Export of internal Abseil changes

--
81f95fcf85b75b84f9892c73123501472b9cff33 by Martijn Vels <mvels@google.com>:

Introduce GetEstimatedMemoryUsage(CordMemoryAccounting::kFairShare)

Memory usage analysis is moved into a separate cord_analysis.cc source.

PiperOrigin-RevId: 416370158

--
6bc7b1348fd27fe53f100c9eabd47f4f2cb9c19c by Abseil Team <absl-team@google.com>:

Support scoped enum in absl::Substitute.

PiperOrigin-RevId: 416345422

--
6399f4f6ae05ebcd67664ebd844902f699ab8ec7 by Abseil Team <absl-team@google.com>:

Correct the computation of contention cycles

Currently, we record contention cycles from the first time a thread started
waiting on a mutex.  Consider a situation in which two threads, T1 and T2, run
a loop at the top of which they acquire a common mutex and release it at the
end of the loop body.  Further assume that T2 is never able to acquire the
mutex as T1 repeatedly acquires and then releases the mutex.  In this case, we
would expect that the reported contention cycles would be increase linearly
over time.  But currently we observe a quadratic behavior in the reported
waiting time as mentioned in b/14684244#comment10.

To fix the issue, this CL records the contention cycles experienced by all the threads woken up when the mutex is released.  Further, contention_start_cycles is set to the current time since the contention cycles for the time already passed has been taken into account.  With this CL, we get a linear increase in the waiting time, the expected behavior.

PiperOrigin-RevId: 416322593

--
149c1637c8a0f1a38e5a8f9f27e5803a2015a554 by Jorg Brown <jorg@google.com>:

Make Status::EmptyString more efficient by constructing it in global space, rather than on the heap.  See https://godbolt.org/z/8M9n7YqcY for reduced code size.

PiperOrigin-RevId: 416307833

--
3b4562a8be5a3c80077cb67b0a32c97419058380 by Abseil Team <absl-team@google.com>:

Clarify the usage of RegisterMutexProfiler

PiperOrigin-RevId: 416146130
GitOrigin-RevId: 81f95fcf85b75b84f9892c73123501472b9cff33
Change-Id: Iccb72d7ee617e6ebe226a38170d62e0849b43480
pull/790/merge
Abseil Team 3 years ago committed by rogeeff
parent 1065514ef3
commit 52d41a9ec2
  1. 2
      CMake/AbseilDll.cmake
  2. 7
      absl/status/status.cc
  3. 2
      absl/strings/BUILD.bazel
  4. 2
      absl/strings/CMakeLists.txt
  5. 114
      absl/strings/cord.cc
  6. 36
      absl/strings/cord.h
  7. 237
      absl/strings/cord_analysis.cc
  8. 44
      absl/strings/cord_analysis.h
  9. 236
      absl/strings/cord_test.cc
  10. 8
      absl/strings/substitute.h
  11. 48
      absl/strings/substitute_test.cc
  12. 18
      absl/synchronization/mutex.cc
  13. 7
      absl/synchronization/mutex.h

@ -195,6 +195,8 @@ set(ABSL_INTERNAL_DLL_FILES
"strings/charconv.cc"
"strings/charconv.h"
"strings/cord.cc"
"strings/cord_analysis.cc"
"strings/cord_analysis.h"
"strings/cord.h"
"strings/escaping.cc"
"strings/escaping.h"

@ -185,8 +185,11 @@ void Status::ForEachPayload(
}
const std::string* Status::EmptyString() {
static std::string* empty_string = new std::string();
return empty_string;
static union EmptyString {
std::string str;
~EmptyString() {}
} empty = {{}};
return &empty.str;
}
constexpr const char Status::kMovedFromString[];

@ -412,6 +412,8 @@ cc_library(
name = "cord",
srcs = [
"cord.cc",
"cord_analysis.cc",
"cord_analysis.h",
],
hdrs = [
"cord.h",

@ -834,6 +834,8 @@ absl_cc_library(
"cord.h"
SRCS
"cord.cc"
"cord_analysis.cc"
"cord_analysis.h"
COPTS
${ABSL_DEFAULT_COPTS}
DEPS

@ -469,51 +469,6 @@ static inline bool PrepareAppendRegion(CordRep* root, char** region,
return true;
}
// Computes the memory side of the provided edge which must be a valid data edge
// for a btrtee, i.e., a FLAT, EXTERNAL or SUBSTRING of a FLAT or EXTERNAL node.
static bool RepMemoryUsageDataEdge(const CordRep* rep,
size_t* total_mem_usage) {
size_t maybe_sub_size = 0;
if (ABSL_PREDICT_FALSE(rep->IsSubstring())) {
maybe_sub_size = sizeof(cord_internal::CordRepSubstring);
rep = rep->substring()->child;
}
if (rep->IsFlat()) {
*total_mem_usage += maybe_sub_size + rep->flat()->AllocatedSize();
return true;
}
if (rep->IsExternal()) {
// We don't know anything about the embedded / bound data, but we can safely
// assume it is 'at least' a word / pointer to data. In the future we may
// choose to use the 'data' byte as a tag to identify the types of some
// well-known externals, such as a std::string instance.
*total_mem_usage += maybe_sub_size +
sizeof(cord_internal::CordRepExternalImpl<intptr_t>) +
rep->length;
return true;
}
return false;
}
// If the rep is a leaf, this will increment the value at total_mem_usage and
// will return true.
static bool RepMemoryUsageLeaf(const CordRep* rep, size_t* total_mem_usage) {
if (rep->IsFlat()) {
*total_mem_usage += rep->flat()->AllocatedSize();
return true;
}
if (rep->IsExternal()) {
// We don't know anything about the embedded / bound data, but we can safely
// assume it is 'at least' a word / pointer to data. In the future we may
// choose to use the 'data' byte as a tag to identify the types of some
// well-known externals, such as a std::string instance.
*total_mem_usage +=
sizeof(cord_internal::CordRepExternalImpl<intptr_t>) + rep->length;
return true;
}
return false;
}
void Cord::InlineRep::AssignSlow(const Cord::InlineRep& src) {
assert(&src != this);
assert(is_tree() || src.is_tree());
@ -1968,75 +1923,6 @@ static bool VerifyNode(CordRep* root, CordRep* start_node,
return true;
}
// Traverses the tree and computes the total memory allocated.
/* static */ size_t Cord::MemoryUsageAux(const CordRep* rep) {
size_t total_mem_usage = 0;
if (rep->IsCrc()) {
total_mem_usage += sizeof(CordRepCrc);
rep = rep->crc()->child;
}
// Allow a quick exit for the common case that the root is a leaf.
if (RepMemoryUsageLeaf(rep, &total_mem_usage)) {
return total_mem_usage;
}
// Iterate over the tree. cur_node is never a leaf node and leaf nodes will
// never be appended to tree_stack. This reduces overhead from manipulating
// tree_stack.
absl::InlinedVector<const CordRep*, kInlinedVectorSize> tree_stack;
const CordRep* cur_node = rep;
while (true) {
const CordRep* next_node = nullptr;
if (cur_node->IsConcat()) {
total_mem_usage += sizeof(CordRepConcat);
const CordRep* left = cur_node->concat()->left;
if (!RepMemoryUsageLeaf(left, &total_mem_usage)) {
next_node = left;
}
const CordRep* right = cur_node->concat()->right;
if (!RepMemoryUsageLeaf(right, &total_mem_usage)) {
if (next_node) {
tree_stack.push_back(next_node);
}
next_node = right;
}
} else if (cur_node->IsBtree()) {
total_mem_usage += sizeof(CordRepBtree);
const CordRepBtree* node = cur_node->btree();
if (node->height() == 0) {
for (const CordRep* edge : node->Edges()) {
RepMemoryUsageDataEdge(edge, &total_mem_usage);
}
} else {
for (const CordRep* edge : node->Edges()) {
tree_stack.push_back(edge);
}
}
} else {
// Since cur_node is not a leaf or a concat node it must be a substring.
assert(cur_node->IsSubstring());
total_mem_usage += sizeof(CordRepSubstring);
next_node = cur_node->substring()->child;
if (RepMemoryUsageLeaf(next_node, &total_mem_usage)) {
next_node = nullptr;
}
}
if (!next_node) {
if (tree_stack.empty()) {
return total_mem_usage;
}
next_node = tree_stack.back();
tree_stack.pop_back();
}
cur_node = next_node;
}
}
std::ostream& operator<<(std::ostream& out, const Cord& cord) {
for (absl::string_view chunk : cord.Chunks()) {
out.write(chunk.data(), chunk.size());

@ -79,6 +79,7 @@
#include "absl/container/inlined_vector.h"
#include "absl/functional/function_ref.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/cord_analysis.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_btree.h"
#include "absl/strings/internal/cord_rep_btree_reader.h"
@ -102,6 +103,20 @@ template <typename Releaser>
Cord MakeCordFromExternal(absl::string_view, Releaser&&);
void CopyCordToString(const Cord& src, std::string* dst);
// Cord memory accounting modes
enum class CordMemoryAccounting {
// Counts the *approximate* number of bytes held in full or in part by this
// Cord (which may not remain the same between invocations). Cords that share
// memory could each be "charged" independently for the same shared memory.
kTotal,
// Counts the *approximate* number of bytes held in full or in part by this
// Cord weighted by the sharing ratio of that data. For example, if some data
// edge is shared by 4 different Cords, then each cord is attributed 1/4th of
// the total memory usage as a 'fair share' of the total memory usage.
kFairShare,
};
// Cord
//
// A Cord is a sequence of characters, designed to be more efficient than a
@ -272,11 +287,10 @@ class Cord {
// Cord::EstimatedMemoryUsage()
//
// Returns the *approximate* number of bytes held in full or in part by this
// Cord (which may not remain the same between invocations). Note that Cords
// that share memory could each be "charged" independently for the same shared
// memory.
size_t EstimatedMemoryUsage() const;
// Returns the *approximate* number of bytes held by this cord.
// See CordMemoryAccounting for more information on accounting method used.
size_t EstimatedMemoryUsage(CordMemoryAccounting accounting_method =
CordMemoryAccounting::kTotal) const;
// Cord::Compare()
//
@ -890,9 +904,6 @@ class Cord {
};
InlineRep contents_;
// Helper for MemoryUsage().
static size_t MemoryUsageAux(const absl::cord_internal::CordRep* rep);
// Helper for GetFlat() and TryFlat().
static bool GetFlatAux(absl::cord_internal::CordRep* rep,
absl::string_view* fragment);
@ -1235,10 +1246,15 @@ inline size_t Cord::size() const {
inline bool Cord::empty() const { return contents_.empty(); }
inline size_t Cord::EstimatedMemoryUsage() const {
inline size_t Cord::EstimatedMemoryUsage(
CordMemoryAccounting accounting_method) const {
size_t result = sizeof(Cord);
if (const absl::cord_internal::CordRep* rep = contents_.tree()) {
result += MemoryUsageAux(rep);
if (accounting_method == CordMemoryAccounting::kFairShare) {
result += cord_internal::GetEstimatedFairShareMemoryUsage(rep);
} else {
result += cord_internal::GetEstimatedMemoryUsage(rep);
}
}
return result;
}

@ -0,0 +1,237 @@
// Copyright 2021 The Abseil Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cstddef>
#include <cstdint>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/container/inlined_vector.h"
#include "absl/strings/cord_analysis.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_btree.h"
#include "absl/strings/internal/cord_rep_crc.h"
#include "absl/strings/internal/cord_rep_flat.h"
#include "absl/strings/internal/cord_rep_ring.h"
//
#include "absl/base/macros.h"
#include "absl/base/port.h"
#include "absl/functional/function_ref.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
namespace {
// Accounting mode for analyzing memory usage.
enum class Mode { kTotal, kFairShare };
// CordRepRef holds a `const CordRep*` reference in rep, and depending on mode,
// holds a 'fraction' representing a cumulative inverse refcount weight.
template <Mode mode>
struct CordRepRef {
// Instantiates a CordRepRef instance.
explicit CordRepRef(const CordRep* r) : rep(r) {}
// Creates a child reference holding the provided child.
// Overloaded to add cumulative reference count for kFairShare.
CordRepRef Child(const CordRep* child) const { return CordRepRef(child); }
const CordRep* rep;
};
// RawUsage holds the computed total number of bytes.
template <Mode mode>
struct RawUsage {
size_t total = 0;
// Add 'size' to total, ignoring the CordRepRef argument.
void Add(size_t size, CordRepRef<mode>) { total += size; }
};
// Returns n / refcount avoiding a div for the common refcount == 1.
template <typename refcount_t>
double MaybeDiv(double d, refcount_t refcount) {
return refcount == 1 ? d : d / refcount;
}
// Overloaded 'kFairShare' specialization for CordRepRef. This class holds a
// `fraction` value which represents a cumulative inverse refcount weight.
// For example, a top node with a reference count of 2 will have a fraction
// value of 1/2 = 0.5, representing the 'fair share' of memory it references.
// A node below such a node with a reference count of 5 then has a fraction of
// 0.5 / 5 = 0.1 representing the fair share of memory below that node, etc.
template <>
struct CordRepRef<Mode::kFairShare> {
// Creates a CordRepRef with the provided rep and top (parent) fraction.
explicit CordRepRef(const CordRep* r, double frac = 1.0)
: rep(r), fraction(MaybeDiv(frac, r->refcount.Get())) {}
// Returns a CordRepRef with a fraction of `this->fraction / child.refcount`
CordRepRef Child(const CordRep* child) const {
return CordRepRef(child, fraction);
}
const CordRep* rep;
double fraction;
};
// Overloaded 'kFairShare' specialization for RawUsage
template <>
struct RawUsage<Mode::kFairShare> {
double total = 0;
// Adds `size` multiplied by `rep.fraction` to the total size.
void Add(size_t size, CordRepRef<Mode::kFairShare> rep) {
total += static_cast<double>(size) * rep.fraction;
}
};
// Returns true if the provided rep is a valid data edge.
bool IsDataEdge(const CordRep* rep) {
// The fast path is that `rep` is an EXTERNAL or FLAT node, making the below
// if a single, well predicted branch. We then repeat the FLAT or EXTERNAL
// check in the slow path the SUBSTRING check to optimize for the hot path.
if (rep->tag == EXTERNAL || rep->tag >= FLAT) return true;
if (rep->tag == SUBSTRING) rep = rep->substring()->child;
return rep->tag == EXTERNAL || rep->tag >= FLAT;
}
// Computes the estimated memory size of the provided data edge.
// External reps are assumed 'heap allocated at their exact size'.
template <Mode mode>
void AnalyzeDataEdge(CordRepRef<mode> rep, RawUsage<mode>& raw_usage) {
assert(IsDataEdge(rep.rep));
// Consume all substrings
if (rep.rep->tag == SUBSTRING) {
raw_usage.Add(sizeof(CordRepSubstring), rep);
rep = rep.Child(rep.rep->substring()->child);
}
// Consume FLAT / EXTERNAL
const size_t size =
rep.rep->tag >= FLAT
? rep.rep->flat()->AllocatedSize()
: rep.rep->length + sizeof(CordRepExternalImpl<intptr_t>);
raw_usage.Add(size, rep);
}
// Computes the memory size of the provided Concat tree.
template <Mode mode>
void AnalyzeConcat(CordRepRef<mode> rep, RawUsage<mode>& raw_usage) {
absl::InlinedVector<CordRepRef<mode>, 47> pending;
while (rep.rep != nullptr) {
const CordRepConcat* concat = rep.rep->concat();
CordRepRef<mode> left = rep.Child(concat->left);
CordRepRef<mode> right = rep.Child(concat->right);
raw_usage.Add(sizeof(CordRepConcat), rep);
switch ((IsDataEdge(left.rep) ? 1 : 0) | (IsDataEdge(right.rep) ? 2 : 0)) {
case 0: // neither left or right are data edges
rep = left;
pending.push_back(right);
break;
case 1: // only left is a data edge
AnalyzeDataEdge(left, raw_usage);
rep = right;
break;
case 2: // only right is a data edge
AnalyzeDataEdge(right, raw_usage);
rep = left;
break;
case 3: // left and right are data edges
AnalyzeDataEdge(right, raw_usage);
AnalyzeDataEdge(left, raw_usage);
if (!pending.empty()) {
rep = pending.back();
pending.pop_back();
} else {
rep.rep = nullptr;
}
break;
}
}
}
// Computes the memory size of the provided Ring tree.
template <Mode mode>
void AnalyzeRing(CordRepRef<mode> rep, RawUsage<mode>& raw_usage) {
const CordRepRing* ring = rep.rep->ring();
raw_usage.Add(CordRepRing::AllocSize(ring->capacity()), rep);
ring->ForEach([&](CordRepRing::index_type pos) {
AnalyzeDataEdge(rep.Child(ring->entry_child(pos)), raw_usage);
});
}
// Computes the memory size of the provided Btree tree.
template <Mode mode>
void AnalyzeBtree(CordRepRef<mode> rep, RawUsage<mode>& raw_usage) {
raw_usage.Add(sizeof(CordRepBtree), rep);
const CordRepBtree* tree = rep.rep->btree();
if (tree->height() > 0) {
for (CordRep* edge : tree->Edges()) {
AnalyzeBtree(rep.Child(edge), raw_usage);
}
} else {
for (CordRep* edge : tree->Edges()) {
AnalyzeDataEdge(rep.Child(edge), raw_usage);
}
}
}
template <Mode mode>
size_t GetEstimatedUsage(const CordRep* rep) {
// Zero initialized memory usage totals.
RawUsage<mode> raw_usage;
// Capture top level node and refcount into a CordRepRef.
CordRepRef<mode> repref(rep);
// Consume the top level CRC node if present.
if (repref.rep->tag == CRC) {
raw_usage.Add(sizeof(CordRepCrc), repref);
repref = repref.Child(repref.rep->crc()->child);
}
if (IsDataEdge(repref.rep)) {
AnalyzeDataEdge(repref, raw_usage);
} else if (repref.rep->tag == BTREE) {
AnalyzeBtree(repref, raw_usage);
} else if (repref.rep->tag == CONCAT) {
AnalyzeConcat(repref, raw_usage);
} else if (repref.rep->tag == RING) {
AnalyzeRing(repref, raw_usage);
} else {
assert(false);
}
return static_cast<size_t>(raw_usage.total);
}
} // namespace
size_t GetEstimatedMemoryUsage(const CordRep* rep) {
return GetEstimatedUsage<Mode::kTotal>(rep);
}
size_t GetEstimatedFairShareMemoryUsage(const CordRep* rep) {
return GetEstimatedUsage<Mode::kFairShare>(rep);
}
} // namespace cord_internal
ABSL_NAMESPACE_END
} // namespace absl

@ -0,0 +1,44 @@
// Copyright 2021 The Abseil Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_STRINGS_CORD_ANALYSIS_H_
#define ABSL_STRINGS_CORD_ANALYSIS_H_
#include <cstddef>
#include <cstdint>
#include "absl/base/config.h"
#include "absl/strings/internal/cord_internal.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
// Returns the *approximate* number of bytes held in full or in part by this
// Cord (which may not remain the same between invocations). Cords that share
// memory could each be "charged" independently for the same shared memory.
size_t GetEstimatedMemoryUsage(const CordRep* rep);
// Returns the *approximate* number of bytes held in full or in part by this
// CordRep weighted by the sharing ratio of that data. For example, if some data
// edge is shared by 4 different Cords, then each cord is attribute 1/4th of
// the total memory usage as a 'fair share' of the total memory usage.
size_t GetEstimatedFairShareMemoryUsage(const CordRep* rep);
} // namespace cord_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_STRINGS_CORD_ANALYSIS_H_

@ -50,7 +50,12 @@ static constexpr auto MAX_FLAT_TAG = absl::cord_internal::MAX_FLAT_TAG;
typedef std::mt19937_64 RandomEngine;
using absl::cord_internal::CordRep;
using absl::cord_internal::CordRepBtree;
using absl::cord_internal::CordRepConcat;
using absl::cord_internal::CordRepCrc;
using absl::cord_internal::CordRepExternal;
using absl::cord_internal::CordRepFlat;
using absl::cord_internal::CordRepSubstring;
using absl::cord_internal::kFlatOverhead;
using absl::cord_internal::kMaxFlatLength;
@ -196,6 +201,7 @@ class CordTestPeer {
}
static bool IsTree(const Cord& c) { return c.contents_.is_tree(); }
static CordRep* Tree(const Cord& c) { return c.contents_.tree(); }
static cord_internal::CordzInfo* GetCordzInfo(const Cord& c) {
return c.contents_.cordz_info();
@ -1474,76 +1480,186 @@ TEST_P(CordTest, ExternalMemoryGet) {
}
// CordMemoryUsage tests verify the correctness of the EstimatedMemoryUsage()
// These tests take into account that the reported memory usage is approximate
// and non-deterministic. For all tests, We verify that the reported memory
// usage is larger than `size()`, and less than `size() * 1.5` as a cord should
// never reserve more 'extra' capacity than half of its size as it grows.
// Additionally we have some whiteboxed expectations based on our knowledge of
// the layout and size of empty and inlined cords, and flat nodes.
// We use whiteboxed expectations based on our knowledge of the layout and size
// of empty and inlined cords, and flat nodes.
TEST_P(CordTest, CordMemoryUsageEmpty) {
EXPECT_EQ(sizeof(absl::Cord), absl::Cord().EstimatedMemoryUsage());
}
TEST_P(CordTest, CordMemoryUsageEmbedded) {
absl::Cord a("hello");
EXPECT_EQ(a.EstimatedMemoryUsage(), sizeof(absl::Cord));
}
constexpr auto kFairShare = absl::CordMemoryAccounting::kFairShare;
TEST_P(CordTest, CordMemoryUsageEmbeddedAppend) {
absl::Cord a("a");
absl::Cord b("bcd");
EXPECT_EQ(b.EstimatedMemoryUsage(), sizeof(absl::Cord));
a.Append(b);
EXPECT_EQ(a.EstimatedMemoryUsage(), sizeof(absl::Cord));
// Creates a cord of `n` `c` values, making sure no string stealing occurs.
absl::Cord MakeCord(size_t n, char c) {
const std::string s(n, c);
return absl::Cord(s);
}
TEST_P(CordTest, CordMemoryUsageExternalMemory) {
static const int kLength = 1000;
TEST(CordTest, CordMemoryUsageEmpty) {
absl::Cord cord;
AddExternalMemory(std::string(kLength, 'x'), &cord);
EXPECT_GT(cord.EstimatedMemoryUsage(), kLength);
EXPECT_LE(cord.EstimatedMemoryUsage(), kLength * 1.5);
}
TEST_P(CordTest, CordMemoryUsageFlat) {
static const int kLength = 125;
absl::Cord a(std::string(kLength, 'a'));
EXPECT_GT(a.EstimatedMemoryUsage(), kLength);
EXPECT_LE(a.EstimatedMemoryUsage(), kLength * 1.5);
EXPECT_EQ(sizeof(absl::Cord), cord.EstimatedMemoryUsage());
EXPECT_EQ(sizeof(absl::Cord), cord.EstimatedMemoryUsage(kFairShare));
}
TEST_P(CordTest, CordMemoryUsageAppendFlat) {
using absl::strings_internal::CordTestAccess;
absl::Cord a(std::string(CordTestAccess::MaxFlatLength(), 'a'));
size_t length = a.EstimatedMemoryUsage();
a.Append(std::string(CordTestAccess::MaxFlatLength(), 'b'));
size_t delta = a.EstimatedMemoryUsage() - length;
EXPECT_GT(delta, CordTestAccess::MaxFlatLength());
EXPECT_LE(delta, CordTestAccess::MaxFlatLength() * 1.5);
TEST(CordTest, CordMemoryUsageInlined) {
absl::Cord a("hello");
EXPECT_EQ(a.EstimatedMemoryUsage(), sizeof(absl::Cord));
EXPECT_EQ(a.EstimatedMemoryUsage(kFairShare), sizeof(absl::Cord));
}
TEST_P(CordTest, CordMemoryUsageAppendExternal) {
static const int kLength = 1000;
using absl::strings_internal::CordTestAccess;
absl::Cord a(std::string(CordTestAccess::MaxFlatLength(), 'a'));
size_t length = a.EstimatedMemoryUsage();
AddExternalMemory(std::string(kLength, 'b'), &a);
size_t delta = a.EstimatedMemoryUsage() - length;
EXPECT_GT(delta, kLength);
EXPECT_LE(delta, kLength * 1.5);
}
TEST(CordTest, CordMemoryUsageExternalMemory) {
absl::Cord cord;
AddExternalMemory(std::string(1000, 'x'), &cord);
const size_t expected =
sizeof(absl::Cord) + 1000 + sizeof(CordRepExternal) + sizeof(intptr_t);
EXPECT_EQ(cord.EstimatedMemoryUsage(), expected);
EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare), expected);
}
TEST(CordTest, CordMemoryUsageFlat) {
absl::Cord cord = MakeCord(1000, 'a');
const size_t flat_size =
absl::CordTestPeer::Tree(cord)->flat()->AllocatedSize();
EXPECT_EQ(cord.EstimatedMemoryUsage(), sizeof(absl::Cord) + flat_size);
EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare),
sizeof(absl::Cord) + flat_size);
}
TEST(CordTest, CordMemoryUsageSubStringSharedFlat) {
absl::Cord flat = MakeCord(2000, 'a');
const size_t flat_size =
absl::CordTestPeer::Tree(flat)->flat()->AllocatedSize();
absl::Cord cord = flat.Subcord(500, 1000);
EXPECT_EQ(cord.EstimatedMemoryUsage(),
sizeof(absl::Cord) + sizeof(CordRepSubstring) + flat_size);
EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare),
sizeof(absl::Cord) + sizeof(CordRepSubstring) + flat_size / 2);
}
TEST(CordTest, CordMemoryUsageFlatShared) {
absl::Cord shared = MakeCord(1000, 'a');
absl::Cord cord(shared);
const size_t flat_size =
absl::CordTestPeer::Tree(cord)->flat()->AllocatedSize();
EXPECT_EQ(cord.EstimatedMemoryUsage(), sizeof(absl::Cord) + flat_size);
EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare),
sizeof(absl::Cord) + flat_size / 2);
}
TEST(CordTest, CordMemoryUsageFlatHardenedAndShared) {
absl::Cord shared = MakeCord(1000, 'a');
absl::Cord cord(shared);
const size_t flat_size =
absl::CordTestPeer::Tree(cord)->flat()->AllocatedSize();
cord.SetExpectedChecksum(1);
EXPECT_EQ(cord.EstimatedMemoryUsage(),
sizeof(absl::Cord) + sizeof(CordRepCrc) + flat_size);
EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare),
sizeof(absl::Cord) + sizeof(CordRepCrc) + flat_size / 2);
absl::Cord cord2(cord);
EXPECT_EQ(cord2.EstimatedMemoryUsage(),
sizeof(absl::Cord) + sizeof(CordRepCrc) + flat_size);
EXPECT_EQ(cord2.EstimatedMemoryUsage(kFairShare),
sizeof(absl::Cord) + (sizeof(CordRepCrc) + flat_size / 2) / 2);
}
TEST(CordTest, CordMemoryUsageBTree) {
absl::cord_internal::enable_cord_btree(true);
absl::Cord cord1;
size_t flats1_size = 0;
absl::Cord flats1[4] = {MakeCord(1000, 'a'), MakeCord(1100, 'a'),
MakeCord(1200, 'a'), MakeCord(1300, 'a')};
for (absl::Cord flat : flats1) {
flats1_size += absl::CordTestPeer::Tree(flat)->flat()->AllocatedSize();
cord1.Append(std::move(flat));
}
// Make sure the created cord is a BTREE tree. Under some builds such as
// windows DLL, we may have ODR like effects on the flag, meaning the DLL
// code will run with the picked up default.
if (!absl::CordTestPeer::Tree(cord1)->IsBtree()) {
ABSL_RAW_LOG(WARNING, "Cord library code not respecting btree flag");
return;
}
size_t rep1_size = sizeof(CordRepBtree) + flats1_size;
size_t rep1_shared_size = sizeof(CordRepBtree) + flats1_size / 2;
EXPECT_EQ(cord1.EstimatedMemoryUsage(), sizeof(absl::Cord) + rep1_size);
EXPECT_EQ(cord1.EstimatedMemoryUsage(kFairShare),
sizeof(absl::Cord) + rep1_shared_size);
absl::Cord cord2;
size_t flats2_size = 0;
absl::Cord flats2[4] = {MakeCord(600, 'a'), MakeCord(700, 'a'),
MakeCord(800, 'a'), MakeCord(900, 'a')};
for (absl::Cord& flat : flats2) {
flats2_size += absl::CordTestPeer::Tree(flat)->flat()->AllocatedSize();
cord2.Append(std::move(flat));
}
size_t rep2_size = sizeof(CordRepBtree) + flats2_size;
EXPECT_EQ(cord2.EstimatedMemoryUsage(), sizeof(absl::Cord) + rep2_size);
EXPECT_EQ(cord2.EstimatedMemoryUsage(kFairShare),
sizeof(absl::Cord) + rep2_size);
absl::Cord cord(cord1);
cord.Append(std::move(cord2));
EXPECT_EQ(cord.EstimatedMemoryUsage(),
sizeof(absl::Cord) + sizeof(CordRepBtree) + rep1_size + rep2_size);
EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare),
sizeof(absl::Cord) + sizeof(CordRepBtree) + rep1_shared_size / 2 +
rep2_size);
}
TEST(CordTest, CordMemoryUsageConcat) {
absl::cord_internal::enable_cord_btree(false);
absl::Cord cord1;
size_t flats1_size = 0;
absl::Cord flats1[4] = {MakeCord(1000, 'a'), MakeCord(1100, 'a'),
MakeCord(1200, 'a'), MakeCord(1300, 'a')};
for (absl::Cord flat : flats1) {
flats1_size += absl::CordTestPeer::Tree(flat)->flat()->AllocatedSize();
cord1.Append(std::move(flat));
}
// Make sure the created cord is a CONCAT tree. Under some builds such as
// windows DLL, we may have ODR like effects on the flag, meaning the DLL
// code will run with the picked up default.
if (!absl::CordTestPeer::Tree(cord1)->IsConcat()) {
ABSL_RAW_LOG(WARNING, "Cord library code not respecting btree flag");
return;
}
size_t rep1_size = sizeof(CordRepConcat) * 3 + flats1_size;
size_t rep1_shared_size = sizeof(CordRepConcat) * 3 + flats1_size / 2;
EXPECT_EQ(cord1.EstimatedMemoryUsage(), sizeof(absl::Cord) + rep1_size);
EXPECT_EQ(cord1.EstimatedMemoryUsage(kFairShare),
sizeof(absl::Cord) + rep1_shared_size);
absl::Cord cord2;
size_t flats2_size = 0;
absl::Cord flats2[4] = {MakeCord(600, 'a'), MakeCord(700, 'a'),
MakeCord(800, 'a'), MakeCord(900, 'a')};
for (absl::Cord& flat : flats2) {
flats2_size += absl::CordTestPeer::Tree(flat)->flat()->AllocatedSize();
cord2.Append(std::move(flat));
}
size_t rep2_size = sizeof(CordRepConcat) * 3 + flats2_size;
EXPECT_EQ(cord2.EstimatedMemoryUsage(), sizeof(absl::Cord) + rep2_size);
EXPECT_EQ(cord2.EstimatedMemoryUsage(kFairShare),
sizeof(absl::Cord) + rep2_size);
TEST_P(CordTest, CordMemoryUsageSubString) {
static const int kLength = 2000;
using absl::strings_internal::CordTestAccess;
absl::Cord a(std::string(kLength, 'a'));
size_t length = a.EstimatedMemoryUsage();
AddExternalMemory(std::string(kLength, 'b'), &a);
absl::Cord b = a.Subcord(0, kLength + kLength / 2);
size_t delta = b.EstimatedMemoryUsage() - length;
EXPECT_GT(delta, kLength);
EXPECT_LE(delta, kLength * 1.5);
absl::Cord cord(cord1);
cord.Append(std::move(cord2));
EXPECT_EQ(cord.EstimatedMemoryUsage(),
sizeof(absl::Cord) + sizeof(CordRepConcat) + rep1_size + rep2_size);
EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare),
sizeof(absl::Cord) + sizeof(CordRepConcat) + rep1_shared_size / 2 +
rep2_size);
}
// Regtest for a change that had to be rolled back because it expanded out

@ -174,6 +174,14 @@ class Arg {
// "0x<hex value>". However, in the case of `nullptr`, "NULL" is printed.
Arg(const void* value); // NOLINT(runtime/explicit)
// Normal enums are already handled by the integer formatters.
// This overload matches only scoped enums.
template <typename T,
typename = typename std::enable_if<
std::is_enum<T>{} && !std::is_convertible<T, int>{}>::type>
Arg(T value) // NOLINT(google-explicit-constructor)
: Arg(static_cast<typename std::underlying_type<T>::type>(value)) {}
Arg(const Arg&) = delete;
Arg& operator=(const Arg&) = delete;

@ -184,6 +184,54 @@ TEST(SubstituteTest, VectorBoolRef) {
EXPECT_EQ("Logic be like: true false true false", str);
}
TEST(SubstituteTest, Enums) {
enum UnscopedEnum { kEnum0 = 0, kEnum1 = 1 };
EXPECT_EQ("0 1", absl::Substitute("$0 $1", UnscopedEnum::kEnum0,
UnscopedEnum::kEnum1));
enum class ScopedEnum { kEnum0 = 0, kEnum1 = 1 };
EXPECT_EQ("0 1",
absl::Substitute("$0 $1", ScopedEnum::kEnum0, ScopedEnum::kEnum1));
enum class ScopedEnumInt32 : int32_t { kEnum0 = 989, kEnum1 = INT32_MIN };
EXPECT_EQ("989 -2147483648",
absl::Substitute("$0 $1", ScopedEnumInt32::kEnum0,
ScopedEnumInt32::kEnum1));
enum class ScopedEnumUInt32 : uint32_t { kEnum0 = 1, kEnum1 = UINT32_MAX };
EXPECT_EQ("1 4294967295", absl::Substitute("$0 $1", ScopedEnumUInt32::kEnum0,
ScopedEnumUInt32::kEnum1));
enum class ScopedEnumInt64 : int64_t { kEnum0 = -1, kEnum1 = 42949672950 };
EXPECT_EQ("-1 42949672950", absl::Substitute("$0 $1", ScopedEnumInt64::kEnum0,
ScopedEnumInt64::kEnum1));
enum class ScopedEnumUInt64 : uint64_t { kEnum0 = 1, kEnum1 = 42949672950 };
EXPECT_EQ("1 42949672950", absl::Substitute("$0 $1", ScopedEnumUInt64::kEnum0,
ScopedEnumUInt64::kEnum1));
enum class ScopedEnumChar : signed char { kEnum0 = -1, kEnum1 = 1 };
EXPECT_EQ("-1 1", absl::Substitute("$0 $1", ScopedEnumChar::kEnum0,
ScopedEnumChar::kEnum1));
enum class ScopedEnumUChar : unsigned char {
kEnum0 = 0,
kEnum1 = 1,
kEnumMax = 255
};
EXPECT_EQ("0 1 255", absl::Substitute("$0 $1 $2", ScopedEnumUChar::kEnum0,
ScopedEnumUChar::kEnum1,
ScopedEnumUChar::kEnumMax));
enum class ScopedEnumInt16 : int16_t { kEnum0 = -100, kEnum1 = 10000 };
EXPECT_EQ("-100 10000", absl::Substitute("$0 $1", ScopedEnumInt16::kEnum0,
ScopedEnumInt16::kEnum1));
enum class ScopedEnumUInt16 : uint16_t { kEnum0 = 0, kEnum1 = 10000 };
EXPECT_EQ("0 10000", absl::Substitute("$0 $1", ScopedEnumUInt16::kEnum0,
ScopedEnumUInt16::kEnum1));
}
#ifdef GTEST_HAS_DEATH_TEST
TEST(SubstituteDeathTest, SubstituteDeath) {

@ -109,7 +109,7 @@ static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu,
bool locking, bool trylock,
bool read_lock);
void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp)) {
void RegisterMutexProfiler(void (*fn)(int64_t wait_cycles)) {
submit_profile_data.Store(fn);
}
@ -2315,16 +2315,18 @@ ABSL_ATTRIBUTE_NOINLINE void Mutex::UnlockSlow(SynchWaitParams *waitp) {
} // end of for(;;)-loop
if (wake_list != kPerThreadSynchNull) {
int64_t enqueue_timestamp = wake_list->waitp->contention_start_cycles;
bool cond_waiter = wake_list->cond_waiter;
int64_t wait_cycles = 0;
int64_t now = base_internal::CycleClock::Now();
do {
// Sample lock contention events only if the waiter was trying to acquire
// the lock, not waiting on a condition variable or Condition.
if (!wake_list->cond_waiter) {
wait_cycles += (now - wake_list->waitp->contention_start_cycles);
wake_list->waitp->contention_start_cycles = now;
}
wake_list = Wakeup(wake_list); // wake waiters
} while (wake_list != kPerThreadSynchNull);
if (!cond_waiter) {
// Sample lock contention events only if the (first) waiter was trying to
// acquire the lock, not waiting on a condition variable or Condition.
int64_t wait_cycles =
base_internal::CycleClock::Now() - enqueue_timestamp;
if (wait_cycles > 0) {
mutex_tracer("slow release", this, wait_cycles);
ABSL_TSAN_MUTEX_PRE_DIVERT(this, 0);
submit_profile_data(wait_cycles);

@ -984,14 +984,15 @@ inline Condition::Condition(const T *object,
// Register a hook for profiling support.
//
// The function pointer registered here will be called whenever a mutex is
// contended. The callback is given the absl/base/cycleclock.h timestamp when
// waiting began.
// contended. The callback is given the cycles for which waiting happened (as
// measured by //absl/base/internal/cycleclock.h, and which may not
// be real "cycle" counts.)
//
// Calls to this function do not race or block, but there is no ordering
// guaranteed between calls to this function and call to the provided hook.
// In particular, the previously registered hook may still be called for some
// time after this function returns.
void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp));
void RegisterMutexProfiler(void (*fn)(int64_t wait_cycles));
// Register a hook for Mutex tracing.
//

Loading…
Cancel
Save