"797693134862315608353258760581052985162070023416521662616611746258695532"
"672923265745300992879465492467506314903358770175220871059269879629062776"
"047355692132901909191523941804762171253349609463563872612866401980290377"
"995141836029815117562837277714038305214839639239356331336428021390916694"
"57927874464075218944",
308, penultimate_normal, last_normal, penultimate_normal);
}
// Same test cases as DoubleRounding, now with new and improved Much Smaller
// Precision!
TEST(FromChars, FloatRounding) {
const float zero = 0.0;
const float first_subnormal = nextafterf(zero, 1.0);
const float second_subnormal = nextafterf(first_subnormal, 1.0);
const float first_normal = FLT_MIN;
const float last_subnormal = nextafterf(first_normal, 0.0);
const float second_normal = nextafterf(first_normal, 1.0);
const float last_normal = FLT_MAX;
const float penultimate_normal = nextafterf(last_normal, 0.0);
// Test between zero and first_subnormal. Round-to-even tie rounds down.
TestHalfwayValue(
"7."
"006492321624085354618647916449580656401309709382578858785341419448955413"
"42930300743319094181060791015625",
-46, zero, first_subnormal, zero);
// first_subnormal and second_subnormal. Round-to-even tie rounds up.
TestHalfwayValue(
"2."
"101947696487225606385594374934874196920392912814773657635602425834686624"
"028790902229957282543182373046875",
-45, first_subnormal, second_subnormal, second_subnormal);
// last_subnormal and first_normal. Round-to-even tie rounds up.
TestHalfwayValue(
"1."
"175494280757364291727882991035766513322858992758990427682963118425003064"
"9651730385585324256680905818939208984375",
-38, last_subnormal, first_normal, first_normal);
// first_normal and second_normal. Round-to-even tie rounds down.
TestHalfwayValue(
"1."
"175494420887210724209590083408724842314472120785184615334540294131831453"
"9442813071445925743319094181060791015625",
-38, first_normal, second_normal, first_normal);
// penultimate_normal and last_normal. Round-to-even rounds down.
TestHalfwayValue("3.40282336497324057985868971510891282432", 38,
penultimate_normal, last_normal, penultimate_normal);
}
TEST(FromChars, Underflow) {
// Check that underflow is handled correctly, according to the specification
// in DR 3081.
double d;
float f;
absl::from_chars_result result;
std::string negative_underflow = "-1e-1000";
const char* begin = negative_underflow.data();
const char* end = begin + negative_underflow.size();
d = 100.0;
result = absl::from_chars(begin, end, d);
EXPECT_EQ(result.ptr, end);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_TRUE(std::signbit(d)); // negative
EXPECT_GE(d, -std::numeric_limits<double>::min());
f = 100.0;
result = absl::from_chars(begin, end, f);
EXPECT_EQ(result.ptr, end);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_TRUE(std::signbit(f)); // negative
EXPECT_GE(f, -std::numeric_limits<float>::min());
std::string positive_underflow = "1e-1000";
begin = positive_underflow.data();
end = begin + positive_underflow.size();
d = -100.0;
result = absl::from_chars(begin, end, d);
EXPECT_EQ(result.ptr, end);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_FALSE(std::signbit(d)); // positive
EXPECT_LE(d, std::numeric_limits<double>::min());
f = -100.0;
result = absl::from_chars(begin, end, f);
EXPECT_EQ(result.ptr, end);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_FALSE(std::signbit(f)); // positive
EXPECT_LE(f, std::numeric_limits<float>::min());
}
TEST(FromChars, Overflow) {
// Check that overflow is handled correctly, according to the specification
// in DR 3081.
double d;
float f;
absl::from_chars_result result;
std::string negative_overflow = "-1e1000";
const char* begin = negative_overflow.data();
const char* end = begin + negative_overflow.size();
d = 100.0;
result = absl::from_chars(begin, end, d);
EXPECT_EQ(result.ptr, end);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_TRUE(std::signbit(d)); // negative
EXPECT_EQ(d, -std::numeric_limits<double>::max());
f = 100.0;
result = absl::from_chars(begin, end, f);
EXPECT_EQ(result.ptr, end);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_TRUE(std::signbit(f)); // negative
EXPECT_EQ(f, -std::numeric_limits<float>::max());
std::string positive_overflow = "1e1000";
begin = positive_overflow.data();
end = begin + positive_overflow.size();
d = -100.0;
result = absl::from_chars(begin, end, d);
EXPECT_EQ(result.ptr, end);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_FALSE(std::signbit(d)); // positive
EXPECT_EQ(d, std::numeric_limits<double>::max());
f = -100.0;
result = absl::from_chars(begin, end, f);
EXPECT_EQ(result.ptr, end);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_FALSE(std::signbit(f)); // positive
EXPECT_EQ(f, std::numeric_limits<float>::max());
}
TEST(FromChars, ReturnValuePtr) {
// Check that `ptr` points one past the number scanned, even if that number
// is not representable.
double d;
absl::from_chars_result result;
std::string normal = "3.14@#$%@#$%";
result = absl::from_chars(normal.data(), normal.data() + normal.size(), d);
EXPECT_EQ(result.ec, std::errc());
EXPECT_EQ(result.ptr - normal.data(), 4);
std::string overflow = "1e1000@#$%@#$%";
result = absl::from_chars(overflow.data(),
overflow.data() + overflow.size(), d);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_EQ(result.ptr - overflow.data(), 6);
std::string garbage = "#$%@#$%";
result = absl::from_chars(garbage.data(),
garbage.data() + garbage.size(), d);
EXPECT_EQ(result.ec, std::errc::invalid_argument);
EXPECT_EQ(result.ptr - garbage.data(), 0);
}
// Check for a wide range of inputs that strtod() and absl::from_chars() exactly
// agree on the conversion amount.
//
// This test assumes the platform's strtod() uses perfect round_to_nearest
// rounding.
TEST(FromChars, TestVersusStrtod) {
for (int mantissa = 1000000; mantissa <= 9999999; mantissa += 501) {
for (int exponent = -300; exponent < 300; ++exponent) {
std::string candidate = absl::StrCat(mantissa, "e", exponent);
double strtod_value = strtod(candidate.c_str(), nullptr);
double absl_value = 0;
absl::from_chars(candidate.data(), candidate.data() + candidate.size(),
absl_value);
ASSERT_EQ(strtod_value, absl_value) << candidate;
}
}
}
// Check for a wide range of inputs that strtof() and absl::from_chars() exactly
// agree on the conversion amount.
//
// This test assumes the platform's strtof() uses perfect round_to_nearest
// rounding.
TEST(FromChars, TestVersusStrtof) {
for (int mantissa = 1000000; mantissa <= 9999999; mantissa += 501) {
for (int exponent = -43; exponent < 32; ++exponent) {
std::string candidate = absl::StrCat(mantissa, "e", exponent);
float strtod_value = strtof(candidate.c_str(), nullptr);
float absl_value = 0;
absl::from_chars(candidate.data(), candidate.data() + candidate.size(),
absl_value);
ASSERT_EQ(strtod_value, absl_value) << candidate;
}
}
}
// Tests if two floating point values have identical bit layouts. (EXPECT_EQ
// is not suitable for NaN testing, since NaNs are never equal.)
template <typename Float>
bool Identical(Float a, Float b) {
return 0 == memcmp(&a, &b, sizeof(Float));
}
// Check that NaNs are parsed correctly. The spec requires that
// std::from_chars on "NaN(123abc)" return the same value as std::nan("123abc").
// How such an n-char-sequence affects the generated NaN is unspecified, so we
// just test for symmetry with std::nan and strtod here.
//
// (In Linux, this parses the value as a number and stuffs that number into the
// free bits of a quiet NaN.)
TEST(FromChars, NaNDoubles) {
for (std::string n_char_sequence :
{"", "1", "2", "3", "fff", "FFF", "200000", "400000", "4000000000000",
"8000000000000", "abc123", "legal_but_unexpected",
"99999999999999999999999", "_"}) {
std::string input = absl::StrCat("nan(", n_char_sequence, ")");
SCOPED_TRACE(input);
double from_chars_double;
absl::from_chars(input.data(), input.data() + input.size(),
from_chars_double);
double std_nan_double = std::nan(n_char_sequence.c_str());
EXPECT_TRUE(Identical(from_chars_double, std_nan_double));
// Also check that we match strtod()'s behavior. This test assumes that the
// platform has a compliant strtod().
#if ABSL_STRTOD_HANDLES_NAN_CORRECTLY
double strtod_double = strtod(input.c_str(), nullptr);
EXPECT_TRUE(Identical(from_chars_double, strtod_double));
#endif // ABSL_STRTOD_HANDLES_NAN_CORRECTLY
// Check that we can parse a negative NaN
std::string negative_input = "-" + input;
double negative_from_chars_double;
absl::from_chars(negative_input.data(),
negative_input.data() + negative_input.size(),
negative_from_chars_double);
EXPECT_TRUE(std::signbit(negative_from_chars_double));
EXPECT_FALSE(Identical(negative_from_chars_double, from_chars_double));
from_chars_double = std::copysign(from_chars_double, -1.0);
EXPECT_TRUE(Identical(negative_from_chars_double, from_chars_double));
}
}
TEST(FromChars, NaNFloats) {
for (std::string n_char_sequence :
{"", "1", "2", "3", "fff", "FFF", "200000", "400000", "4000000000000",
"8000000000000", "abc123", "legal_but_unexpected",
"99999999999999999999999", "_"}) {
std::string input = absl::StrCat("nan(", n_char_sequence, ")");
SCOPED_TRACE(input);
float from_chars_float;
absl::from_chars(input.data(), input.data() + input.size(),
from_chars_float);
float std_nan_float = std::nanf(n_char_sequence.c_str());
EXPECT_TRUE(Identical(from_chars_float, std_nan_float));
// Also check that we match strtof()'s behavior. This test assumes that the
// platform has a compliant strtof().
#if ABSL_STRTOD_HANDLES_NAN_CORRECTLY
float strtof_float = strtof(input.c_str(), nullptr);
EXPECT_TRUE(Identical(from_chars_float, strtof_float));
#endif // ABSL_STRTOD_HANDLES_NAN_CORRECTLY
// Check that we can parse a negative NaN
std::string negative_input = "-" + input;
float negative_from_chars_float;
absl::from_chars(negative_input.data(),
negative_input.data() + negative_input.size(),
negative_from_chars_float);
EXPECT_TRUE(std::signbit(negative_from_chars_float));
EXPECT_FALSE(Identical(negative_from_chars_float, from_chars_float));
from_chars_float = std::copysign(from_chars_float, -1.0);
EXPECT_TRUE(Identical(negative_from_chars_float, from_chars_float));
}
}
// Returns an integer larger than step. The values grow exponentially.
int NextStep(int step) {
return step + (step >> 2) + 1;
}
// Test a conversion on a family of input strings, checking that the calculation
// is correct for in-bounds values, and that overflow and underflow are done
// correctly for out-of-bounds values.
//
// input_generator maps from an integer index to a std::string to test.
// expected_generator maps from an integer index to an expected Float value.
// from_chars conversion of input_generator(i) should result in
// expected_generator(i).
//
// lower_bound and upper_bound denote the smallest and largest values for which
// the conversion is expected to succeed.
template <typename Float>
void TestOverflowAndUnderflow(
const std::function<std::string(int)>& input_generator,
const std::function<Float(int)>& expected_generator, int lower_bound,
int upper_bound) {
// test legal values near lower_bound
int index, step;
for (index = lower_bound, step = 1; index < upper_bound;
index += step, step = NextStep(step)) {
std::string input = input_generator(index);
SCOPED_TRACE(input);
Float expected = expected_generator(index);
Float actual;
auto result =
absl::from_chars(input.data(), input.data() + input.size(), actual);
EXPECT_EQ(result.ec, std::errc());
EXPECT_EQ(expected, actual);
}
// test legal values near upper_bound
for (index = upper_bound, step = 1; index > lower_bound;
index -= step, step = NextStep(step)) {
std::string input = input_generator(index);
SCOPED_TRACE(input);
Float expected = expected_generator(index);
Float actual;
auto result =
absl::from_chars(input.data(), input.data() + input.size(), actual);
EXPECT_EQ(result.ec, std::errc());
EXPECT_EQ(expected, actual);
}
// Test underflow values below lower_bound
for (index = lower_bound - 1, step = 1; index > -1000000;
index -= step, step = NextStep(step)) {
std::string input = input_generator(index);
SCOPED_TRACE(input);
Float actual;
auto result =
absl::from_chars(input.data(), input.data() + input.size(), actual);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_LT(actual, 1.0); // check for underflow
}
// Test overflow values above upper_bound
for (index = upper_bound + 1, step = 1; index < 1000000;
index += step, step = NextStep(step)) {
std::string input = input_generator(index);
SCOPED_TRACE(input);
Float actual;
auto result =
absl::from_chars(input.data(), input.data() + input.size(), actual);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_GT(actual, 1.0); // check for overflow
}
}
// Check that overflow and underflow are caught correctly for hex doubles.
//
// The largest representable double is 0x1.fffffffffffffp+1023, and the
// smallest representable subnormal is 0x0.0000000000001p-1022, which equals
// 0x1p-1074. Therefore 1023 and -1074 are the limits of acceptable exponents
// in this test.
TEST(FromChars, HexdecimalDoubleLimits) {
auto input_gen = [](int index) { return absl::StrCat("0x1.0p", index); };
auto expected_gen = [](int index) { return std::ldexp(1.0, index); };
TestOverflowAndUnderflow<double>(input_gen, expected_gen, -1074, 1023);
}
// Check that overflow and underflow are caught correctly for hex floats.
//
// The largest representable float is 0x1.fffffep+127, and the smallest
// representable subnormal is 0x0.000002p-126, which equals 0x1p-149.
// Therefore 127 and -149 are the limits of acceptable exponents in this test.
TEST(FromChars, HexdecimalFloatLimits) {
auto input_gen = [](int index) { return absl::StrCat("0x1.0p", index); };
auto expected_gen = [](int index) { return std::ldexp(1.0f, index); };
TestOverflowAndUnderflow<float>(input_gen, expected_gen, -149, 127);
}
// Check that overflow and underflow are caught correctly for decimal doubles.
//
// The largest representable double is about 1.8e308, and the smallest
// representable subnormal is about 5e-324. '1e-324' therefore rounds away from
// the smallest representable positive value. -323 and 308 are the limits of
// acceptable exponents in this test.
TEST(FromChars, DecimalDoubleLimits) {
auto input_gen = [](int index) { return absl::StrCat("1.0e", index); };
auto expected_gen = [](int index) { return std::pow(10.0, index); };
TestOverflowAndUnderflow<double>(input_gen, expected_gen, -323, 308);
}
// Check that overflow and underflow are caught correctly for decimal floats.
//
// The largest representable float is about 3.4e38, and the smallest
// representable subnormal is about 1.45e-45. '1e-45' therefore rounds towards
// the smallest representable positive value. -45 and 38 are the limits of
// acceptable exponents in this test.
TEST(FromChars, DecimalFloatLimits) {
auto input_gen = [](int index) { return absl::StrCat("1.0e", index); };
auto expected_gen = [](int index) { return std::pow(10.0, index); };
TestOverflowAndUnderflow<float>(input_gen, expected_gen, -45, 38);
}
} // namespace

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save