-- 4eacae3ff1b14b1d309e8092185bc10e8a6203cf by Derek Mauro <dmauro@google.com>: Release SwissTable - a fast, efficient, cache-friendly hash table. https://www.youtube.com/watch?v=ncHmEUmJZf4 PiperOrigin-RevId: 214816527 -- df8c3dfab3cfb2f4365909a84d0683b193cfbb11 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 214785288 -- 1eabd5266bbcebc33eecc91e5309b751856a75c8 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 214722931 -- 2ebbfac950f83146b46253038e7dd7dcde9f2951 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 214701684 GitOrigin-RevId: 4eacae3ff1b14b1d309e8092185bc10e8a6203cf Change-Id: I9ba64e395b22ad7863213d157b8019b082adc19dpull/174/head
parent
e291c279e4
commit
48cd2c3f35
55 changed files with 18696 additions and 0 deletions
@ -0,0 +1,528 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// -----------------------------------------------------------------------------
|
||||
// File: flat_hash_map.h
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// An `absl::flat_hash_map<K, V>` is an unordered associative container of
|
||||
// unique keys and associated values designed to be a more efficient replacement
|
||||
// for `std::unordered_map`. Like `unordered_map`, search, insertion, and
|
||||
// deletion of map elements can be done as an `O(1)` operation. However,
|
||||
// `flat_hash_map` (and other unordered associative containers known as the
|
||||
// collection of Abseil "Swiss tables") contain other optimizations that result
|
||||
// in both memory and computation advantages.
|
||||
//
|
||||
// In most cases, your default choice for a hash map should be a map of type
|
||||
// `flat_hash_map`.
|
||||
|
||||
#ifndef ABSL_CONTAINER_FLAT_HASH_MAP_H_ |
||||
#define ABSL_CONTAINER_FLAT_HASH_MAP_H_ |
||||
|
||||
#include <cstddef> |
||||
#include <new> |
||||
#include <type_traits> |
||||
#include <utility> |
||||
|
||||
#include "absl/container/internal/container_memory.h" |
||||
#include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export |
||||
#include "absl/container/internal/raw_hash_map.h" // IWYU pragma: export |
||||
#include "absl/memory/memory.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
template <class K, class V> |
||||
struct FlatHashMapPolicy; |
||||
} // namespace container_internal
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// absl::flat_hash_map
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// An `absl::flat_hash_map<K, V>` is an unordered associative container which
|
||||
// has been optimized for both speed and memory footprint in most common use
|
||||
// cases. Its interface is similar to that of `std::unordered_map<K, V>` with
|
||||
// the following notable differences:
|
||||
//
|
||||
// * Requires keys that are CopyConstructible
|
||||
// * Requires values that are MoveConstructible
|
||||
// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
|
||||
// `insert()`, provided that the map is provided a compatible heterogeneous
|
||||
// hashing function and equality operator.
|
||||
// * Invalidates any references and pointers to elements within the table after
|
||||
// `rehash()`.
|
||||
// * Contains a `capacity()` member function indicating the number of element
|
||||
// slots (open, deleted, and empty) within the hash map.
|
||||
// * Returns `void` from the `erase(iterator)` overload.
|
||||
//
|
||||
// By default, `flat_hash_map` uses the `absl::Hash` hashing framework.
|
||||
// All fundamental and Abseil types that support the `absl::Hash` framework have
|
||||
// a compatible equality operator for comparing insertions into `flat_hash_map`.
|
||||
// If your type is not yet supported by the `asbl::Hash` framework, see
|
||||
// absl/hash/hash.h for information on extending Abseil hashing to user-defined
|
||||
// types.
|
||||
//
|
||||
// NOTE: A `flat_hash_map` stores its value types directly inside its
|
||||
// implementation array to avoid memory indirection. Because a `flat_hash_map`
|
||||
// is designed to move data when rehashed, map values will not retain pointer
|
||||
// stability. If you require pointer stability, or your values are large,
|
||||
// consider using `absl::flat_hash_map<Key, std::unique_ptr<Value>>` instead.
|
||||
// If your types are not moveable or you require pointer stability for keys,
|
||||
// consider `absl::node_hash_map`.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// // Create a flat hash map of three strings (that map to strings)
|
||||
// absl::flat_hash_map<std::string, std::string> ducks =
|
||||
// {{"a", "huey"}, {"b", "dewey"}, {"c", "louie"}};
|
||||
//
|
||||
// // Insert a new element into the flat hash map
|
||||
// ducks.insert({"d", "donald"}};
|
||||
//
|
||||
// // Force a rehash of the flat hash map
|
||||
// ducks.rehash(0);
|
||||
//
|
||||
// // Find the element with the key "b"
|
||||
// std::string search_key = "b";
|
||||
// auto result = ducks.find(search_key);
|
||||
// if (result != ducks.end()) {
|
||||
// std::cout << "Result: " << result->second << std::endl;
|
||||
// }
|
||||
template <class K, class V, |
||||
class Hash = absl::container_internal::hash_default_hash<K>, |
||||
class Eq = absl::container_internal::hash_default_eq<K>, |
||||
class Allocator = std::allocator<std::pair<const K, V>>> |
||||
class flat_hash_map : public absl::container_internal::raw_hash_map< |
||||
absl::container_internal::FlatHashMapPolicy<K, V>, |
||||
Hash, Eq, Allocator> { |
||||
using Base = typename flat_hash_map::raw_hash_map; |
||||
|
||||
public: |
||||
flat_hash_map() {} |
||||
using Base::Base; |
||||
|
||||
// flat_hash_map::begin()
|
||||
//
|
||||
// Returns an iterator to the beginning of the `flat_hash_map`.
|
||||
using Base::begin; |
||||
|
||||
// flat_hash_map::cbegin()
|
||||
//
|
||||
// Returns a const iterator to the beginning of the `flat_hash_map`.
|
||||
using Base::cbegin; |
||||
|
||||
// flat_hash_map::cend()
|
||||
//
|
||||
// Returns a const iterator to the end of the `flat_hash_map`.
|
||||
using Base::cend; |
||||
|
||||
// flat_hash_map::end()
|
||||
//
|
||||
// Returns an iterator to the end of the `flat_hash_map`.
|
||||
using Base::end; |
||||
|
||||
// flat_hash_map::capacity()
|
||||
//
|
||||
// Returns the number of element slots (assigned, deleted, and empty)
|
||||
// available within the `flat_hash_map`.
|
||||
//
|
||||
// NOTE: this member function is particular to `absl::flat_hash_map` and is
|
||||
// not provided in the `std::unordered_map` API.
|
||||
using Base::capacity; |
||||
|
||||
// flat_hash_map::empty()
|
||||
//
|
||||
// Returns whether or not the `flat_hash_map` is empty.
|
||||
using Base::empty; |
||||
|
||||
// flat_hash_map::max_size()
|
||||
//
|
||||
// Returns the largest theoretical possible number of elements within a
|
||||
// `flat_hash_map` under current memory constraints. This value can be thought
|
||||
// of the largest value of `std::distance(begin(), end())` for a
|
||||
// `flat_hash_map<K, V>`.
|
||||
using Base::max_size; |
||||
|
||||
// flat_hash_map::size()
|
||||
//
|
||||
// Returns the number of elements currently within the `flat_hash_map`.
|
||||
using Base::size; |
||||
|
||||
// flat_hash_map::clear()
|
||||
//
|
||||
// Removes all elements from the `flat_hash_map`. Invalidates any references,
|
||||
// pointers, or iterators referring to contained elements.
|
||||
//
|
||||
// NOTE: this operation may shrink the underlying buffer. To avoid shrinking
|
||||
// the underlying buffer call `erase(begin(), end())`.
|
||||
using Base::clear; |
||||
|
||||
// flat_hash_map::erase()
|
||||
//
|
||||
// Erases elements within the `flat_hash_map`. Erasing does not trigger a
|
||||
// rehash. Overloads are listed below.
|
||||
//
|
||||
// void erase(const_iterator pos):
|
||||
//
|
||||
// Erases the element at `position` of the `flat_hash_map`, returning
|
||||
// `void`.
|
||||
//
|
||||
// NOTE: this return behavior is different than that of STL containers in
|
||||
// general and `std::unordered_map` in particular.
|
||||
//
|
||||
// iterator erase(const_iterator first, const_iterator last):
|
||||
//
|
||||
// Erases the elements in the open interval [`first`, `last`), returning an
|
||||
// iterator pointing to `last`.
|
||||
//
|
||||
// size_type erase(const key_type& key):
|
||||
//
|
||||
// Erases the element with the matching key, if it exists.
|
||||
using Base::erase; |
||||
|
||||
// flat_hash_map::insert()
|
||||
//
|
||||
// Inserts an element of the specified value into the `flat_hash_map`,
|
||||
// returning an iterator pointing to the newly inserted element, provided that
|
||||
// an element with the given key does not already exist. If rehashing occurs
|
||||
// due to the insertion, all iterators are invalidated. Overloads are listed
|
||||
// below.
|
||||
//
|
||||
// std::pair<iterator,bool> insert(const init_type& value):
|
||||
//
|
||||
// Inserts a value into the `flat_hash_map`. Returns a pair consisting of an
|
||||
// iterator to the inserted element (or to the element that prevented the
|
||||
// insertion) and a bool denoting whether the insertion took place.
|
||||
//
|
||||
// std::pair<iterator,bool> insert(T&& value):
|
||||
// std::pair<iterator,bool> insert(init_type&& value ):
|
||||
//
|
||||
// Inserts a moveable value into the `flat_hash_map`. Returns a pair
|
||||
// consisting of an iterator to the inserted element (or to the element that
|
||||
// prevented the insertion) and a bool denoting whether the insertion took
|
||||
// place.
|
||||
//
|
||||
// iterator insert(const_iterator hint, const init_type& value):
|
||||
// iterator insert(const_iterator hint, T&& value):
|
||||
// iterator insert(const_iterator hint, init_type&& value );
|
||||
//
|
||||
// Inserts a value, using the position of `hint` as a non-binding suggestion
|
||||
// for where to begin the insertion search. Returns an iterator to the
|
||||
// inserted element, or to the existing element that prevented the
|
||||
// insertion.
|
||||
//
|
||||
// void insert(InputIterator first, InputIterator last ):
|
||||
//
|
||||
// Inserts a range of values [`first`, `last`).
|
||||
//
|
||||
// NOTE: Although the STL does not specify which element may be inserted if
|
||||
// multiple keys compare equivalently, for `flat_hash_map` we guarantee the
|
||||
// first match is inserted.
|
||||
//
|
||||
// void insert(std::initializer_list<init_type> ilist ):
|
||||
//
|
||||
// Inserts the elements within the initializer list `ilist`.
|
||||
//
|
||||
// NOTE: Although the STL does not specify which element may be inserted if
|
||||
// multiple keys compare equivalently within the initializer list, for
|
||||
// `flat_hash_map` we guarantee the first match is inserted.
|
||||
using Base::insert; |
||||
|
||||
// flat_hash_map::insert_or_assign()
|
||||
//
|
||||
// Inserts an element of the specified value into the `flat_hash_map` provided
|
||||
// that a value with the given key does not already exist, or replaces it with
|
||||
// the element value if a key for that value already exists, returning an
|
||||
// iterator pointing to the newly inserted element. If rehashing occurs due
|
||||
// to the insertion, all existing iterators are invalidated. Overloads are
|
||||
// listed below.
|
||||
//
|
||||
// pair<iterator, bool> insert_or_assign(const init_type& k, T&& obj):
|
||||
// pair<iterator, bool> insert_or_assign(init_type&& k, T&& obj):
|
||||
//
|
||||
// Inserts/Assigns (or moves) the element of the specified key into the
|
||||
// `flat_hash_map`.
|
||||
//
|
||||
// iterator insert_or_assign(const_iterator hint,
|
||||
// const init_type& k, T&& obj):
|
||||
// iterator insert_or_assign(const_iterator hint, init_type&& k, T&& obj):
|
||||
//
|
||||
// Inserts/Assigns (or moves) the element of the specified key into the
|
||||
// `flat_hash_map` using the position of `hint` as a non-binding suggestion
|
||||
// for where to begin the insertion search.
|
||||
using Base::insert_or_assign; |
||||
|
||||
// flat_hash_map::emplace()
|
||||
//
|
||||
// Inserts an element of the specified value by constructing it in-place
|
||||
// within the `flat_hash_map`, provided that no element with the given key
|
||||
// already exists.
|
||||
//
|
||||
// The element may be constructed even if there already is an element with the
|
||||
// key in the container, in which case the newly constructed element will be
|
||||
// destroyed immediately. Prefer `try_emplace()` unless your key is not
|
||||
// copyable or moveable.
|
||||
//
|
||||
// If rehashing occurs due to the insertion, all iterators are invalidated.
|
||||
using Base::emplace; |
||||
|
||||
// flat_hash_map::emplace_hint()
|
||||
//
|
||||
// Inserts an element of the specified value by constructing it in-place
|
||||
// within the `flat_hash_map`, using the position of `hint` as a non-binding
|
||||
// suggestion for where to begin the insertion search, and only inserts
|
||||
// provided that no element with the given key already exists.
|
||||
//
|
||||
// The element may be constructed even if there already is an element with the
|
||||
// key in the container, in which case the newly constructed element will be
|
||||
// destroyed immediately. Prefer `try_emplace()` unless your key is not
|
||||
// copyable or moveable.
|
||||
//
|
||||
// If rehashing occurs due to the insertion, all iterators are invalidated.
|
||||
using Base::emplace_hint; |
||||
|
||||
// flat_hash_map::try_emplace()
|
||||
//
|
||||
// Inserts an element of the specified value by constructing it in-place
|
||||
// within the `flat_hash_map`, provided that no element with the given key
|
||||
// already exists. Unlike `emplace()`, if an element with the given key
|
||||
// already exists, we guarantee that no element is constructed.
|
||||
//
|
||||
// If rehashing occurs due to the insertion, all iterators are invalidated.
|
||||
// Overloads are listed below.
|
||||
//
|
||||
// pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
|
||||
// pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
|
||||
//
|
||||
// Inserts (via copy or move) the element of the specified key into the
|
||||
// `flat_hash_map`.
|
||||
//
|
||||
// iterator try_emplace(const_iterator hint,
|
||||
// const init_type& k, Args&&... args):
|
||||
// iterator try_emplace(const_iterator hint, init_type&& k, Args&&... args):
|
||||
//
|
||||
// Inserts (via copy or move) the element of the specified key into the
|
||||
// `flat_hash_map` using the position of `hint` as a non-binding suggestion
|
||||
// for where to begin the insertion search.
|
||||
using Base::try_emplace; |
||||
|
||||
// flat_hash_map::extract()
|
||||
//
|
||||
// Extracts the indicated element, erasing it in the process, and returns it
|
||||
// as a C++17-compatible node handle. Overloads are listed below.
|
||||
//
|
||||
// node_type extract(const_iterator position):
|
||||
//
|
||||
// Extracts the key,value pair of the element at the indicated position and
|
||||
// returns a node handle owning that extracted data.
|
||||
//
|
||||
// node_type extract(const key_type& x):
|
||||
//
|
||||
// Extracts the key,value pair of the element with a key matching the passed
|
||||
// key value and returns a node handle owning that extracted data. If the
|
||||
// `flat_hash_map` does not contain an element with a matching key, this
|
||||
// function returns an empty node handle.
|
||||
using Base::extract; |
||||
|
||||
// flat_hash_map::merge()
|
||||
//
|
||||
// Extracts elements from a given `source` flat hash map into this
|
||||
// `flat_hash_map`. If the destination `flat_hash_map` already contains an
|
||||
// element with an equivalent key, that element is not extracted.
|
||||
using Base::merge; |
||||
|
||||
// flat_hash_map::swap(flat_hash_map& other)
|
||||
//
|
||||
// Exchanges the contents of this `flat_hash_map` with those of the `other`
|
||||
// flat hash map, avoiding invocation of any move, copy, or swap operations on
|
||||
// individual elements.
|
||||
//
|
||||
// All iterators and references on the `flat_hash_map` remain valid, excepting
|
||||
// for the past-the-end iterator, which is invalidated.
|
||||
//
|
||||
// `swap()` requires that the flat hash map's hashing and key equivalence
|
||||
// functions be Swappable, and are exchaged using unqualified calls to
|
||||
// non-member `swap()`. If the map's allocator has
|
||||
// `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
|
||||
// set to `true`, the allocators are also exchanged using an unqualified call
|
||||
// to non-member `swap()`; otherwise, the allocators are not swapped.
|
||||
using Base::swap; |
||||
|
||||
// flat_hash_map::rehash(count)
|
||||
//
|
||||
// Rehashes the `flat_hash_map`, setting the number of slots to be at least
|
||||
// the passed value. If the new number of slots increases the load factor more
|
||||
// than the current maximum load factor
|
||||
// (`count` < `size()` / `max_load_factor()`), then the new number of slots
|
||||
// will be at least `size()` / `max_load_factor()`.
|
||||
//
|
||||
// To force a rehash, pass rehash(0).
|
||||
//
|
||||
// NOTE: unlike behavior in `std::unordered_map`, references are also
|
||||
// invalidated upon a `rehash()`.
|
||||
using Base::rehash; |
||||
|
||||
// flat_hash_map::reserve(count)
|
||||
//
|
||||
// Sets the number of slots in the `flat_hash_map` to the number needed to
|
||||
// accommodate at least `count` total elements without exceeding the current
|
||||
// maximum load factor, and may rehash the container if needed.
|
||||
using Base::reserve; |
||||
|
||||
// flat_hash_map::at()
|
||||
//
|
||||
// Returns a reference to the mapped value of the element with key equivalent
|
||||
// to the passed key.
|
||||
using Base::at; |
||||
|
||||
// flat_hash_map::contains()
|
||||
//
|
||||
// Determines whether an element with a key comparing equal to the given `key`
|
||||
// exists within the `flat_hash_map`, returning `true` if so or `false`
|
||||
// otherwise.
|
||||
using Base::contains; |
||||
|
||||
// flat_hash_map::count(const Key& key) const
|
||||
//
|
||||
// Returns the number of elements with a key comparing equal to the given
|
||||
// `key` within the `flat_hash_map`. note that this function will return
|
||||
// either `1` or `0` since duplicate keys are not allowed within a
|
||||
// `flat_hash_map`.
|
||||
using Base::count; |
||||
|
||||
// flat_hash_map::equal_range()
|
||||
//
|
||||
// Returns a closed range [first, last], defined by a `std::pair` of two
|
||||
// iterators, containing all elements with the passed key in the
|
||||
// `flat_hash_map`.
|
||||
using Base::equal_range; |
||||
|
||||
// flat_hash_map::find()
|
||||
//
|
||||
// Finds an element with the passed `key` within the `flat_hash_map`.
|
||||
using Base::find; |
||||
|
||||
// flat_hash_map::operator[]()
|
||||
//
|
||||
// Returns a reference to the value mapped to the passed key within the
|
||||
// `flat_hash_map`, performing an `insert()` if the key does not already
|
||||
// exist.
|
||||
//
|
||||
// If an insertion occurs and results in a rehashing of the container, all
|
||||
// iterators are invalidated. Otherwise iterators are not affected and
|
||||
// references are not invalidated. Overloads are listed below.
|
||||
//
|
||||
// T& operator[](const Key& key ):
|
||||
//
|
||||
// Inserts an init_type object constructed in-place if the element with the
|
||||
// given key does not exist.
|
||||
//
|
||||
// T& operator[]( Key&& key ):
|
||||
//
|
||||
// Inserts an init_type object constructed in-place provided that an element
|
||||
// with the given key does not exist.
|
||||
using Base::operator[]; |
||||
|
||||
// flat_hash_map::bucket_count()
|
||||
//
|
||||
// Returns the number of "buckets" within the `flat_hash_map`. Note that
|
||||
// because a flat hash map contains all elements within its internal storage,
|
||||
// this value simply equals the current capacity of the `flat_hash_map`.
|
||||
using Base::bucket_count; |
||||
|
||||
// flat_hash_map::load_factor()
|
||||
//
|
||||
// Returns the current load factor of the `flat_hash_map` (the average number
|
||||
// of slots occupied with a value within the hash map).
|
||||
using Base::load_factor; |
||||
|
||||
// flat_hash_map::max_load_factor()
|
||||
//
|
||||
// Manages the maximum load factor of the `flat_hash_map`. Overloads are
|
||||
// listed below.
|
||||
//
|
||||
// float flat_hash_map::max_load_factor()
|
||||
//
|
||||
// Returns the current maximum load factor of the `flat_hash_map`.
|
||||
//
|
||||
// void flat_hash_map::max_load_factor(float ml)
|
||||
//
|
||||
// Sets the maximum load factor of the `flat_hash_map` to the passed value.
|
||||
//
|
||||
// NOTE: This overload is provided only for API compatibility with the STL;
|
||||
// `flat_hash_map` will ignore any set load factor and manage its rehashing
|
||||
// internally as an implementation detail.
|
||||
using Base::max_load_factor; |
||||
|
||||
// flat_hash_map::get_allocator()
|
||||
//
|
||||
// Returns the allocator function associated with this `flat_hash_map`.
|
||||
using Base::get_allocator; |
||||
|
||||
// flat_hash_map::hash_function()
|
||||
//
|
||||
// Returns the hashing function used to hash the keys within this
|
||||
// `flat_hash_map`.
|
||||
using Base::hash_function; |
||||
|
||||
// flat_hash_map::key_eq()
|
||||
//
|
||||
// Returns the function used for comparing keys equality.
|
||||
using Base::key_eq; |
||||
}; |
||||
|
||||
namespace container_internal { |
||||
|
||||
template <class K, class V> |
||||
struct FlatHashMapPolicy { |
||||
using slot_type = container_internal::slot_type<K, V>; |
||||
using key_type = K; |
||||
using mapped_type = V; |
||||
using init_type = std::pair</*non const*/ key_type, mapped_type>; |
||||
|
||||
template <class Allocator, class... Args> |
||||
static void construct(Allocator* alloc, slot_type* slot, Args&&... args) { |
||||
slot_type::construct(alloc, slot, std::forward<Args>(args)...); |
||||
} |
||||
|
||||
template <class Allocator> |
||||
static void destroy(Allocator* alloc, slot_type* slot) { |
||||
slot_type::destroy(alloc, slot); |
||||
} |
||||
|
||||
template <class Allocator> |
||||
static void transfer(Allocator* alloc, slot_type* new_slot, |
||||
slot_type* old_slot) { |
||||
slot_type::transfer(alloc, new_slot, old_slot); |
||||
} |
||||
|
||||
template <class F, class... Args> |
||||
static decltype(absl::container_internal::DecomposePair( |
||||
std::declval<F>(), std::declval<Args>()...)) |
||||
apply(F&& f, Args&&... args) { |
||||
return absl::container_internal::DecomposePair(std::forward<F>(f), |
||||
std::forward<Args>(args)...); |
||||
} |
||||
|
||||
static size_t space_used(const slot_type*) { return 0; } |
||||
|
||||
static std::pair<const K, V>& element(slot_type* slot) { return slot->value; } |
||||
|
||||
static V& value(std::pair<const K, V>* kv) { return kv->second; } |
||||
static const V& value(const std::pair<const K, V>* kv) { return kv->second; } |
||||
}; |
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
#endif // ABSL_CONTAINER_FLAT_HASH_MAP_H_
|
@ -0,0 +1,241 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/container/flat_hash_map.h" |
||||
|
||||
#include "absl/container/internal/hash_generator_testing.h" |
||||
#include "absl/container/internal/unordered_map_constructor_test.h" |
||||
#include "absl/container/internal/unordered_map_lookup_test.h" |
||||
#include "absl/container/internal/unordered_map_modifiers_test.h" |
||||
#include "absl/types/any.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
namespace { |
||||
using ::absl::container_internal::hash_internal::Enum; |
||||
using ::absl::container_internal::hash_internal::EnumClass; |
||||
using ::testing::_; |
||||
using ::testing::Pair; |
||||
using ::testing::UnorderedElementsAre; |
||||
|
||||
template <class K, class V> |
||||
using Map = |
||||
flat_hash_map<K, V, StatefulTestingHash, StatefulTestingEqual, Alloc<>>; |
||||
|
||||
static_assert(!std::is_standard_layout<NonStandardLayout>(), ""); |
||||
|
||||
using MapTypes = |
||||
::testing::Types<Map<int, int>, Map<std::string, int>, Map<Enum, std::string>, |
||||
Map<EnumClass, int>, Map<int, NonStandardLayout>, |
||||
Map<NonStandardLayout, int>>; |
||||
|
||||
INSTANTIATE_TYPED_TEST_CASE_P(FlatHashMap, ConstructorTest, MapTypes); |
||||
INSTANTIATE_TYPED_TEST_CASE_P(FlatHashMap, LookupTest, MapTypes); |
||||
INSTANTIATE_TYPED_TEST_CASE_P(FlatHashMap, ModifiersTest, MapTypes); |
||||
|
||||
TEST(FlatHashMap, StandardLayout) { |
||||
struct Int { |
||||
explicit Int(size_t value) : value(value) {} |
||||
Int() : value(0) { ADD_FAILURE(); } |
||||
Int(const Int& other) : value(other.value) { ADD_FAILURE(); } |
||||
Int(Int&&) = default; |
||||
bool operator==(const Int& other) const { return value == other.value; } |
||||
size_t value; |
||||
}; |
||||
static_assert(std::is_standard_layout<Int>(), ""); |
||||
|
||||
struct Hash { |
||||
size_t operator()(const Int& obj) const { return obj.value; } |
||||
}; |
||||
|
||||
// Verify that neither the key nor the value get default-constructed or
|
||||
// copy-constructed.
|
||||
{ |
||||
flat_hash_map<Int, Int, Hash> m; |
||||
m.try_emplace(Int(1), Int(2)); |
||||
m.try_emplace(Int(3), Int(4)); |
||||
m.erase(Int(1)); |
||||
m.rehash(2 * m.bucket_count()); |
||||
} |
||||
{ |
||||
flat_hash_map<Int, Int, Hash> m; |
||||
m.try_emplace(Int(1), Int(2)); |
||||
m.try_emplace(Int(3), Int(4)); |
||||
m.erase(Int(1)); |
||||
m.clear(); |
||||
} |
||||
} |
||||
|
||||
// gcc becomes unhappy if this is inside the method, so pull it out here.
|
||||
struct balast {}; |
||||
|
||||
TEST(FlatHashMap, IteratesMsan) { |
||||
// Because SwissTable randomizes on pointer addresses, we keep old tables
|
||||
// around to ensure we don't reuse old memory.
|
||||
std::vector<absl::flat_hash_map<int, balast>> garbage; |
||||
for (int i = 0; i < 100; ++i) { |
||||
absl::flat_hash_map<int, balast> t; |
||||
for (int j = 0; j < 100; ++j) { |
||||
t[j]; |
||||
for (const auto& p : t) EXPECT_THAT(p, Pair(_, _)); |
||||
} |
||||
garbage.push_back(std::move(t)); |
||||
} |
||||
} |
||||
|
||||
// Demonstration of the "Lazy Key" pattern. This uses heterogenous insert to
|
||||
// avoid creating expensive key elements when the item is already present in the
|
||||
// map.
|
||||
struct LazyInt { |
||||
explicit LazyInt(size_t value, int* tracker) |
||||
: value(value), tracker(tracker) {} |
||||
|
||||
explicit operator size_t() const { |
||||
++*tracker; |
||||
return value; |
||||
} |
||||
|
||||
size_t value; |
||||
int* tracker; |
||||
}; |
||||
|
||||
struct Hash { |
||||
using is_transparent = void; |
||||
int* tracker; |
||||
size_t operator()(size_t obj) const { |
||||
++*tracker; |
||||
return obj; |
||||
} |
||||
size_t operator()(const LazyInt& obj) const { |
||||
++*tracker; |
||||
return obj.value; |
||||
} |
||||
}; |
||||
|
||||
struct Eq { |
||||
using is_transparent = void; |
||||
bool operator()(size_t lhs, size_t rhs) const { |
||||
return lhs == rhs; |
||||
} |
||||
bool operator()(size_t lhs, const LazyInt& rhs) const { |
||||
return lhs == rhs.value; |
||||
} |
||||
}; |
||||
|
||||
TEST(FlatHashMap, LazyKeyPattern) { |
||||
// hashes are only guaranteed in opt mode, we use assertions to track internal
|
||||
// state that can cause extra calls to hash.
|
||||
int conversions = 0; |
||||
int hashes = 0; |
||||
flat_hash_map<size_t, size_t, Hash, Eq> m(0, Hash{&hashes}); |
||||
|
||||
m[LazyInt(1, &conversions)] = 1; |
||||
EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 1))); |
||||
EXPECT_EQ(conversions, 1); |
||||
#ifdef NDEBUG |
||||
EXPECT_EQ(hashes, 1); |
||||
#endif |
||||
|
||||
m[LazyInt(1, &conversions)] = 2; |
||||
EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 2))); |
||||
EXPECT_EQ(conversions, 1); |
||||
#ifdef NDEBUG |
||||
EXPECT_EQ(hashes, 2); |
||||
#endif |
||||
|
||||
m.try_emplace(LazyInt(2, &conversions), 3); |
||||
EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 2), Pair(2, 3))); |
||||
EXPECT_EQ(conversions, 2); |
||||
#ifdef NDEBUG |
||||
EXPECT_EQ(hashes, 3); |
||||
#endif |
||||
|
||||
m.try_emplace(LazyInt(2, &conversions), 4); |
||||
EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 2), Pair(2, 3))); |
||||
EXPECT_EQ(conversions, 2); |
||||
#ifdef NDEBUG |
||||
EXPECT_EQ(hashes, 4); |
||||
#endif |
||||
} |
||||
|
||||
TEST(FlatHashMap, BitfieldArgument) { |
||||
union { |
||||
int n : 1; |
||||
}; |
||||
n = 0; |
||||
flat_hash_map<int, int> m; |
||||
m.erase(n); |
||||
m.count(n); |
||||
m.prefetch(n); |
||||
m.find(n); |
||||
m.contains(n); |
||||
m.equal_range(n); |
||||
m.insert_or_assign(n, n); |
||||
m.insert_or_assign(m.end(), n, n); |
||||
m.try_emplace(n); |
||||
m.try_emplace(m.end(), n); |
||||
m.at(n); |
||||
m[n]; |
||||
} |
||||
|
||||
TEST(FlatHashMap, MergeExtractInsert) { |
||||
// We can't test mutable keys, or non-copyable keys with flat_hash_map.
|
||||
// Test that the nodes have the proper API.
|
||||
absl::flat_hash_map<int, int> m = {{1, 7}, {2, 9}}; |
||||
auto node = m.extract(1); |
||||
EXPECT_TRUE(node); |
||||
EXPECT_EQ(node.key(), 1); |
||||
EXPECT_EQ(node.mapped(), 7); |
||||
EXPECT_THAT(m, UnorderedElementsAre(Pair(2, 9))); |
||||
|
||||
node.mapped() = 17; |
||||
m.insert(std::move(node)); |
||||
EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 17), Pair(2, 9))); |
||||
} |
||||
#if !defined(__ANDROID__) && !defined(__APPLE__) && !defined(__EMSCRIPTEN__) |
||||
TEST(FlatHashMap, Any) { |
||||
absl::flat_hash_map<int, absl::any> m; |
||||
m.emplace(1, 7); |
||||
auto it = m.find(1); |
||||
ASSERT_NE(it, m.end()); |
||||
EXPECT_EQ(7, absl::any_cast<int>(it->second)); |
||||
|
||||
m.emplace(std::piecewise_construct, std::make_tuple(2), std::make_tuple(8)); |
||||
it = m.find(2); |
||||
ASSERT_NE(it, m.end()); |
||||
EXPECT_EQ(8, absl::any_cast<int>(it->second)); |
||||
|
||||
m.emplace(std::piecewise_construct, std::make_tuple(3), |
||||
std::make_tuple(absl::any(9))); |
||||
it = m.find(3); |
||||
ASSERT_NE(it, m.end()); |
||||
EXPECT_EQ(9, absl::any_cast<int>(it->second)); |
||||
|
||||
struct H { |
||||
size_t operator()(const absl::any&) const { return 0; } |
||||
}; |
||||
struct E { |
||||
bool operator()(const absl::any&, const absl::any&) const { return true; } |
||||
}; |
||||
absl::flat_hash_map<absl::any, int, H, E> m2; |
||||
m2.emplace(1, 7); |
||||
auto it2 = m2.find(1); |
||||
ASSERT_NE(it2, m2.end()); |
||||
EXPECT_EQ(7, it2->second); |
||||
} |
||||
#endif // __ANDROID__
|
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
@ -0,0 +1,439 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// -----------------------------------------------------------------------------
|
||||
// File: flat_hash_set.h
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// An `absl::flat_hash_set<T>` is an unordered associative container designed to
|
||||
// be a more efficient replacement for `std::unordered_set`. Like
|
||||
// `unordered_set`, search, insertion, and deletion of set elements can be done
|
||||
// as an `O(1)` operation. However, `flat_hash_set` (and other unordered
|
||||
// associative containers known as the collection of Abseil "Swiss tables")
|
||||
// contain other optimizations that result in both memory and computation
|
||||
// advantages.
|
||||
//
|
||||
// In most cases, your default choice for a hash set should be a set of type
|
||||
// `flat_hash_set`.
|
||||
#ifndef ABSL_CONTAINER_FLAT_HASH_SET_H_ |
||||
#define ABSL_CONTAINER_FLAT_HASH_SET_H_ |
||||
|
||||
#include <type_traits> |
||||
#include <utility> |
||||
|
||||
#include "absl/base/macros.h" |
||||
#include "absl/container/internal/container_memory.h" |
||||
#include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export |
||||
#include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export |
||||
#include "absl/memory/memory.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
template <typename T> |
||||
struct FlatHashSetPolicy; |
||||
} // namespace container_internal
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// absl::flat_hash_set
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// An `absl::flat_hash_set<T>` is an unordered associative container which has
|
||||
// been optimized for both speed and memory footprint in most common use cases.
|
||||
// Its interface is similar to that of `std::unordered_set<T>` with the
|
||||
// following notable differences:
|
||||
//
|
||||
// * Requires keys that are CopyConstructible
|
||||
// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
|
||||
// `insert()`, provided that the set is provided a compatible heterogeneous
|
||||
// hashing function and equality operator.
|
||||
// * Invalidates any references and pointers to elements within the table after
|
||||
// `rehash()`.
|
||||
// * Contains a `capacity()` member function indicating the number of element
|
||||
// slots (open, deleted, and empty) within the hash set.
|
||||
// * Returns `void` from the `erase(iterator)` overload.
|
||||
//
|
||||
// By default, `flat_hash_set` uses the `absl::Hash` hashing framework. All
|
||||
// fundamental and Abseil types that support the `absl::Hash` framework have a
|
||||
// compatible equality operator for comparing insertions into `flat_hash_map`.
|
||||
// If your type is not yet supported by the `asbl::Hash` framework, see
|
||||
// absl/hash/hash.h for information on extending Abseil hashing to user-defined
|
||||
// types.
|
||||
//
|
||||
// NOTE: A `flat_hash_set` stores its keys directly inside its implementation
|
||||
// array to avoid memory indirection. Because a `flat_hash_set` is designed to
|
||||
// move data when rehashed, set keys will not retain pointer stability. If you
|
||||
// require pointer stability, consider using
|
||||
// `absl::flat_hash_set<std::unique_ptr<T>>`. If your type is not moveable and
|
||||
// you require pointer stability, consider `absl::node_hash_set` instead.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// // Create a flat hash set of three strings
|
||||
// absl::flat_hash_set<std::string> ducks =
|
||||
// {"huey", "dewey", "louie"};
|
||||
//
|
||||
// // Insert a new element into the flat hash set
|
||||
// ducks.insert("donald"};
|
||||
//
|
||||
// // Force a rehash of the flat hash set
|
||||
// ducks.rehash(0);
|
||||
//
|
||||
// // See if "dewey" is present
|
||||
// if (ducks.contains("dewey")) {
|
||||
// std::cout << "We found dewey!" << std::endl;
|
||||
// }
|
||||
template <class T, class Hash = absl::container_internal::hash_default_hash<T>, |
||||
class Eq = absl::container_internal::hash_default_eq<T>, |
||||
class Allocator = std::allocator<T>> |
||||
class flat_hash_set |
||||
: public absl::container_internal::raw_hash_set< |
||||
absl::container_internal::FlatHashSetPolicy<T>, Hash, Eq, Allocator> { |
||||
using Base = typename flat_hash_set::raw_hash_set; |
||||
|
||||
public: |
||||
flat_hash_set() {} |
||||
using Base::Base; |
||||
|
||||
// flat_hash_set::begin()
|
||||
//
|
||||
// Returns an iterator to the beginning of the `flat_hash_set`.
|
||||
using Base::begin; |
||||
|
||||
// flat_hash_set::cbegin()
|
||||
//
|
||||
// Returns a const iterator to the beginning of the `flat_hash_set`.
|
||||
using Base::cbegin; |
||||
|
||||
// flat_hash_set::cend()
|
||||
//
|
||||
// Returns a const iterator to the end of the `flat_hash_set`.
|
||||
using Base::cend; |
||||
|
||||
// flat_hash_set::end()
|
||||
//
|
||||
// Returns an iterator to the end of the `flat_hash_set`.
|
||||
using Base::end; |
||||
|
||||
// flat_hash_set::capacity()
|
||||
//
|
||||
// Returns the number of element slots (assigned, deleted, and empty)
|
||||
// available within the `flat_hash_set`.
|
||||
//
|
||||
// NOTE: this member function is particular to `absl::flat_hash_set` and is
|
||||
// not provided in the `std::unordered_map` API.
|
||||
using Base::capacity; |
||||
|
||||
// flat_hash_set::empty()
|
||||
//
|
||||
// Returns whether or not the `flat_hash_set` is empty.
|
||||
using Base::empty; |
||||
|
||||
// flat_hash_set::max_size()
|
||||
//
|
||||
// Returns the largest theoretical possible number of elements within a
|
||||
// `flat_hash_set` under current memory constraints. This value can be thought
|
||||
// of the largest value of `std::distance(begin(), end())` for a
|
||||
// `flat_hash_set<T>`.
|
||||
using Base::max_size; |
||||
|
||||
// flat_hash_set::size()
|
||||
//
|
||||
// Returns the number of elements currently within the `flat_hash_set`.
|
||||
using Base::size; |
||||
|
||||
// flat_hash_set::clear()
|
||||
//
|
||||
// Removes all elements from the `flat_hash_set`. Invalidates any references,
|
||||
// pointers, or iterators referring to contained elements.
|
||||
//
|
||||
// NOTE: this operation may shrink the underlying buffer. To avoid shrinking
|
||||
// the underlying buffer call `erase(begin(), end())`.
|
||||
using Base::clear; |
||||
|
||||
// flat_hash_set::erase()
|
||||
//
|
||||
// Erases elements within the `flat_hash_set`. Erasing does not trigger a
|
||||
// rehash. Overloads are listed below.
|
||||
//
|
||||
// void erase(const_iterator pos):
|
||||
//
|
||||
// Erases the element at `position` of the `flat_hash_set`, returning
|
||||
// `void`.
|
||||
//
|
||||
// NOTE: this return behavior is different than that of STL containers in
|
||||
// general and `std::unordered_map` in particular.
|
||||
//
|
||||
// iterator erase(const_iterator first, const_iterator last):
|
||||
//
|
||||
// Erases the elements in the open interval [`first`, `last`), returning an
|
||||
// iterator pointing to `last`.
|
||||
//
|
||||
// size_type erase(const key_type& key):
|
||||
//
|
||||
// Erases the element with the matching key, if it exists.
|
||||
using Base::erase; |
||||
|
||||
// flat_hash_set::insert()
|
||||
//
|
||||
// Inserts an element of the specified value into the `flat_hash_set`,
|
||||
// returning an iterator pointing to the newly inserted element, provided that
|
||||
// an element with the given key does not already exist. If rehashing occurs
|
||||
// due to the insertion, all iterators are invalidated. Overloads are listed
|
||||
// below.
|
||||
//
|
||||
// std::pair<iterator,bool> insert(const T& value):
|
||||
//
|
||||
// Inserts a value into the `flat_hash_set`. Returns a pair consisting of an
|
||||
// iterator to the inserted element (or to the element that prevented the
|
||||
// insertion) and a bool denoting whether the insertion took place.
|
||||
//
|
||||
// std::pair<iterator,bool> insert(T&& value):
|
||||
//
|
||||
// Inserts a moveable value into the `flat_hash_set`. Returns a pair
|
||||
// consisting of an iterator to the inserted element (or to the element that
|
||||
// prevented the insertion) and a bool denoting whether the insertion took
|
||||
// place.
|
||||
//
|
||||
// iterator insert(const_iterator hint, const T& value):
|
||||
// iterator insert(const_iterator hint, T&& value):
|
||||
//
|
||||
// Inserts a value, using the position of `hint` as a non-binding suggestion
|
||||
// for where to begin the insertion search. Returns an iterator to the
|
||||
// inserted element, or to the existing element that prevented the
|
||||
// insertion.
|
||||
//
|
||||
// void insert(InputIterator first, InputIterator last ):
|
||||
//
|
||||
// Inserts a range of values [`first`, `last`).
|
||||
//
|
||||
// NOTE: Although the STL does not specify which element may be inserted if
|
||||
// multiple keys compare equivalently, for `flat_hash_set` we guarantee the
|
||||
// first match is inserted.
|
||||
//
|
||||
// void insert(std::initializer_list<T> ilist ):
|
||||
//
|
||||
// Inserts the elements within the initializer list `ilist`.
|
||||
//
|
||||
// NOTE: Although the STL does not specify which element may be inserted if
|
||||
// multiple keys compare equivalently within the initializer list, for
|
||||
// `flat_hash_set` we guarantee the first match is inserted.
|
||||
using Base::insert; |
||||
|
||||
// flat_hash_set::emplace()
|
||||
//
|
||||
// Inserts an element of the specified value by constructing it in-place
|
||||
// within the `flat_hash_set`, provided that no element with the given key
|
||||
// already exists.
|
||||
//
|
||||
// The element may be constructed even if there already is an element with the
|
||||
// key in the container, in which case the newly constructed element will be
|
||||
// destroyed immediately. Prefer `try_emplace()` unless your key is not
|
||||
// copyable or moveable.
|
||||
//
|
||||
// If rehashing occurs due to the insertion, all iterators are invalidated.
|
||||
using Base::emplace; |
||||
|
||||
// flat_hash_set::emplace_hint()
|
||||
//
|
||||
// Inserts an element of the specified value by constructing it in-place
|
||||
// within the `flat_hash_set`, using the position of `hint` as a non-binding
|
||||
// suggestion for where to begin the insertion search, and only inserts
|
||||
// provided that no element with the given key already exists.
|
||||
//
|
||||
// The element may be constructed even if there already is an element with the
|
||||
// key in the container, in which case the newly constructed element will be
|
||||
// destroyed immediately. Prefer `try_emplace()` unless your key is not
|
||||
// copyable or moveable.
|
||||
//
|
||||
// If rehashing occurs due to the insertion, all iterators are invalidated.
|
||||
using Base::emplace_hint; |
||||
|
||||
// flat_hash_set::extract()
|
||||
//
|
||||
// Extracts the indicated element, erasing it in the process, and returns it
|
||||
// as a C++17-compatible node handle. Overloads are listed below.
|
||||
//
|
||||
// node_type extract(const_iterator position):
|
||||
//
|
||||
// Extracts the element at the indicated position and returns a node handle
|
||||
// owning that extracted data.
|
||||
//
|
||||
// node_type extract(const key_type& x):
|
||||
//
|
||||
// Extracts the element with the key matching the passed key value and
|
||||
// returns a node handle owning that extracted data. If the `flat_hash_set`
|
||||
// does not contain an element with a matching key, this function returns an
|
||||
// empty node handle.
|
||||
using Base::extract; |
||||
|
||||
// flat_hash_set::merge()
|
||||
//
|
||||
// Extracts elements from a given `source` flat hash map into this
|
||||
// `flat_hash_set`. If the destination `flat_hash_set` already contains an
|
||||
// element with an equivalent key, that element is not extracted.
|
||||
using Base::merge; |
||||
|
||||
// flat_hash_set::swap(flat_hash_set& other)
|
||||
//
|
||||
// Exchanges the contents of this `flat_hash_set` with those of the `other`
|
||||
// flat hash map, avoiding invocation of any move, copy, or swap operations on
|
||||
// individual elements.
|
||||
//
|
||||
// All iterators and references on the `flat_hash_set` remain valid, excepting
|
||||
// for the past-the-end iterator, which is invalidated.
|
||||
//
|
||||
// `swap()` requires that the flat hash set's hashing and key equivalence
|
||||
// functions be Swappable, and are exchaged using unqualified calls to
|
||||
// non-member `swap()`. If the map's allocator has
|
||||
// `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
|
||||
// set to `true`, the allocators are also exchanged using an unqualified call
|
||||
// to non-member `swap()`; otherwise, the allocators are not swapped.
|
||||
using Base::swap; |
||||
|
||||
// flat_hash_set::rehash(count)
|
||||
//
|
||||
// Rehashes the `flat_hash_set`, setting the number of slots to be at least
|
||||
// the passed value. If the new number of slots increases the load factor more
|
||||
// than the current maximum load factor
|
||||
// (`count` < `size()` / `max_load_factor()`), then the new number of slots
|
||||
// will be at least `size()` / `max_load_factor()`.
|
||||
//
|
||||
// To force a rehash, pass rehash(0).
|
||||
//
|
||||
// NOTE: unlike behavior in `std::unordered_set`, references are also
|
||||
// invalidated upon a `rehash()`.
|
||||
using Base::rehash; |
||||
|
||||
// flat_hash_set::reserve(count)
|
||||
//
|
||||
// Sets the number of slots in the `flat_hash_set` to the number needed to
|
||||
// accommodate at least `count` total elements without exceeding the current
|
||||
// maximum load factor, and may rehash the container if needed.
|
||||
using Base::reserve; |
||||
|
||||
// flat_hash_set::contains()
|
||||
//
|
||||
// Determines whether an element comparing equal to the given `key` exists
|
||||
// within the `flat_hash_set`, returning `true` if so or `false` otherwise.
|
||||
using Base::contains; |
||||
|
||||
// flat_hash_set::count(const Key& key) const
|
||||
//
|
||||
// Returns the number of elements comparing equal to the given `key` within
|
||||
// the `flat_hash_set`. note that this function will return either `1` or `0`
|
||||
// since duplicate elements are not allowed within a `flat_hash_set`.
|
||||
using Base::count; |
||||
|
||||
// flat_hash_set::equal_range()
|
||||
//
|
||||
// Returns a closed range [first, last], defined by a `std::pair` of two
|
||||
// iterators, containing all elements with the passed key in the
|
||||
// `flat_hash_set`.
|
||||
using Base::equal_range; |
||||
|
||||
// flat_hash_set::find()
|
||||
//
|
||||
// Finds an element with the passed `key` within the `flat_hash_set`.
|
||||
using Base::find; |
||||
|
||||
// flat_hash_set::bucket_count()
|
||||
//
|
||||
// Returns the number of "buckets" within the `flat_hash_set`. Note that
|
||||
// because a flat hash map contains all elements within its internal storage,
|
||||
// this value simply equals the current capacity of the `flat_hash_set`.
|
||||
using Base::bucket_count; |
||||
|
||||
// flat_hash_set::load_factor()
|
||||
//
|
||||
// Returns the current load factor of the `flat_hash_set` (the average number
|
||||
// of slots occupied with a value within the hash map).
|
||||
using Base::load_factor; |
||||
|
||||
// flat_hash_set::max_load_factor()
|
||||
//
|
||||
// Manages the maximum load factor of the `flat_hash_set`. Overloads are
|
||||
// listed below.
|
||||
//
|
||||
// float flat_hash_set::max_load_factor()
|
||||
//
|
||||
// Returns the current maximum load factor of the `flat_hash_set`.
|
||||
//
|
||||
// void flat_hash_set::max_load_factor(float ml)
|
||||
//
|
||||
// Sets the maximum load factor of the `flat_hash_set` to the passed value.
|
||||
//
|
||||
// NOTE: This overload is provided only for API compatibility with the STL;
|
||||
// `flat_hash_set` will ignore any set load factor and manage its rehashing
|
||||
// internally as an implementation detail.
|
||||
using Base::max_load_factor; |
||||
|
||||
// flat_hash_set::get_allocator()
|
||||
//
|
||||
// Returns the allocator function associated with this `flat_hash_set`.
|
||||
using Base::get_allocator; |
||||
|
||||
// flat_hash_set::hash_function()
|
||||
//
|
||||
// Returns the hashing function used to hash the keys within this
|
||||
// `flat_hash_set`.
|
||||
using Base::hash_function; |
||||
|
||||
// flat_hash_set::key_eq()
|
||||
//
|
||||
// Returns the function used for comparing keys equality.
|
||||
using Base::key_eq; |
||||
}; |
||||
|
||||
namespace container_internal { |
||||
|
||||
template <class T> |
||||
struct FlatHashSetPolicy { |
||||
using slot_type = T; |
||||
using key_type = T; |
||||
using init_type = T; |
||||
using constant_iterators = std::true_type; |
||||
|
||||
template <class Allocator, class... Args> |
||||
static void construct(Allocator* alloc, slot_type* slot, Args&&... args) { |
||||
absl::allocator_traits<Allocator>::construct(*alloc, slot, |
||||
std::forward<Args>(args)...); |
||||
} |
||||
|
||||
template <class Allocator> |
||||
static void destroy(Allocator* alloc, slot_type* slot) { |
||||
absl::allocator_traits<Allocator>::destroy(*alloc, slot); |
||||
} |
||||
|
||||
template <class Allocator> |
||||
static void transfer(Allocator* alloc, slot_type* new_slot, |
||||
slot_type* old_slot) { |
||||
construct(alloc, new_slot, std::move(*old_slot)); |
||||
destroy(alloc, old_slot); |
||||
} |
||||
|
||||
static T& element(slot_type* slot) { return *slot; } |
||||
|
||||
template <class F, class... Args> |
||||
static decltype(absl::container_internal::DecomposeValue( |
||||
std::declval<F>(), std::declval<Args>()...)) |
||||
apply(F&& f, Args&&... args) { |
||||
return absl::container_internal::DecomposeValue( |
||||
std::forward<F>(f), std::forward<Args>(args)...); |
||||
} |
||||
|
||||
static size_t space_used(const T*) { return 0; } |
||||
}; |
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
#endif // ABSL_CONTAINER_FLAT_HASH_SET_H_
|
@ -0,0 +1,126 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/container/flat_hash_set.h" |
||||
|
||||
#include <vector> |
||||
|
||||
#include "absl/container/internal/hash_generator_testing.h" |
||||
#include "absl/container/internal/unordered_set_constructor_test.h" |
||||
#include "absl/container/internal/unordered_set_lookup_test.h" |
||||
#include "absl/container/internal/unordered_set_modifiers_test.h" |
||||
#include "absl/memory/memory.h" |
||||
#include "absl/strings/string_view.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
namespace { |
||||
|
||||
using ::absl::container_internal::hash_internal::Enum; |
||||
using ::absl::container_internal::hash_internal::EnumClass; |
||||
using ::testing::Pointee; |
||||
using ::testing::UnorderedElementsAre; |
||||
using ::testing::UnorderedElementsAreArray; |
||||
|
||||
template <class T> |
||||
using Set = |
||||
absl::flat_hash_set<T, StatefulTestingHash, StatefulTestingEqual, Alloc<T>>; |
||||
|
||||
using SetTypes = |
||||
::testing::Types<Set<int>, Set<std::string>, Set<Enum>, Set<EnumClass>>; |
||||
|
||||
INSTANTIATE_TYPED_TEST_CASE_P(FlatHashSet, ConstructorTest, SetTypes); |
||||
INSTANTIATE_TYPED_TEST_CASE_P(FlatHashSet, LookupTest, SetTypes); |
||||
INSTANTIATE_TYPED_TEST_CASE_P(FlatHashSet, ModifiersTest, SetTypes); |
||||
|
||||
TEST(FlatHashSet, EmplaceString) { |
||||
std::vector<std::string> v = {"a", "b"}; |
||||
absl::flat_hash_set<absl::string_view> hs(v.begin(), v.end()); |
||||
EXPECT_THAT(hs, UnorderedElementsAreArray(v)); |
||||
} |
||||
|
||||
TEST(FlatHashSet, BitfieldArgument) { |
||||
union { |
||||
int n : 1; |
||||
}; |
||||
n = 0; |
||||
absl::flat_hash_set<int> s = {n}; |
||||
s.insert(n); |
||||
s.insert(s.end(), n); |
||||
s.insert({n}); |
||||
s.erase(n); |
||||
s.count(n); |
||||
s.prefetch(n); |
||||
s.find(n); |
||||
s.contains(n); |
||||
s.equal_range(n); |
||||
} |
||||
|
||||
TEST(FlatHashSet, MergeExtractInsert) { |
||||
struct Hash { |
||||
size_t operator()(const std::unique_ptr<int>& p) const { return *p; } |
||||
}; |
||||
struct Eq { |
||||
bool operator()(const std::unique_ptr<int>& a, |
||||
const std::unique_ptr<int>& b) const { |
||||
return *a == *b; |
||||
} |
||||
}; |
||||
absl::flat_hash_set<std::unique_ptr<int>, Hash, Eq> set1, set2; |
||||
set1.insert(absl::make_unique<int>(7)); |
||||
set1.insert(absl::make_unique<int>(17)); |
||||
|
||||
set2.insert(absl::make_unique<int>(7)); |
||||
set2.insert(absl::make_unique<int>(19)); |
||||
|
||||
EXPECT_THAT(set1, UnorderedElementsAre(Pointee(7), Pointee(17))); |
||||
EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7), Pointee(19))); |
||||
|
||||
set1.merge(set2); |
||||
|
||||
EXPECT_THAT(set1, UnorderedElementsAre(Pointee(7), Pointee(17), Pointee(19))); |
||||
EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7))); |
||||
|
||||
auto node = set1.extract(absl::make_unique<int>(7)); |
||||
EXPECT_TRUE(node); |
||||
EXPECT_THAT(node.value(), Pointee(7)); |
||||
EXPECT_THAT(set1, UnorderedElementsAre(Pointee(17), Pointee(19))); |
||||
|
||||
auto insert_result = set2.insert(std::move(node)); |
||||
EXPECT_FALSE(node); |
||||
EXPECT_FALSE(insert_result.inserted); |
||||
EXPECT_TRUE(insert_result.node); |
||||
EXPECT_THAT(insert_result.node.value(), Pointee(7)); |
||||
EXPECT_EQ(**insert_result.position, 7); |
||||
EXPECT_NE(insert_result.position->get(), insert_result.node.value().get()); |
||||
EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7))); |
||||
|
||||
node = set1.extract(absl::make_unique<int>(17)); |
||||
EXPECT_TRUE(node); |
||||
EXPECT_THAT(node.value(), Pointee(17)); |
||||
EXPECT_THAT(set1, UnorderedElementsAre(Pointee(19))); |
||||
|
||||
node.value() = absl::make_unique<int>(23); |
||||
|
||||
insert_result = set2.insert(std::move(node)); |
||||
EXPECT_FALSE(node); |
||||
EXPECT_TRUE(insert_result.inserted); |
||||
EXPECT_FALSE(insert_result.node); |
||||
EXPECT_EQ(**insert_result.position, 23); |
||||
EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7), Pointee(23))); |
||||
} |
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
@ -0,0 +1,405 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_ |
||||
#define ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_ |
||||
|
||||
#ifdef ADDRESS_SANITIZER |
||||
#include <sanitizer/asan_interface.h> |
||||
#endif |
||||
|
||||
#ifdef MEMORY_SANITIZER |
||||
#include <sanitizer/msan_interface.h> |
||||
#endif |
||||
|
||||
#include <cassert> |
||||
#include <cstddef> |
||||
#include <memory> |
||||
#include <tuple> |
||||
#include <type_traits> |
||||
#include <utility> |
||||
|
||||
#include "absl/memory/memory.h" |
||||
#include "absl/utility/utility.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
|
||||
// Allocates at least n bytes aligned to the specified alignment.
|
||||
// Alignment must be a power of 2. It must be positive.
|
||||
//
|
||||
// Note that many allocators don't honor alignment requirements above certain
|
||||
// threshold (usually either alignof(std::max_align_t) or alignof(void*)).
|
||||
// Allocate() doesn't apply alignment corrections. If the underlying allocator
|
||||
// returns insufficiently alignment pointer, that's what you are going to get.
|
||||
template <size_t Alignment, class Alloc> |
||||
void* Allocate(Alloc* alloc, size_t n) { |
||||
static_assert(Alignment > 0, ""); |
||||
assert(n && "n must be positive"); |
||||
struct alignas(Alignment) M {}; |
||||
using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>; |
||||
using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>; |
||||
A mem_alloc(*alloc); |
||||
void* p = AT::allocate(mem_alloc, (n + sizeof(M) - 1) / sizeof(M)); |
||||
assert(reinterpret_cast<uintptr_t>(p) % Alignment == 0 && |
||||
"allocator does not respect alignment"); |
||||
return p; |
||||
} |
||||
|
||||
// The pointer must have been previously obtained by calling
|
||||
// Allocate<Alignment>(alloc, n).
|
||||
template <size_t Alignment, class Alloc> |
||||
void Deallocate(Alloc* alloc, void* p, size_t n) { |
||||
static_assert(Alignment > 0, ""); |
||||
assert(n && "n must be positive"); |
||||
struct alignas(Alignment) M {}; |
||||
using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>; |
||||
using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>; |
||||
A mem_alloc(*alloc); |
||||
AT::deallocate(mem_alloc, static_cast<M*>(p), |
||||
(n + sizeof(M) - 1) / sizeof(M)); |
||||
} |
||||
|
||||
namespace memory_internal { |
||||
|
||||
// Constructs T into uninitialized storage pointed by `ptr` using the args
|
||||
// specified in the tuple.
|
||||
template <class Alloc, class T, class Tuple, size_t... I> |
||||
void ConstructFromTupleImpl(Alloc* alloc, T* ptr, Tuple&& t, |
||||
absl::index_sequence<I...>) { |
||||
absl::allocator_traits<Alloc>::construct( |
||||
*alloc, ptr, std::get<I>(std::forward<Tuple>(t))...); |
||||
} |
||||
|
||||
template <class T, class F> |
||||
struct WithConstructedImplF { |
||||
template <class... Args> |
||||
decltype(std::declval<F>()(std::declval<T>())) operator()( |
||||
Args&&... args) const { |
||||
return std::forward<F>(f)(T(std::forward<Args>(args)...)); |
||||
} |
||||
F&& f; |
||||
}; |
||||
|
||||
template <class T, class Tuple, size_t... Is, class F> |
||||
decltype(std::declval<F>()(std::declval<T>())) WithConstructedImpl( |
||||
Tuple&& t, absl::index_sequence<Is...>, F&& f) { |
||||
return WithConstructedImplF<T, F>{std::forward<F>(f)}( |
||||
std::get<Is>(std::forward<Tuple>(t))...); |
||||
} |
||||
|
||||
template <class T, size_t... Is> |
||||
auto TupleRefImpl(T&& t, absl::index_sequence<Is...>) |
||||
-> decltype(std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...)) { |
||||
return std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...); |
||||
} |
||||
|
||||
// Returns a tuple of references to the elements of the input tuple. T must be a
|
||||
// tuple.
|
||||
template <class T> |
||||
auto TupleRef(T&& t) -> decltype( |
||||
TupleRefImpl(std::forward<T>(t), |
||||
absl::make_index_sequence< |
||||
std::tuple_size<typename std::decay<T>::type>::value>())) { |
||||
return TupleRefImpl( |
||||
std::forward<T>(t), |
||||
absl::make_index_sequence< |
||||
std::tuple_size<typename std::decay<T>::type>::value>()); |
||||
} |
||||
|
||||
template <class F, class K, class V> |
||||
decltype(std::declval<F>()(std::declval<const K&>(), std::piecewise_construct, |
||||
std::declval<std::tuple<K>>(), std::declval<V>())) |
||||
DecomposePairImpl(F&& f, std::pair<std::tuple<K>, V> p) { |
||||
const auto& key = std::get<0>(p.first); |
||||
return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first), |
||||
std::move(p.second)); |
||||
} |
||||
|
||||
} // namespace memory_internal
|
||||
|
||||
// Constructs T into uninitialized storage pointed by `ptr` using the args
|
||||
// specified in the tuple.
|
||||
template <class Alloc, class T, class Tuple> |
||||
void ConstructFromTuple(Alloc* alloc, T* ptr, Tuple&& t) { |
||||
memory_internal::ConstructFromTupleImpl( |
||||
alloc, ptr, std::forward<Tuple>(t), |
||||
absl::make_index_sequence< |
||||
std::tuple_size<typename std::decay<Tuple>::type>::value>()); |
||||
} |
||||
|
||||
// Constructs T using the args specified in the tuple and calls F with the
|
||||
// constructed value.
|
||||
template <class T, class Tuple, class F> |
||||
decltype(std::declval<F>()(std::declval<T>())) WithConstructed( |
||||
Tuple&& t, F&& f) { |
||||
return memory_internal::WithConstructedImpl<T>( |
||||
std::forward<Tuple>(t), |
||||
absl::make_index_sequence< |
||||
std::tuple_size<typename std::decay<Tuple>::type>::value>(), |
||||
std::forward<F>(f)); |
||||
} |
||||
|
||||
// Given arguments of an std::pair's consructor, PairArgs() returns a pair of
|
||||
// tuples with references to the passed arguments. The tuples contain
|
||||
// constructor arguments for the first and the second elements of the pair.
|
||||
//
|
||||
// The following two snippets are equivalent.
|
||||
//
|
||||
// 1. std::pair<F, S> p(args...);
|
||||
//
|
||||
// 2. auto a = PairArgs(args...);
|
||||
// std::pair<F, S> p(std::piecewise_construct,
|
||||
// std::move(p.first), std::move(p.second));
|
||||
inline std::pair<std::tuple<>, std::tuple<>> PairArgs() { return {}; } |
||||
template <class F, class S> |
||||
std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(F&& f, S&& s) { |
||||
return {std::piecewise_construct, std::forward_as_tuple(std::forward<F>(f)), |
||||
std::forward_as_tuple(std::forward<S>(s))}; |
||||
} |
||||
template <class F, class S> |
||||
std::pair<std::tuple<const F&>, std::tuple<const S&>> PairArgs( |
||||
const std::pair<F, S>& p) { |
||||
return PairArgs(p.first, p.second); |
||||
} |
||||
template <class F, class S> |
||||
std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(std::pair<F, S>&& p) { |
||||
return PairArgs(std::forward<F>(p.first), std::forward<S>(p.second)); |
||||
} |
||||
template <class F, class S> |
||||
auto PairArgs(std::piecewise_construct_t, F&& f, S&& s) |
||||
-> decltype(std::make_pair(memory_internal::TupleRef(std::forward<F>(f)), |
||||
memory_internal::TupleRef(std::forward<S>(s)))) { |
||||
return std::make_pair(memory_internal::TupleRef(std::forward<F>(f)), |
||||
memory_internal::TupleRef(std::forward<S>(s))); |
||||
} |
||||
|
||||
// A helper function for implementing apply() in map policies.
|
||||
template <class F, class... Args> |
||||
auto DecomposePair(F&& f, Args&&... args) |
||||
-> decltype(memory_internal::DecomposePairImpl( |
||||
std::forward<F>(f), PairArgs(std::forward<Args>(args)...))) { |
||||
return memory_internal::DecomposePairImpl( |
||||
std::forward<F>(f), PairArgs(std::forward<Args>(args)...)); |
||||
} |
||||
|
||||
// A helper function for implementing apply() in set policies.
|
||||
template <class F, class Arg> |
||||
decltype(std::declval<F>()(std::declval<const Arg&>(), std::declval<Arg>())) |
||||
DecomposeValue(F&& f, Arg&& arg) { |
||||
const auto& key = arg; |
||||
return std::forward<F>(f)(key, std::forward<Arg>(arg)); |
||||
} |
||||
|
||||
// Helper functions for asan and msan.
|
||||
inline void SanitizerPoisonMemoryRegion(const void* m, size_t s) { |
||||
#ifdef ADDRESS_SANITIZER |
||||
ASAN_POISON_MEMORY_REGION(m, s); |
||||
#endif |
||||
#ifdef MEMORY_SANITIZER |
||||
__msan_poison(m, s); |
||||
#endif |
||||
(void)m; |
||||
(void)s; |
||||
} |
||||
|
||||
inline void SanitizerUnpoisonMemoryRegion(const void* m, size_t s) { |
||||
#ifdef ADDRESS_SANITIZER |
||||
ASAN_UNPOISON_MEMORY_REGION(m, s); |
||||
#endif |
||||
#ifdef MEMORY_SANITIZER |
||||
__msan_unpoison(m, s); |
||||
#endif |
||||
(void)m; |
||||
(void)s; |
||||
} |
||||
|
||||
template <typename T> |
||||
inline void SanitizerPoisonObject(const T* object) { |
||||
SanitizerPoisonMemoryRegion(object, sizeof(T)); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline void SanitizerUnpoisonObject(const T* object) { |
||||
SanitizerUnpoisonMemoryRegion(object, sizeof(T)); |
||||
} |
||||
|
||||
namespace memory_internal { |
||||
|
||||
// If Pair is a standard-layout type, OffsetOf<Pair>::kFirst and
|
||||
// OffsetOf<Pair>::kSecond are equivalent to offsetof(Pair, first) and
|
||||
// offsetof(Pair, second) respectively. Otherwise they are -1.
|
||||
//
|
||||
// The purpose of OffsetOf is to avoid calling offsetof() on non-standard-layout
|
||||
// type, which is non-portable.
|
||||
template <class Pair, class = std::true_type> |
||||
struct OffsetOf { |
||||
static constexpr size_t kFirst = -1; |
||||
static constexpr size_t kSecond = -1; |
||||
}; |
||||
|
||||
template <class Pair> |
||||
struct OffsetOf<Pair, typename std::is_standard_layout<Pair>::type> { |
||||
static constexpr size_t kFirst = offsetof(Pair, first); |
||||
static constexpr size_t kSecond = offsetof(Pair, second); |
||||
}; |
||||
|
||||
template <class K, class V> |
||||
struct IsLayoutCompatible { |
||||
private: |
||||
struct Pair { |
||||
K first; |
||||
V second; |
||||
}; |
||||
|
||||
// Is P layout-compatible with Pair?
|
||||
template <class P> |
||||
static constexpr bool LayoutCompatible() { |
||||
return std::is_standard_layout<P>() && sizeof(P) == sizeof(Pair) && |
||||
alignof(P) == alignof(Pair) && |
||||
memory_internal::OffsetOf<P>::kFirst == |
||||
memory_internal::OffsetOf<Pair>::kFirst && |
||||
memory_internal::OffsetOf<P>::kSecond == |
||||
memory_internal::OffsetOf<Pair>::kSecond; |
||||
} |
||||
|
||||
public: |
||||
// Whether pair<const K, V> and pair<K, V> are layout-compatible. If they are,
|
||||
// then it is safe to store them in a union and read from either.
|
||||
static constexpr bool value = std::is_standard_layout<K>() && |
||||
std::is_standard_layout<Pair>() && |
||||
memory_internal::OffsetOf<Pair>::kFirst == 0 && |
||||
LayoutCompatible<std::pair<K, V>>() && |
||||
LayoutCompatible<std::pair<const K, V>>(); |
||||
}; |
||||
|
||||
} // namespace memory_internal
|
||||
|
||||
// If kMutableKeys is false, only the value member is accessed.
|
||||
//
|
||||
// If kMutableKeys is true, key is accessed through all slots while value and
|
||||
// mutable_value are accessed only via INITIALIZED slots. Slots are created and
|
||||
// destroyed via mutable_value so that the key can be moved later.
|
||||
template <class K, class V> |
||||
union slot_type { |
||||
private: |
||||
static void emplace(slot_type* slot) { |
||||
// The construction of union doesn't do anything at runtime but it allows us
|
||||
// to access its members without violating aliasing rules.
|
||||
new (slot) slot_type; |
||||
} |
||||
// If pair<const K, V> and pair<K, V> are layout-compatible, we can accept one
|
||||
// or the other via slot_type. We are also free to access the key via
|
||||
// slot_type::key in this case.
|
||||
using kMutableKeys = |
||||
std::integral_constant<bool, |
||||
memory_internal::IsLayoutCompatible<K, V>::value>; |
||||
|
||||
public: |
||||
slot_type() {} |
||||
~slot_type() = delete; |
||||
using value_type = std::pair<const K, V>; |
||||
using mutable_value_type = std::pair<K, V>; |
||||
|
||||
value_type value; |
||||
mutable_value_type mutable_value; |
||||
K key; |
||||
|
||||
template <class Allocator, class... Args> |
||||
static void construct(Allocator* alloc, slot_type* slot, Args&&... args) { |
||||
emplace(slot); |
||||
if (kMutableKeys::value) { |
||||
absl::allocator_traits<Allocator>::construct(*alloc, &slot->mutable_value, |
||||
std::forward<Args>(args)...); |
||||
} else { |
||||
absl::allocator_traits<Allocator>::construct(*alloc, &slot->value, |
||||
std::forward<Args>(args)...); |
||||
} |
||||
} |
||||
|
||||
// Construct this slot by moving from another slot.
|
||||
template <class Allocator> |
||||
static void construct(Allocator* alloc, slot_type* slot, slot_type* other) { |
||||
emplace(slot); |
||||
if (kMutableKeys::value) { |
||||
absl::allocator_traits<Allocator>::construct( |
||||
*alloc, &slot->mutable_value, std::move(other->mutable_value)); |
||||
} else { |
||||
absl::allocator_traits<Allocator>::construct(*alloc, &slot->value, |
||||
std::move(other->value)); |
||||
} |
||||
} |
||||
|
||||
template <class Allocator> |
||||
static void destroy(Allocator* alloc, slot_type* slot) { |
||||
if (kMutableKeys::value) { |
||||
absl::allocator_traits<Allocator>::destroy(*alloc, &slot->mutable_value); |
||||
} else { |
||||
absl::allocator_traits<Allocator>::destroy(*alloc, &slot->value); |
||||
} |
||||
} |
||||
|
||||
template <class Allocator> |
||||
static void transfer(Allocator* alloc, slot_type* new_slot, |
||||
slot_type* old_slot) { |
||||
emplace(new_slot); |
||||
if (kMutableKeys::value) { |
||||
absl::allocator_traits<Allocator>::construct( |
||||
*alloc, &new_slot->mutable_value, std::move(old_slot->mutable_value)); |
||||
} else { |
||||
absl::allocator_traits<Allocator>::construct(*alloc, &new_slot->value, |
||||
std::move(old_slot->value)); |
||||
} |
||||
destroy(alloc, old_slot); |
||||
} |
||||
|
||||
template <class Allocator> |
||||
static void swap(Allocator* alloc, slot_type* a, slot_type* b) { |
||||
if (kMutableKeys::value) { |
||||
using std::swap; |
||||
swap(a->mutable_value, b->mutable_value); |
||||
} else { |
||||
value_type tmp = std::move(a->value); |
||||
absl::allocator_traits<Allocator>::destroy(*alloc, &a->value); |
||||
absl::allocator_traits<Allocator>::construct(*alloc, &a->value, |
||||
std::move(b->value)); |
||||
absl::allocator_traits<Allocator>::destroy(*alloc, &b->value); |
||||
absl::allocator_traits<Allocator>::construct(*alloc, &b->value, |
||||
std::move(tmp)); |
||||
} |
||||
} |
||||
|
||||
template <class Allocator> |
||||
static void move(Allocator* alloc, slot_type* src, slot_type* dest) { |
||||
if (kMutableKeys::value) { |
||||
dest->mutable_value = std::move(src->mutable_value); |
||||
} else { |
||||
absl::allocator_traits<Allocator>::destroy(*alloc, &dest->value); |
||||
absl::allocator_traits<Allocator>::construct(*alloc, &dest->value, |
||||
std::move(src->value)); |
||||
} |
||||
} |
||||
|
||||
template <class Allocator> |
||||
static void move(Allocator* alloc, slot_type* first, slot_type* last, |
||||
slot_type* result) { |
||||
for (slot_type *src = first, *dest = result; src != last; ++src, ++dest) |
||||
move(alloc, src, dest); |
||||
} |
||||
}; |
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
|
@ -0,0 +1,188 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/container/internal/container_memory.h" |
||||
|
||||
#include <cstdint> |
||||
#include <tuple> |
||||
#include <utility> |
||||
|
||||
#include "gmock/gmock.h" |
||||
#include "gtest/gtest.h" |
||||
#include "absl/strings/string_view.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
namespace { |
||||
|
||||
using ::testing::Pair; |
||||
|
||||
TEST(Memory, AlignmentLargerThanBase) { |
||||
std::allocator<int8_t> alloc; |
||||
void* mem = Allocate<2>(&alloc, 3); |
||||
EXPECT_EQ(0, reinterpret_cast<uintptr_t>(mem) % 2); |
||||
memcpy(mem, "abc", 3); |
||||
Deallocate<2>(&alloc, mem, 3); |
||||
} |
||||
|
||||
TEST(Memory, AlignmentSmallerThanBase) { |
||||
std::allocator<int64_t> alloc; |
||||
void* mem = Allocate<2>(&alloc, 3); |
||||
EXPECT_EQ(0, reinterpret_cast<uintptr_t>(mem) % 2); |
||||
memcpy(mem, "abc", 3); |
||||
Deallocate<2>(&alloc, mem, 3); |
||||
} |
||||
|
||||
class Fixture : public ::testing::Test { |
||||
using Alloc = std::allocator<std::string>; |
||||
|
||||
public: |
||||
Fixture() { ptr_ = std::allocator_traits<Alloc>::allocate(*alloc(), 1); } |
||||
~Fixture() override { |
||||
std::allocator_traits<Alloc>::destroy(*alloc(), ptr_); |
||||
std::allocator_traits<Alloc>::deallocate(*alloc(), ptr_, 1); |
||||
} |
||||
std::string* ptr() { return ptr_; } |
||||
Alloc* alloc() { return &alloc_; } |
||||
|
||||
private: |
||||
Alloc alloc_; |
||||
std::string* ptr_; |
||||
}; |
||||
|
||||
TEST_F(Fixture, ConstructNoArgs) { |
||||
ConstructFromTuple(alloc(), ptr(), std::forward_as_tuple()); |
||||
EXPECT_EQ(*ptr(), ""); |
||||
} |
||||
|
||||
TEST_F(Fixture, ConstructOneArg) { |
||||
ConstructFromTuple(alloc(), ptr(), std::forward_as_tuple("abcde")); |
||||
EXPECT_EQ(*ptr(), "abcde"); |
||||
} |
||||
|
||||
TEST_F(Fixture, ConstructTwoArg) { |
||||
ConstructFromTuple(alloc(), ptr(), std::forward_as_tuple(5, 'a')); |
||||
EXPECT_EQ(*ptr(), "aaaaa"); |
||||
} |
||||
|
||||
TEST(PairArgs, NoArgs) { |
||||
EXPECT_THAT(PairArgs(), |
||||
Pair(std::forward_as_tuple(), std::forward_as_tuple())); |
||||
} |
||||
|
||||
TEST(PairArgs, TwoArgs) { |
||||
EXPECT_EQ( |
||||
std::make_pair(std::forward_as_tuple(1), std::forward_as_tuple('A')), |
||||
PairArgs(1, 'A')); |
||||
} |
||||
|
||||
TEST(PairArgs, Pair) { |
||||
EXPECT_EQ( |
||||
std::make_pair(std::forward_as_tuple(1), std::forward_as_tuple('A')), |
||||
PairArgs(std::make_pair(1, 'A'))); |
||||
} |
||||
|
||||
TEST(PairArgs, Piecewise) { |
||||
EXPECT_EQ( |
||||
std::make_pair(std::forward_as_tuple(1), std::forward_as_tuple('A')), |
||||
PairArgs(std::piecewise_construct, std::forward_as_tuple(1), |
||||
std::forward_as_tuple('A'))); |
||||
} |
||||
|
||||
TEST(WithConstructed, Simple) { |
||||
EXPECT_EQ(1, WithConstructed<absl::string_view>( |
||||
std::make_tuple(std::string("a")), |
||||
[](absl::string_view str) { return str.size(); })); |
||||
} |
||||
|
||||
template <class F, class Arg> |
||||
decltype(DecomposeValue(std::declval<F>(), std::declval<Arg>())) |
||||
DecomposeValueImpl(int, F&& f, Arg&& arg) { |
||||
return DecomposeValue(std::forward<F>(f), std::forward<Arg>(arg)); |
||||
} |
||||
|
||||
template <class F, class Arg> |
||||
const char* DecomposeValueImpl(char, F&& f, Arg&& arg) { |
||||
return "not decomposable"; |
||||
} |
||||
|
||||
template <class F, class Arg> |
||||
decltype(DecomposeValueImpl(0, std::declval<F>(), std::declval<Arg>())) |
||||
TryDecomposeValue(F&& f, Arg&& arg) { |
||||
return DecomposeValueImpl(0, std::forward<F>(f), std::forward<Arg>(arg)); |
||||
} |
||||
|
||||
TEST(DecomposeValue, Decomposable) { |
||||
auto f = [](const int& x, int&& y) { |
||||
EXPECT_EQ(&x, &y); |
||||
EXPECT_EQ(42, x); |
||||
return 'A'; |
||||
}; |
||||
EXPECT_EQ('A', TryDecomposeValue(f, 42)); |
||||
} |
||||
|
||||
TEST(DecomposeValue, NotDecomposable) { |
||||
auto f = [](void*) { |
||||
ADD_FAILURE() << "Must not be called"; |
||||
return 'A'; |
||||
}; |
||||
EXPECT_STREQ("not decomposable", TryDecomposeValue(f, 42)); |
||||
} |
||||
|
||||
template <class F, class... Args> |
||||
decltype(DecomposePair(std::declval<F>(), std::declval<Args>()...)) |
||||
DecomposePairImpl(int, F&& f, Args&&... args) { |
||||
return DecomposePair(std::forward<F>(f), std::forward<Args>(args)...); |
||||
} |
||||
|
||||
template <class F, class... Args> |
||||
const char* DecomposePairImpl(char, F&& f, Args&&... args) { |
||||
return "not decomposable"; |
||||
} |
||||
|
||||
template <class F, class... Args> |
||||
decltype(DecomposePairImpl(0, std::declval<F>(), std::declval<Args>()...)) |
||||
TryDecomposePair(F&& f, Args&&... args) { |
||||
return DecomposePairImpl(0, std::forward<F>(f), std::forward<Args>(args)...); |
||||
} |
||||
|
||||
TEST(DecomposePair, Decomposable) { |
||||
auto f = [](const int& x, std::piecewise_construct_t, std::tuple<int&&> k, |
||||
std::tuple<double>&& v) { |
||||
EXPECT_EQ(&x, &std::get<0>(k)); |
||||
EXPECT_EQ(42, x); |
||||
EXPECT_EQ(0.5, std::get<0>(v)); |
||||
return 'A'; |
||||
}; |
||||
EXPECT_EQ('A', TryDecomposePair(f, 42, 0.5)); |
||||
EXPECT_EQ('A', TryDecomposePair(f, std::make_pair(42, 0.5))); |
||||
EXPECT_EQ('A', TryDecomposePair(f, std::piecewise_construct, |
||||
std::make_tuple(42), std::make_tuple(0.5))); |
||||
} |
||||
|
||||
TEST(DecomposePair, NotDecomposable) { |
||||
auto f = [](...) { |
||||
ADD_FAILURE() << "Must not be called"; |
||||
return 'A'; |
||||
}; |
||||
EXPECT_STREQ("not decomposable", |
||||
TryDecomposePair(f)); |
||||
EXPECT_STREQ("not decomposable", |
||||
TryDecomposePair(f, std::piecewise_construct, std::make_tuple(), |
||||
std::make_tuple(0.5))); |
||||
} |
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
@ -0,0 +1,148 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// Define the default Hash and Eq functions for SwissTable containers.
|
||||
//
|
||||
// std::hash<T> and std::equal_to<T> are not appropriate hash and equal
|
||||
// functions for SwissTable containers. There are two reasons for this.
|
||||
//
|
||||
// SwissTable containers are power of 2 sized containers:
|
||||
//
|
||||
// This means they use the lower bits of the hash value to find the slot for
|
||||
// each entry. The typical hash function for integral types is the identity.
|
||||
// This is a very weak hash function for SwissTable and any power of 2 sized
|
||||
// hashtable implementation which will lead to excessive collisions. For
|
||||
// SwissTable we use murmur3 style mixing to reduce collisions to a minimum.
|
||||
//
|
||||
// SwissTable containers support heterogeneous lookup:
|
||||
//
|
||||
// In order to make heterogeneous lookup work, hash and equal functions must be
|
||||
// polymorphic. At the same time they have to satisfy the same requirements the
|
||||
// C++ standard imposes on hash functions and equality operators. That is:
|
||||
//
|
||||
// if hash_default_eq<T>(a, b) returns true for any a and b of type T, then
|
||||
// hash_default_hash<T>(a) must equal hash_default_hash<T>(b)
|
||||
//
|
||||
// For SwissTable containers this requirement is relaxed to allow a and b of
|
||||
// any and possibly different types. Note that like the standard the hash and
|
||||
// equal functions are still bound to T. This is important because some type U
|
||||
// can be hashed by/tested for equality differently depending on T. A notable
|
||||
// example is `const char*`. `const char*` is treated as a c-style string when
|
||||
// the hash function is hash<string> but as a pointer when the hash function is
|
||||
// hash<void*>.
|
||||
//
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_HASH_FUNCTION_DEFAULTS_H_ |
||||
#define ABSL_CONTAINER_INTERNAL_HASH_FUNCTION_DEFAULTS_H_ |
||||
|
||||
#include <stdint.h> |
||||
#include <cstddef> |
||||
#include <memory> |
||||
#include <string> |
||||
#include <type_traits> |
||||
|
||||
#include "absl/base/config.h" |
||||
#include "absl/hash/hash.h" |
||||
#include "absl/strings/string_view.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
|
||||
// The hash of an object of type T is computed by using absl::Hash.
|
||||
template <class T, class E = void> |
||||
struct HashEq { |
||||
using Hash = absl::Hash<T>; |
||||
using Eq = std::equal_to<T>; |
||||
}; |
||||
|
||||
struct StringHash { |
||||
using is_transparent = void; |
||||
|
||||
size_t operator()(absl::string_view v) const { |
||||
return absl::Hash<absl::string_view>{}(v); |
||||
} |
||||
}; |
||||
|
||||
// Supports heterogeneous lookup for string-like elements.
|
||||
struct StringHashEq { |
||||
using Hash = StringHash; |
||||
struct Eq { |
||||
using is_transparent = void; |
||||
bool operator()(absl::string_view lhs, absl::string_view rhs) const { |
||||
return lhs == rhs; |
||||
} |
||||
}; |
||||
}; |
||||
|
||||
#if defined(HAS_GLOBAL_STRING) |
||||
template <> |
||||
struct HashEq<std::string> : StringHashEq {}; |
||||
#endif |
||||
template <> |
||||
struct HashEq<std::string> : StringHashEq {}; |
||||
template <> |
||||
struct HashEq<absl::string_view> : StringHashEq {}; |
||||
|
||||
// Supports heterogeneous lookup for pointers and smart pointers.
|
||||
template <class T> |
||||
struct HashEq<T*> { |
||||
struct Hash { |
||||
using is_transparent = void; |
||||
template <class U> |
||||
size_t operator()(const U& ptr) const { |
||||
return absl::Hash<const T*>{}(HashEq::ToPtr(ptr)); |
||||
} |
||||
}; |
||||
struct Eq { |
||||
using is_transparent = void; |
||||
template <class A, class B> |
||||
bool operator()(const A& a, const B& b) const { |
||||
return HashEq::ToPtr(a) == HashEq::ToPtr(b); |
||||
} |
||||
}; |
||||
|
||||
private: |
||||
static const T* ToPtr(const T* ptr) { return ptr; } |
||||
template <class U, class D> |
||||
static const T* ToPtr(const std::unique_ptr<U, D>& ptr) { |
||||
return ptr.get(); |
||||
} |
||||
template <class U> |
||||
static const T* ToPtr(const std::shared_ptr<U>& ptr) { |
||||
return ptr.get(); |
||||
} |
||||
}; |
||||
|
||||
template <class T, class D> |
||||
struct HashEq<std::unique_ptr<T, D>> : HashEq<T*> {}; |
||||
template <class T> |
||||
struct HashEq<std::shared_ptr<T>> : HashEq<T*> {}; |
||||
|
||||
// This header's visibility is restricted. If you need to access the default
|
||||
// hasher please use the container's ::hasher alias instead.
|
||||
//
|
||||
// Example: typename Hash = typename absl::flat_hash_map<K, V>::hasher
|
||||
template <class T> |
||||
using hash_default_hash = typename container_internal::HashEq<T>::Hash; |
||||
|
||||
// This header's visibility is restricted. If you need to access the default
|
||||
// key equal please use the container's ::key_equal alias instead.
|
||||
//
|
||||
// Example: typename Eq = typename absl::flat_hash_map<K, V, Hash>::key_equal
|
||||
template <class T> |
||||
using hash_default_eq = typename container_internal::HashEq<T>::Eq; |
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_CONTAINER_INTERNAL_HASH_FUNCTION_DEFAULTS_H_
|
@ -0,0 +1,299 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/container/internal/hash_function_defaults.h" |
||||
|
||||
#include <functional> |
||||
#include <type_traits> |
||||
#include <utility> |
||||
|
||||
#include "gtest/gtest.h" |
||||
#include "absl/strings/string_view.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
namespace { |
||||
|
||||
using ::testing::Types; |
||||
|
||||
TEST(Eq, Int32) { |
||||
hash_default_eq<int32_t> eq; |
||||
EXPECT_TRUE(eq(1, 1u)); |
||||
EXPECT_TRUE(eq(1, char{1})); |
||||
EXPECT_TRUE(eq(1, true)); |
||||
EXPECT_TRUE(eq(1, double{1.1})); |
||||
EXPECT_FALSE(eq(1, char{2})); |
||||
EXPECT_FALSE(eq(1, 2u)); |
||||
EXPECT_FALSE(eq(1, false)); |
||||
EXPECT_FALSE(eq(1, 2.)); |
||||
} |
||||
|
||||
TEST(Hash, Int32) { |
||||
hash_default_hash<int32_t> hash; |
||||
auto h = hash(1); |
||||
EXPECT_EQ(h, hash(1u)); |
||||
EXPECT_EQ(h, hash(char{1})); |
||||
EXPECT_EQ(h, hash(true)); |
||||
EXPECT_EQ(h, hash(double{1.1})); |
||||
EXPECT_NE(h, hash(2u)); |
||||
EXPECT_NE(h, hash(char{2})); |
||||
EXPECT_NE(h, hash(false)); |
||||
EXPECT_NE(h, hash(2.)); |
||||
} |
||||
|
||||
enum class MyEnum { A, B, C, D }; |
||||
|
||||
TEST(Eq, Enum) { |
||||
hash_default_eq<MyEnum> eq; |
||||
EXPECT_TRUE(eq(MyEnum::A, MyEnum::A)); |
||||
EXPECT_FALSE(eq(MyEnum::A, MyEnum::B)); |
||||
} |
||||
|
||||
TEST(Hash, Enum) { |
||||
hash_default_hash<MyEnum> hash; |
||||
|
||||
for (MyEnum e : {MyEnum::A, MyEnum::B, MyEnum::C}) { |
||||
auto h = hash(e); |
||||
EXPECT_EQ(h, hash_default_hash<int>{}(static_cast<int>(e))); |
||||
EXPECT_NE(h, hash(MyEnum::D)); |
||||
} |
||||
} |
||||
|
||||
using StringTypes = ::testing::Types<std::string, absl::string_view>; |
||||
|
||||
template <class T> |
||||
struct EqString : ::testing::Test { |
||||
hash_default_eq<T> key_eq; |
||||
}; |
||||
|
||||
TYPED_TEST_CASE(EqString, StringTypes); |
||||
|
||||
template <class T> |
||||
struct HashString : ::testing::Test { |
||||
hash_default_hash<T> hasher; |
||||
}; |
||||
|
||||
TYPED_TEST_CASE(HashString, StringTypes); |
||||
|
||||
TYPED_TEST(EqString, Works) { |
||||
auto eq = this->key_eq; |
||||
EXPECT_TRUE(eq("a", "a")); |
||||
EXPECT_TRUE(eq("a", absl::string_view("a"))); |
||||
EXPECT_TRUE(eq("a", std::string("a"))); |
||||
EXPECT_FALSE(eq("a", "b")); |
||||
EXPECT_FALSE(eq("a", absl::string_view("b"))); |
||||
EXPECT_FALSE(eq("a", std::string("b"))); |
||||
} |
||||
|
||||
TYPED_TEST(HashString, Works) { |
||||
auto hash = this->hasher; |
||||
auto h = hash("a"); |
||||
EXPECT_EQ(h, hash(absl::string_view("a"))); |
||||
EXPECT_EQ(h, hash(std::string("a"))); |
||||
EXPECT_NE(h, hash(absl::string_view("b"))); |
||||
EXPECT_NE(h, hash(std::string("b"))); |
||||
} |
||||
|
||||
struct NoDeleter { |
||||
template <class T> |
||||
void operator()(const T* ptr) const {} |
||||
}; |
||||
|
||||
using PointerTypes = |
||||
::testing::Types<const int*, int*, std::unique_ptr<const int>, |
||||
std::unique_ptr<const int, NoDeleter>, |
||||
std::unique_ptr<int>, std::unique_ptr<int, NoDeleter>, |
||||
std::shared_ptr<const int>, std::shared_ptr<int>>; |
||||
|
||||
template <class T> |
||||
struct EqPointer : ::testing::Test { |
||||
hash_default_eq<T> key_eq; |
||||
}; |
||||
|
||||
TYPED_TEST_CASE(EqPointer, PointerTypes); |
||||
|
||||
template <class T> |
||||
struct HashPointer : ::testing::Test { |
||||
hash_default_hash<T> hasher; |
||||
}; |
||||
|
||||
TYPED_TEST_CASE(HashPointer, PointerTypes); |
||||
|
||||
TYPED_TEST(EqPointer, Works) { |
||||
int dummy; |
||||
auto eq = this->key_eq; |
||||
auto sptr = std::make_shared<int>(); |
||||
std::shared_ptr<const int> csptr = sptr; |
||||
int* ptr = sptr.get(); |
||||
const int* cptr = ptr; |
||||
std::unique_ptr<int, NoDeleter> uptr(ptr); |
||||
std::unique_ptr<const int, NoDeleter> cuptr(ptr); |
||||
|
||||
EXPECT_TRUE(eq(ptr, cptr)); |
||||
EXPECT_TRUE(eq(ptr, sptr)); |
||||
EXPECT_TRUE(eq(ptr, uptr)); |
||||
EXPECT_TRUE(eq(ptr, csptr)); |
||||
EXPECT_TRUE(eq(ptr, cuptr)); |
||||
EXPECT_FALSE(eq(&dummy, cptr)); |
||||
EXPECT_FALSE(eq(&dummy, sptr)); |
||||
EXPECT_FALSE(eq(&dummy, uptr)); |
||||
EXPECT_FALSE(eq(&dummy, csptr)); |
||||
EXPECT_FALSE(eq(&dummy, cuptr)); |
||||
} |
||||
|
||||
TEST(Hash, DerivedAndBase) { |
||||
struct Base {}; |
||||
struct Derived : Base {}; |
||||
|
||||
hash_default_hash<Base*> hasher; |
||||
|
||||
Base base; |
||||
Derived derived; |
||||
EXPECT_NE(hasher(&base), hasher(&derived)); |
||||
EXPECT_EQ(hasher(static_cast<Base*>(&derived)), hasher(&derived)); |
||||
|
||||
auto dp = std::make_shared<Derived>(); |
||||
EXPECT_EQ(hasher(static_cast<Base*>(dp.get())), hasher(dp)); |
||||
} |
||||
|
||||
TEST(Hash, FunctionPointer) { |
||||
using Func = int (*)(); |
||||
hash_default_hash<Func> hasher; |
||||
hash_default_eq<Func> eq; |
||||
|
||||
Func p1 = [] { return 1; }, p2 = [] { return 2; }; |
||||
EXPECT_EQ(hasher(p1), hasher(p1)); |
||||
EXPECT_TRUE(eq(p1, p1)); |
||||
|
||||
EXPECT_NE(hasher(p1), hasher(p2)); |
||||
EXPECT_FALSE(eq(p1, p2)); |
||||
} |
||||
|
||||
TYPED_TEST(HashPointer, Works) { |
||||
int dummy; |
||||
auto hash = this->hasher; |
||||
auto sptr = std::make_shared<int>(); |
||||
std::shared_ptr<const int> csptr = sptr; |
||||
int* ptr = sptr.get(); |
||||
const int* cptr = ptr; |
||||
std::unique_ptr<int, NoDeleter> uptr(ptr); |
||||
std::unique_ptr<const int, NoDeleter> cuptr(ptr); |
||||
|
||||
EXPECT_EQ(hash(ptr), hash(cptr)); |
||||
EXPECT_EQ(hash(ptr), hash(sptr)); |
||||
EXPECT_EQ(hash(ptr), hash(uptr)); |
||||
EXPECT_EQ(hash(ptr), hash(csptr)); |
||||
EXPECT_EQ(hash(ptr), hash(cuptr)); |
||||
EXPECT_NE(hash(&dummy), hash(cptr)); |
||||
EXPECT_NE(hash(&dummy), hash(sptr)); |
||||
EXPECT_NE(hash(&dummy), hash(uptr)); |
||||
EXPECT_NE(hash(&dummy), hash(csptr)); |
||||
EXPECT_NE(hash(&dummy), hash(cuptr)); |
||||
} |
||||
|
||||
// Cartesian product of (string, std::string, absl::string_view)
|
||||
// with (string, std::string, absl::string_view, const char*).
|
||||
using StringTypesCartesianProduct = Types< |
||||
// clang-format off
|
||||
|
||||
std::pair<std::string, std::string>, |
||||
std::pair<std::string, absl::string_view>, |
||||
std::pair<std::string, const char*>, |
||||
|
||||
std::pair<absl::string_view, std::string>, |
||||
std::pair<absl::string_view, absl::string_view>, |
||||
std::pair<absl::string_view, const char*>>; |
||||
// clang-format on
|
||||
|
||||
constexpr char kFirstString[] = "abc123"; |
||||
constexpr char kSecondString[] = "ijk456"; |
||||
|
||||
template <typename T> |
||||
struct StringLikeTest : public ::testing::Test { |
||||
typename T::first_type a1{kFirstString}; |
||||
typename T::second_type b1{kFirstString}; |
||||
typename T::first_type a2{kSecondString}; |
||||
typename T::second_type b2{kSecondString}; |
||||
hash_default_eq<typename T::first_type> eq; |
||||
hash_default_hash<typename T::first_type> hash; |
||||
}; |
||||
|
||||
TYPED_TEST_CASE_P(StringLikeTest); |
||||
|
||||
TYPED_TEST_P(StringLikeTest, Eq) { |
||||
EXPECT_TRUE(this->eq(this->a1, this->b1)); |
||||
EXPECT_TRUE(this->eq(this->b1, this->a1)); |
||||
} |
||||
|
||||
TYPED_TEST_P(StringLikeTest, NotEq) { |
||||
EXPECT_FALSE(this->eq(this->a1, this->b2)); |
||||
EXPECT_FALSE(this->eq(this->b2, this->a1)); |
||||
} |
||||
|
||||
TYPED_TEST_P(StringLikeTest, HashEq) { |
||||
EXPECT_EQ(this->hash(this->a1), this->hash(this->b1)); |
||||
EXPECT_EQ(this->hash(this->a2), this->hash(this->b2)); |
||||
// It would be a poor hash function which collides on these strings.
|
||||
EXPECT_NE(this->hash(this->a1), this->hash(this->b2)); |
||||
} |
||||
|
||||
TYPED_TEST_CASE(StringLikeTest, StringTypesCartesianProduct); |
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
|
||||
enum Hash : size_t { |
||||
kStd = 0x2, // std::hash
|
||||
#ifdef _MSC_VER |
||||
kExtension = kStd, // In MSVC, std::hash == ::hash
|
||||
#else // _MSC_VER
|
||||
kExtension = 0x4, // ::hash (GCC extension)
|
||||
#endif // _MSC_VER
|
||||
}; |
||||
|
||||
// H is a bitmask of Hash enumerations.
|
||||
// Hashable<H> is hashable via all means specified in H.
|
||||
template <int H> |
||||
struct Hashable { |
||||
static constexpr bool HashableBy(Hash h) { return h & H; } |
||||
}; |
||||
|
||||
namespace std { |
||||
template <int H> |
||||
struct hash<Hashable<H>> { |
||||
template <class E = Hashable<H>, |
||||
class = typename std::enable_if<E::HashableBy(kStd)>::type> |
||||
size_t operator()(E) const { |
||||
return kStd; |
||||
} |
||||
}; |
||||
} // namespace std
|
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
namespace { |
||||
|
||||
template <class T> |
||||
size_t Hash(const T& v) { |
||||
return hash_default_hash<T>()(v); |
||||
} |
||||
|
||||
TEST(Delegate, HashDispatch) { |
||||
EXPECT_EQ(Hash(kStd), Hash(Hashable<kStd>())); |
||||
} |
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
@ -0,0 +1,72 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/container/internal/hash_generator_testing.h" |
||||
|
||||
#include <deque> |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
namespace hash_internal { |
||||
namespace { |
||||
|
||||
class RandomDeviceSeedSeq { |
||||
public: |
||||
using result_type = typename std::random_device::result_type; |
||||
|
||||
template <class Iterator> |
||||
void generate(Iterator start, Iterator end) { |
||||
while (start != end) { |
||||
*start = gen_(); |
||||
++start; |
||||
} |
||||
} |
||||
|
||||
private: |
||||
std::random_device gen_; |
||||
}; |
||||
|
||||
} // namespace
|
||||
|
||||
std::mt19937_64* GetThreadLocalRng() { |
||||
RandomDeviceSeedSeq seed_seq; |
||||
thread_local auto* rng = new std::mt19937_64(seed_seq); |
||||
return rng; |
||||
} |
||||
|
||||
std::string Generator<std::string>::operator()() const { |
||||
// NOLINTNEXTLINE(runtime/int)
|
||||
std::uniform_int_distribution<short> chars(0x20, 0x7E); |
||||
std::string res; |
||||
res.resize(32); |
||||
std::generate(res.begin(), res.end(), |
||||
[&]() { return chars(*GetThreadLocalRng()); }); |
||||
return res; |
||||
} |
||||
|
||||
absl::string_view Generator<absl::string_view>::operator()() const { |
||||
static auto* arena = new std::deque<std::string>(); |
||||
// NOLINTNEXTLINE(runtime/int)
|
||||
std::uniform_int_distribution<short> chars(0x20, 0x7E); |
||||
arena->emplace_back(); |
||||
auto& res = arena->back(); |
||||
res.resize(32); |
||||
std::generate(res.begin(), res.end(), |
||||
[&]() { return chars(*GetThreadLocalRng()); }); |
||||
return res; |
||||
} |
||||
|
||||
} // namespace hash_internal
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
@ -0,0 +1,150 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// Generates random values for testing. Specialized only for the few types we
|
||||
// care about.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_HASH_GENERATOR_TESTING_H_ |
||||
#define ABSL_CONTAINER_INTERNAL_HASH_GENERATOR_TESTING_H_ |
||||
|
||||
#include <stdint.h> |
||||
#include <algorithm> |
||||
#include <iosfwd> |
||||
#include <random> |
||||
#include <tuple> |
||||
#include <type_traits> |
||||
#include <utility> |
||||
|
||||
#include "absl/container/internal/hash_policy_testing.h" |
||||
#include "absl/meta/type_traits.h" |
||||
#include "absl/strings/string_view.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
namespace hash_internal { |
||||
namespace generator_internal { |
||||
|
||||
template <class Container, class = void> |
||||
struct IsMap : std::false_type {}; |
||||
|
||||
template <class Map> |
||||
struct IsMap<Map, absl::void_t<typename Map::mapped_type>> : std::true_type {}; |
||||
|
||||
} // namespace generator_internal
|
||||
|
||||
std::mt19937_64* GetThreadLocalRng(); |
||||
|
||||
enum Enum { |
||||
kEnumEmpty, |
||||
kEnumDeleted, |
||||
}; |
||||
|
||||
enum class EnumClass : uint64_t { |
||||
kEmpty, |
||||
kDeleted, |
||||
}; |
||||
|
||||
inline std::ostream& operator<<(std::ostream& o, const EnumClass& ec) { |
||||
return o << static_cast<uint64_t>(ec); |
||||
} |
||||
|
||||
template <class T, class E = void> |
||||
struct Generator; |
||||
|
||||
template <class T> |
||||
struct Generator<T, typename std::enable_if<std::is_integral<T>::value>::type> { |
||||
T operator()() const { |
||||
std::uniform_int_distribution<T> dist; |
||||
return dist(*GetThreadLocalRng()); |
||||
} |
||||
}; |
||||
|
||||
template <> |
||||
struct Generator<Enum> { |
||||
Enum operator()() const { |
||||
std::uniform_int_distribution<typename std::underlying_type<Enum>::type> |
||||
dist; |
||||
while (true) { |
||||
auto variate = dist(*GetThreadLocalRng()); |
||||
if (variate != kEnumEmpty && variate != kEnumDeleted) |
||||
return static_cast<Enum>(variate); |
||||
} |
||||
} |
||||
}; |
||||
|
||||
template <> |
||||
struct Generator<EnumClass> { |
||||
EnumClass operator()() const { |
||||
std::uniform_int_distribution< |
||||
typename std::underlying_type<EnumClass>::type> |
||||
dist; |
||||
while (true) { |
||||
EnumClass variate = static_cast<EnumClass>(dist(*GetThreadLocalRng())); |
||||
if (variate != EnumClass::kEmpty && variate != EnumClass::kDeleted) |
||||
return static_cast<EnumClass>(variate); |
||||
} |
||||
} |
||||
}; |
||||
|
||||
template <> |
||||
struct Generator<std::string> { |
||||
std::string operator()() const; |
||||
}; |
||||
|
||||
template <> |
||||
struct Generator<absl::string_view> { |
||||
absl::string_view operator()() const; |
||||
}; |
||||
|
||||
template <> |
||||
struct Generator<NonStandardLayout> { |
||||
NonStandardLayout operator()() const { |
||||
return NonStandardLayout(Generator<std::string>()()); |
||||
} |
||||
}; |
||||
|
||||
template <class K, class V> |
||||
struct Generator<std::pair<K, V>> { |
||||
std::pair<K, V> operator()() const { |
||||
return std::pair<K, V>(Generator<typename std::decay<K>::type>()(), |
||||
Generator<typename std::decay<V>::type>()()); |
||||
} |
||||
}; |
||||
|
||||
template <class... Ts> |
||||
struct Generator<std::tuple<Ts...>> { |
||||
std::tuple<Ts...> operator()() const { |
||||
return std::tuple<Ts...>(Generator<typename std::decay<Ts>::type>()()...); |
||||
} |
||||
}; |
||||
|
||||
template <class U> |
||||
struct Generator<U, absl::void_t<decltype(std::declval<U&>().key()), |
||||
decltype(std::declval<U&>().value())>> |
||||
: Generator<std::pair< |
||||
typename std::decay<decltype(std::declval<U&>().key())>::type, |
||||
typename std::decay<decltype(std::declval<U&>().value())>::type>> {}; |
||||
|
||||
template <class Container> |
||||
using GeneratedType = decltype( |
||||
std::declval<const Generator< |
||||
typename std::conditional<generator_internal::IsMap<Container>::value, |
||||
typename Container::value_type, |
||||
typename Container::key_type>::type>&>()()); |
||||
|
||||
} // namespace hash_internal
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_CONTAINER_INTERNAL_HASH_GENERATOR_TESTING_H_
|
@ -0,0 +1,178 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// Utilities to help tests verify that hash tables properly handle stateful
|
||||
// allocators and hash functions.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_HASH_POLICY_TESTING_H_ |
||||
#define ABSL_CONTAINER_INTERNAL_HASH_POLICY_TESTING_H_ |
||||
|
||||
#include <cstdlib> |
||||
#include <limits> |
||||
#include <memory> |
||||
#include <ostream> |
||||
#include <type_traits> |
||||
#include <utility> |
||||
#include <vector> |
||||
|
||||
#include "absl/hash/hash.h" |
||||
#include "absl/strings/string_view.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
namespace hash_testing_internal { |
||||
|
||||
template <class Derived> |
||||
struct WithId { |
||||
WithId() : id_(next_id<Derived>()) {} |
||||
WithId(const WithId& that) : id_(that.id_) {} |
||||
WithId(WithId&& that) : id_(that.id_) { that.id_ = 0; } |
||||
WithId& operator=(const WithId& that) { |
||||
id_ = that.id_; |
||||
return *this; |
||||
} |
||||
WithId& operator=(WithId&& that) { |
||||
id_ = that.id_; |
||||
that.id_ = 0; |
||||
return *this; |
||||
} |
||||
|
||||
size_t id() const { return id_; } |
||||
|
||||
friend bool operator==(const WithId& a, const WithId& b) { |
||||
return a.id_ == b.id_; |
||||
} |
||||
friend bool operator!=(const WithId& a, const WithId& b) { return !(a == b); } |
||||
|
||||
protected: |
||||
explicit WithId(size_t id) : id_(id) {} |
||||
|
||||
private: |
||||
size_t id_; |
||||
|
||||
template <class T> |
||||
static size_t next_id() { |
||||
// 0 is reserved for moved from state.
|
||||
static size_t gId = 1; |
||||
return gId++; |
||||
} |
||||
}; |
||||
|
||||
} // namespace hash_testing_internal
|
||||
|
||||
struct NonStandardLayout { |
||||
NonStandardLayout() {} |
||||
explicit NonStandardLayout(std::string s) : value(std::move(s)) {} |
||||
virtual ~NonStandardLayout() {} |
||||
|
||||
friend bool operator==(const NonStandardLayout& a, |
||||
const NonStandardLayout& b) { |
||||
return a.value == b.value; |
||||
} |
||||
friend bool operator!=(const NonStandardLayout& a, |
||||
const NonStandardLayout& b) { |
||||
return a.value != b.value; |
||||
} |
||||
|
||||
template <typename H> |
||||
friend H AbslHashValue(H h, const NonStandardLayout& v) { |
||||
return H::combine(std::move(h), v.value); |
||||
} |
||||
|
||||
std::string value; |
||||
}; |
||||
|
||||
struct StatefulTestingHash |
||||
: absl::container_internal::hash_testing_internal::WithId< |
||||
StatefulTestingHash> { |
||||
template <class T> |
||||
size_t operator()(const T& t) const { |
||||
return absl::Hash<T>{}(t); |
||||
} |
||||
}; |
||||
|
||||
struct StatefulTestingEqual |
||||
: absl::container_internal::hash_testing_internal::WithId< |
||||
StatefulTestingEqual> { |
||||
template <class T, class U> |
||||
bool operator()(const T& t, const U& u) const { |
||||
return t == u; |
||||
} |
||||
}; |
||||
|
||||
// It is expected that Alloc() == Alloc() for all allocators so we cannot use
|
||||
// WithId base. We need to explicitly assign ids.
|
||||
template <class T = int> |
||||
struct Alloc : std::allocator<T> { |
||||
using propagate_on_container_swap = std::true_type; |
||||
|
||||
// Using old paradigm for this to ensure compatibility.
|
||||
explicit Alloc(size_t id = 0) : id_(id) {} |
||||
|
||||
Alloc(const Alloc&) = default; |
||||
Alloc& operator=(const Alloc&) = default; |
||||
|
||||
template <class U> |
||||
Alloc(const Alloc<U>& that) : std::allocator<T>(that), id_(that.id()) {} |
||||
|
||||
template <class U> |
||||
struct rebind { |
||||
using other = Alloc<U>; |
||||
}; |
||||
|
||||
size_t id() const { return id_; } |
||||
|
||||
friend bool operator==(const Alloc& a, const Alloc& b) { |
||||
return a.id_ == b.id_; |
||||
} |
||||
friend bool operator!=(const Alloc& a, const Alloc& b) { return !(a == b); } |
||||
|
||||
private: |
||||
size_t id_ = std::numeric_limits<size_t>::max(); |
||||
}; |
||||
|
||||
template <class Map> |
||||
auto items(const Map& m) -> std::vector< |
||||
std::pair<typename Map::key_type, typename Map::mapped_type>> { |
||||
using std::get; |
||||
std::vector<std::pair<typename Map::key_type, typename Map::mapped_type>> res; |
||||
res.reserve(m.size()); |
||||
for (const auto& v : m) res.emplace_back(get<0>(v), get<1>(v)); |
||||
return res; |
||||
} |
||||
|
||||
template <class Set> |
||||
auto keys(const Set& s) |
||||
-> std::vector<typename std::decay<typename Set::key_type>::type> { |
||||
std::vector<typename std::decay<typename Set::key_type>::type> res; |
||||
res.reserve(s.size()); |
||||
for (const auto& v : s) res.emplace_back(v); |
||||
return res; |
||||
} |
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
|
||||
// ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS is false for glibcxx versions
|
||||
// where the unordered containers are missing certain constructors that
|
||||
// take allocator arguments. This test is defined ad-hoc for the platforms
|
||||
// we care about (notably Crosstool 17) because libstdcxx's useless
|
||||
// versioning scheme precludes a more principled solution.
|
||||
#if defined(__GLIBCXX__) && __GLIBCXX__ <= 20140425 |
||||
#define ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS 0 |
||||
#else |
||||
#define ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS 1 |
||||
#endif |
||||
|
||||
#endif // ABSL_CONTAINER_INTERNAL_HASH_POLICY_TESTING_H_
|
@ -0,0 +1,43 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/container/internal/hash_policy_testing.h" |
||||
|
||||
#include "gtest/gtest.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
namespace { |
||||
|
||||
TEST(_, Hash) { |
||||
StatefulTestingHash h1; |
||||
EXPECT_EQ(1, h1.id()); |
||||
StatefulTestingHash h2; |
||||
EXPECT_EQ(2, h2.id()); |
||||
StatefulTestingHash h1c(h1); |
||||
EXPECT_EQ(1, h1c.id()); |
||||
StatefulTestingHash h2m(std::move(h2)); |
||||
EXPECT_EQ(2, h2m.id()); |
||||
EXPECT_EQ(0, h2.id()); |
||||
StatefulTestingHash h3; |
||||
EXPECT_EQ(3, h3.id()); |
||||
h3 = StatefulTestingHash(); |
||||
EXPECT_EQ(4, h3.id()); |
||||
h3 = std::move(h1); |
||||
EXPECT_EQ(1, h3.id()); |
||||
} |
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
@ -0,0 +1,189 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_HASH_POLICY_TRAITS_H_ |
||||
#define ABSL_CONTAINER_INTERNAL_HASH_POLICY_TRAITS_H_ |
||||
|
||||
#include <cstddef> |
||||
#include <memory> |
||||
#include <type_traits> |
||||
#include <utility> |
||||
|
||||
#include "absl/meta/type_traits.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
|
||||
// Defines how slots are initialized/destroyed/moved.
|
||||
template <class Policy, class = void> |
||||
struct hash_policy_traits { |
||||
private: |
||||
struct ReturnKey { |
||||
// We return `Key` here.
|
||||
// When Key=T&, we forward the lvalue reference.
|
||||
// When Key=T, we return by value to avoid a dangling reference.
|
||||
// eg, for string_hash_map.
|
||||
template <class Key, class... Args> |
||||
Key operator()(Key&& k, const Args&...) const { |
||||
return std::forward<Key>(k); |
||||
} |
||||
}; |
||||
|
||||
template <class P = Policy, class = void> |
||||
struct ConstantIteratorsImpl : std::false_type {}; |
||||
|
||||
template <class P> |
||||
struct ConstantIteratorsImpl<P, absl::void_t<typename P::constant_iterators>> |
||||
: P::constant_iterators {}; |
||||
|
||||
public: |
||||
// The actual object stored in the hash table.
|
||||
using slot_type = typename Policy::slot_type; |
||||
|
||||
// The type of the keys stored in the hashtable.
|
||||
using key_type = typename Policy::key_type; |
||||
|
||||
// The argument type for insertions into the hashtable. This is different
|
||||
// from value_type for increased performance. See initializer_list constructor
|
||||
// and insert() member functions for more details.
|
||||
using init_type = typename Policy::init_type; |
||||
|
||||
using reference = decltype(Policy::element(std::declval<slot_type*>())); |
||||
using pointer = typename std::remove_reference<reference>::type*; |
||||
using value_type = typename std::remove_reference<reference>::type; |
||||
|
||||
// Policies can set this variable to tell raw_hash_set that all iterators
|
||||
// should be constant, even `iterator`. This is useful for set-like
|
||||
// containers.
|
||||
// Defaults to false if not provided by the policy.
|
||||
using constant_iterators = ConstantIteratorsImpl<>; |
||||
|
||||
// PRECONDITION: `slot` is UNINITIALIZED
|
||||
// POSTCONDITION: `slot` is INITIALIZED
|
||||
template <class Alloc, class... Args> |
||||
static void construct(Alloc* alloc, slot_type* slot, Args&&... args) { |
||||
Policy::construct(alloc, slot, std::forward<Args>(args)...); |
||||
} |
||||
|
||||
// PRECONDITION: `slot` is INITIALIZED
|
||||
// POSTCONDITION: `slot` is UNINITIALIZED
|
||||
template <class Alloc> |
||||
static void destroy(Alloc* alloc, slot_type* slot) { |
||||
Policy::destroy(alloc, slot); |
||||
} |
||||
|
||||
// Transfers the `old_slot` to `new_slot`. Any memory allocated by the
|
||||
// allocator inside `old_slot` to `new_slot` can be transfered.
|
||||
//
|
||||
// OPTIONAL: defaults to:
|
||||
//
|
||||
// clone(new_slot, std::move(*old_slot));
|
||||
// destroy(old_slot);
|
||||
//
|
||||
// PRECONDITION: `new_slot` is UNINITIALIZED and `old_slot` is INITIALIZED
|
||||
// POSTCONDITION: `new_slot` is INITIALIZED and `old_slot` is
|
||||
// UNINITIALIZED
|
||||
template <class Alloc> |
||||
static void transfer(Alloc* alloc, slot_type* new_slot, slot_type* old_slot) { |
||||
transfer_impl(alloc, new_slot, old_slot, 0); |
||||
} |
||||
|
||||
// PRECONDITION: `slot` is INITIALIZED
|
||||
// POSTCONDITION: `slot` is INITIALIZED
|
||||
template <class P = Policy> |
||||
static auto element(slot_type* slot) -> decltype(P::element(slot)) { |
||||
return P::element(slot); |
||||
} |
||||
|
||||
// Returns the amount of memory owned by `slot`, exclusive of `sizeof(*slot)`.
|
||||
//
|
||||
// If `slot` is nullptr, returns the constant amount of memory owned by any
|
||||
// full slot or -1 if slots own variable amounts of memory.
|
||||
//
|
||||
// PRECONDITION: `slot` is INITIALIZED or nullptr
|
||||
template <class P = Policy> |
||||
static size_t space_used(const slot_type* slot) { |
||||
return P::space_used(slot); |
||||
} |
||||
|
||||
// Provides generalized access to the key for elements, both for elements in
|
||||
// the table and for elements that have not yet been inserted (or even
|
||||
// constructed). We would like an API that allows us to say: `key(args...)`
|
||||
// but we cannot do that for all cases, so we use this more general API that
|
||||
// can be used for many things, including the following:
|
||||
//
|
||||
// - Given an element in a table, get its key.
|
||||
// - Given an element initializer, get its key.
|
||||
// - Given `emplace()` arguments, get the element key.
|
||||
//
|
||||
// Implementations of this must adhere to a very strict technical
|
||||
// specification around aliasing and consuming arguments:
|
||||
//
|
||||
// Let `value_type` be the result type of `element()` without ref- and
|
||||
// cv-qualifiers. The first argument is a functor, the rest are constructor
|
||||
// arguments for `value_type`. Returns `std::forward<F>(f)(k, xs...)`, where
|
||||
// `k` is the element key, and `xs...` are the new constructor arguments for
|
||||
// `value_type`. It's allowed for `k` to alias `xs...`, and for both to alias
|
||||
// `ts...`. The key won't be touched once `xs...` are used to construct an
|
||||
// element; `ts...` won't be touched at all, which allows `apply()` to consume
|
||||
// any rvalues among them.
|
||||
//
|
||||
// If `value_type` is constructible from `Ts&&...`, `Policy::apply()` must not
|
||||
// trigger a hard compile error unless it originates from `f`. In other words,
|
||||
// `Policy::apply()` must be SFINAE-friendly. If `value_type` is not
|
||||
// constructible from `Ts&&...`, either SFINAE or a hard compile error is OK.
|
||||
//
|
||||
// If `Ts...` is `[cv] value_type[&]` or `[cv] init_type[&]`,
|
||||
// `Policy::apply()` must work. A compile error is not allowed, SFINAE or not.
|
||||
template <class F, class... Ts, class P = Policy> |
||||
static auto apply(F&& f, Ts&&... ts) |
||||
-> decltype(P::apply(std::forward<F>(f), std::forward<Ts>(ts)...)) { |
||||
return P::apply(std::forward<F>(f), std::forward<Ts>(ts)...); |
||||
} |
||||
|
||||
// Returns the "key" portion of the slot.
|
||||
// Used for node handle manipulation.
|
||||
template <class P = Policy> |
||||
static auto key(slot_type* slot) |
||||
-> decltype(P::apply(ReturnKey(), element(slot))) { |
||||
return P::apply(ReturnKey(), element(slot)); |
||||
} |
||||
|
||||
// Returns the "value" (as opposed to the "key") portion of the element. Used
|
||||
// by maps to implement `operator[]`, `at()` and `insert_or_assign()`.
|
||||
template <class T, class P = Policy> |
||||
static auto value(T* elem) -> decltype(P::value(elem)) { |
||||
return P::value(elem); |
||||
} |
||||
|
||||
private: |
||||
// Use auto -> decltype as an enabler.
|
||||
template <class Alloc, class P = Policy> |
||||
static auto transfer_impl(Alloc* alloc, slot_type* new_slot, |
||||
slot_type* old_slot, int) |
||||
-> decltype((void)P::transfer(alloc, new_slot, old_slot)) { |
||||
P::transfer(alloc, new_slot, old_slot); |
||||
} |
||||
template <class Alloc> |
||||
static void transfer_impl(Alloc* alloc, slot_type* new_slot, |
||||
slot_type* old_slot, char) { |
||||
construct(alloc, new_slot, std::move(element(old_slot))); |
||||
destroy(alloc, old_slot); |
||||
} |
||||
}; |
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_CONTAINER_INTERNAL_HASH_POLICY_TRAITS_H_
|
@ -0,0 +1,142 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/container/internal/hash_policy_traits.h" |
||||
|
||||
#include <functional> |
||||
#include <memory> |
||||
#include <new> |
||||
|
||||
#include "gmock/gmock.h" |
||||
#include "gtest/gtest.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
namespace { |
||||
|
||||
using ::testing::MockFunction; |
||||
using ::testing::Return; |
||||
using ::testing::ReturnRef; |
||||
|
||||
using Alloc = std::allocator<int>; |
||||
using Slot = int; |
||||
|
||||
struct PolicyWithoutOptionalOps { |
||||
using slot_type = Slot; |
||||
using key_type = Slot; |
||||
using init_type = Slot; |
||||
|
||||
static std::function<void(void*, Slot*, Slot)> construct; |
||||
static std::function<void(void*, Slot*)> destroy; |
||||
|
||||
static std::function<Slot&(Slot*)> element; |
||||
static int apply(int v) { return apply_impl(v); } |
||||
static std::function<int(int)> apply_impl; |
||||
static std::function<Slot&(Slot*)> value; |
||||
}; |
||||
|
||||
std::function<void(void*, Slot*, Slot)> PolicyWithoutOptionalOps::construct; |
||||
std::function<void(void*, Slot*)> PolicyWithoutOptionalOps::destroy; |
||||
|
||||
std::function<Slot&(Slot*)> PolicyWithoutOptionalOps::element; |
||||
std::function<int(int)> PolicyWithoutOptionalOps::apply_impl; |
||||
std::function<Slot&(Slot*)> PolicyWithoutOptionalOps::value; |
||||
|
||||
struct PolicyWithOptionalOps : PolicyWithoutOptionalOps { |
||||
static std::function<void(void*, Slot*, Slot*)> transfer; |
||||
}; |
||||
|
||||
std::function<void(void*, Slot*, Slot*)> PolicyWithOptionalOps::transfer; |
||||
|
||||
struct Test : ::testing::Test { |
||||
Test() { |
||||
PolicyWithoutOptionalOps::construct = [&](void* a1, Slot* a2, Slot a3) { |
||||
construct.Call(a1, a2, std::move(a3)); |
||||
}; |
||||
PolicyWithoutOptionalOps::destroy = [&](void* a1, Slot* a2) { |
||||
destroy.Call(a1, a2); |
||||
}; |
||||
|
||||
PolicyWithoutOptionalOps::element = [&](Slot* a1) -> Slot& { |
||||
return element.Call(a1); |
||||
}; |
||||
PolicyWithoutOptionalOps::apply_impl = [&](int a1) -> int { |
||||
return apply.Call(a1); |
||||
}; |
||||
PolicyWithoutOptionalOps::value = [&](Slot* a1) -> Slot& { |
||||
return value.Call(a1); |
||||
}; |
||||
|
||||
PolicyWithOptionalOps::transfer = [&](void* a1, Slot* a2, Slot* a3) { |
||||
return transfer.Call(a1, a2, a3); |
||||
}; |
||||
} |
||||
|
||||
std::allocator<int> alloc; |
||||
int a = 53; |
||||
|
||||
MockFunction<void(void*, Slot*, Slot)> construct; |
||||
MockFunction<void(void*, Slot*)> destroy; |
||||
|
||||
MockFunction<Slot&(Slot*)> element; |
||||
MockFunction<int(int)> apply; |
||||
MockFunction<Slot&(Slot*)> value; |
||||
|
||||
MockFunction<void(void*, Slot*, Slot*)> transfer; |
||||
}; |
||||
|
||||
TEST_F(Test, construct) { |
||||
EXPECT_CALL(construct, Call(&alloc, &a, 53)); |
||||
hash_policy_traits<PolicyWithoutOptionalOps>::construct(&alloc, &a, 53); |
||||
} |
||||
|
||||
TEST_F(Test, destroy) { |
||||
EXPECT_CALL(destroy, Call(&alloc, &a)); |
||||
hash_policy_traits<PolicyWithoutOptionalOps>::destroy(&alloc, &a); |
||||
} |
||||
|
||||
TEST_F(Test, element) { |
||||
int b = 0; |
||||
EXPECT_CALL(element, Call(&a)).WillOnce(ReturnRef(b)); |
||||
EXPECT_EQ(&b, &hash_policy_traits<PolicyWithoutOptionalOps>::element(&a)); |
||||
} |
||||
|
||||
TEST_F(Test, apply) { |
||||
EXPECT_CALL(apply, Call(42)).WillOnce(Return(1337)); |
||||
EXPECT_EQ(1337, (hash_policy_traits<PolicyWithoutOptionalOps>::apply(42))); |
||||
} |
||||
|
||||
TEST_F(Test, value) { |
||||
int b = 0; |
||||
EXPECT_CALL(value, Call(&a)).WillOnce(ReturnRef(b)); |
||||
EXPECT_EQ(&b, &hash_policy_traits<PolicyWithoutOptionalOps>::value(&a)); |
||||
} |
||||
|
||||
TEST_F(Test, without_transfer) { |
||||
int b = 42; |
||||
EXPECT_CALL(element, Call(&b)).WillOnce(::testing::ReturnRef(b)); |
||||
EXPECT_CALL(construct, Call(&alloc, &a, b)); |
||||
EXPECT_CALL(destroy, Call(&alloc, &b)); |
||||
hash_policy_traits<PolicyWithoutOptionalOps>::transfer(&alloc, &a, &b); |
||||
} |
||||
|
||||
TEST_F(Test, with_transfer) { |
||||
int b = 42; |
||||
EXPECT_CALL(transfer, Call(&alloc, &a, &b)); |
||||
hash_policy_traits<PolicyWithOptionalOps>::transfer(&alloc, &a, &b); |
||||
} |
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
@ -0,0 +1,108 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// This library provides APIs to debug the probing behavior of hash tables.
|
||||
//
|
||||
// In general, the probing behavior is a black box for users and only the
|
||||
// side effects can be measured in the form of performance differences.
|
||||
// These APIs give a glimpse on the actual behavior of the probing algorithms in
|
||||
// these hashtables given a specified hash function and a set of elements.
|
||||
//
|
||||
// The probe count distribution can be used to assess the quality of the hash
|
||||
// function for that particular hash table. Note that a hash function that
|
||||
// performs well in one hash table implementation does not necessarily performs
|
||||
// well in a different one.
|
||||
//
|
||||
// This library supports std::unordered_{set,map}, dense_hash_{set,map} and
|
||||
// absl::{flat,node,string}_hash_{set,map}.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_H_ |
||||
#define ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_H_ |
||||
|
||||
#include <cstddef> |
||||
#include <algorithm> |
||||
#include <type_traits> |
||||
#include <vector> |
||||
|
||||
#include "absl/container/internal/hashtable_debug_hooks.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
|
||||
// Returns the number of probes required to lookup `key`. Returns 0 for a
|
||||
// search with no collisions. Higher values mean more hash collisions occurred;
|
||||
// however, the exact meaning of this number varies according to the container
|
||||
// type.
|
||||
template <typename C> |
||||
size_t GetHashtableDebugNumProbes( |
||||
const C& c, const typename C::key_type& key) { |
||||
return absl::container_internal::hashtable_debug_internal:: |
||||
HashtableDebugAccess<C>::GetNumProbes(c, key); |
||||
} |
||||
|
||||
// Gets a histogram of the number of probes for each elements in the container.
|
||||
// The sum of all the values in the vector is equal to container.size().
|
||||
template <typename C> |
||||
std::vector<size_t> GetHashtableDebugNumProbesHistogram(const C& container) { |
||||
std::vector<size_t> v; |
||||
for (auto it = container.begin(); it != container.end(); ++it) { |
||||
size_t num_probes = GetHashtableDebugNumProbes( |
||||
container, |
||||
absl::container_internal::hashtable_debug_internal::GetKey<C>(*it, 0)); |
||||
v.resize(std::max(v.size(), num_probes + 1)); |
||||
v[num_probes]++; |
||||
} |
||||
return v; |
||||
} |
||||
|
||||
struct HashtableDebugProbeSummary { |
||||
size_t total_elements; |
||||
size_t total_num_probes; |
||||
double mean; |
||||
}; |
||||
|
||||
// Gets a summary of the probe count distribution for the elements in the
|
||||
// container.
|
||||
template <typename C> |
||||
HashtableDebugProbeSummary GetHashtableDebugProbeSummary(const C& container) { |
||||
auto probes = GetHashtableDebugNumProbesHistogram(container); |
||||
HashtableDebugProbeSummary summary = {}; |
||||
for (size_t i = 0; i < probes.size(); ++i) { |
||||
summary.total_elements += probes[i]; |
||||
summary.total_num_probes += probes[i] * i; |
||||
} |
||||
summary.mean = 1.0 * summary.total_num_probes / summary.total_elements; |
||||
return summary; |
||||
} |
||||
|
||||
// Returns the number of bytes requested from the allocator by the container
|
||||
// and not freed.
|
||||
template <typename C> |
||||
size_t AllocatedByteSize(const C& c) { |
||||
return absl::container_internal::hashtable_debug_internal:: |
||||
HashtableDebugAccess<C>::AllocatedByteSize(c); |
||||
} |
||||
|
||||
// Returns a tight lower bound for AllocatedByteSize(c) where `c` is of type `C`
|
||||
// and `c.size()` is equal to `num_elements`.
|
||||
template <typename C> |
||||
size_t LowerBoundAllocatedByteSize(size_t num_elements) { |
||||
return absl::container_internal::hashtable_debug_internal:: |
||||
HashtableDebugAccess<C>::LowerBoundAllocatedByteSize(num_elements); |
||||
} |
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_H_
|
@ -0,0 +1,81 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// Provides the internal API for hashtable_debug.h.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_HOOKS_H_ |
||||
#define ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_HOOKS_H_ |
||||
|
||||
#include <cstddef> |
||||
|
||||
#include <algorithm> |
||||
#include <type_traits> |
||||
#include <vector> |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
namespace hashtable_debug_internal { |
||||
|
||||
// If it is a map, call get<0>().
|
||||
using std::get; |
||||
template <typename T, typename = typename T::mapped_type> |
||||
auto GetKey(const typename T::value_type& pair, int) -> decltype(get<0>(pair)) { |
||||
return get<0>(pair); |
||||
} |
||||
|
||||
// If it is not a map, return the value directly.
|
||||
template <typename T> |
||||
const typename T::key_type& GetKey(const typename T::key_type& key, char) { |
||||
return key; |
||||
} |
||||
|
||||
// Containers should specialize this to provide debug information for that
|
||||
// container.
|
||||
template <class Container, typename Enabler = void> |
||||
struct HashtableDebugAccess { |
||||
// Returns the number of probes required to find `key` in `c`. The "number of
|
||||
// probes" is a concept that can vary by container. Implementations should
|
||||
// return 0 when `key` was found in the minimum number of operations and
|
||||
// should increment the result for each non-trivial operation required to find
|
||||
// `key`.
|
||||
//
|
||||
// The default implementation uses the bucket api from the standard and thus
|
||||
// works for `std::unordered_*` containers.
|
||||
static size_t GetNumProbes(const Container& c, |
||||
const typename Container::key_type& key) { |
||||
if (!c.bucket_count()) return {}; |
||||
size_t num_probes = 0; |
||||
size_t bucket = c.bucket(key); |
||||
for (auto it = c.begin(bucket), e = c.end(bucket);; ++it, ++num_probes) { |
||||
if (it == e) return num_probes; |
||||
if (c.key_eq()(key, GetKey<Container>(*it, 0))) return num_probes; |
||||
} |
||||
} |
||||
|
||||
// Returns the number of bytes requested from the allocator by the container
|
||||
// and not freed.
|
||||
//
|
||||
// static size_t AllocatedByteSize(const Container& c);
|
||||
|
||||
// Returns a tight lower bound for AllocatedByteSize(c) where `c` is of type
|
||||
// `Container` and `c.size()` is equal to `num_elements`.
|
||||
//
|
||||
// static size_t LowerBoundAllocatedByteSize(size_t num_elements);
|
||||
}; |
||||
|
||||
} // namespace hashtable_debug_internal
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_HOOKS_H_
|
@ -0,0 +1,732 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// MOTIVATION AND TUTORIAL
|
||||
//
|
||||
// If you want to put in a single heap allocation N doubles followed by M ints,
|
||||
// it's easy if N and M are known at compile time.
|
||||
//
|
||||
// struct S {
|
||||
// double a[N];
|
||||
// int b[M];
|
||||
// };
|
||||
//
|
||||
// S* p = new S;
|
||||
//
|
||||
// But what if N and M are known only in run time? Class template Layout to the
|
||||
// rescue! It's a portable generalization of the technique known as struct hack.
|
||||
//
|
||||
// // This object will tell us everything we need to know about the memory
|
||||
// // layout of double[N] followed by int[M]. It's structurally identical to
|
||||
// // size_t[2] that stores N and M. It's very cheap to create.
|
||||
// const Layout<double, int> layout(N, M);
|
||||
//
|
||||
// // Allocate enough memory for both arrays. `AllocSize()` tells us how much
|
||||
// // memory is needed. We are free to use any allocation function we want as
|
||||
// // long as it returns aligned memory.
|
||||
// std::unique_ptr<unsigned char[]> p(new unsigned char[layout.AllocSize()]);
|
||||
//
|
||||
// // Obtain the pointer to the array of doubles.
|
||||
// // Equivalent to `reinterpret_cast<double*>(p.get())`.
|
||||
// //
|
||||
// // We could have written layout.Pointer<0>(p) instead. If all the types are
|
||||
// // unique you can use either form, but if some types are repeated you must
|
||||
// // use the index form.
|
||||
// double* a = layout.Pointer<double>(p.get());
|
||||
//
|
||||
// // Obtain the pointer to the array of ints.
|
||||
// // Equivalent to `reinterpret_cast<int*>(p.get() + N * 8)`.
|
||||
// int* b = layout.Pointer<int>(p);
|
||||
//
|
||||
// If we are unable to specify sizes of all fields, we can pass as many sizes as
|
||||
// we can to `Partial()`. In return, it'll allow us to access the fields whose
|
||||
// locations and sizes can be computed from the provided information.
|
||||
// `Partial()` comes in handy when the array sizes are embedded into the
|
||||
// allocation.
|
||||
//
|
||||
// // size_t[1] containing N, size_t[1] containing M, double[N], int[M].
|
||||
// using L = Layout<size_t, size_t, double, int>;
|
||||
//
|
||||
// unsigned char* Allocate(size_t n, size_t m) {
|
||||
// const L layout(1, 1, n, m);
|
||||
// unsigned char* p = new unsigned char[layout.AllocSize()];
|
||||
// *layout.Pointer<0>(p) = n;
|
||||
// *layout.Pointer<1>(p) = m;
|
||||
// return p;
|
||||
// }
|
||||
//
|
||||
// void Use(unsigned char* p) {
|
||||
// // First, extract N and M.
|
||||
// // Specify that the first array has only one element. Using `prefix` we
|
||||
// // can access the first two arrays but not more.
|
||||
// constexpr auto prefix = L::Partial(1);
|
||||
// size_t n = *prefix.Pointer<0>(p);
|
||||
// size_t m = *prefix.Pointer<1>(p);
|
||||
//
|
||||
// // Now we can get pointers to the payload.
|
||||
// const L layout(1, 1, n, m);
|
||||
// double* a = layout.Pointer<double>(p);
|
||||
// int* b = layout.Pointer<int>(p);
|
||||
// }
|
||||
//
|
||||
// The layout we used above combines fixed-size with dynamically-sized fields.
|
||||
// This is quite common. Layout is optimized for this use case and generates
|
||||
// optimal code. All computations that can be performed at compile time are
|
||||
// indeed performed at compile time.
|
||||
//
|
||||
// Efficiency tip: The order of fields matters. In `Layout<T1, ..., TN>` try to
|
||||
// ensure that `alignof(T1) >= ... >= alignof(TN)`. This way you'll have no
|
||||
// padding in between arrays.
|
||||
//
|
||||
// You can manually override the alignment of an array by wrapping the type in
|
||||
// `Aligned<T, N>`. `Layout<..., Aligned<T, N>, ...>` has exactly the same API
|
||||
// and behavior as `Layout<..., T, ...>` except that the first element of the
|
||||
// array of `T` is aligned to `N` (the rest of the elements follow without
|
||||
// padding). `N` cannot be less than `alignof(T)`.
|
||||
//
|
||||
// `AllocSize()` and `Pointer()` are the most basic methods for dealing with
|
||||
// memory layouts. Check out the reference or code below to discover more.
|
||||
//
|
||||
// EXAMPLE
|
||||
//
|
||||
// // Immutable move-only string with sizeof equal to sizeof(void*). The
|
||||
// // string size and the characters are kept in the same heap allocation.
|
||||
// class CompactString {
|
||||
// public:
|
||||
// CompactString(const char* s = "") {
|
||||
// const size_t size = strlen(s);
|
||||
// // size_t[1] followed by char[size + 1].
|
||||
// const L layout(1, size + 1);
|
||||
// p_.reset(new unsigned char[layout.AllocSize()]);
|
||||
// // If running under ASAN, mark the padding bytes, if any, to catch
|
||||
// // memory errors.
|
||||
// layout.PoisonPadding(p_.get());
|
||||
// // Store the size in the allocation.
|
||||
// *layout.Pointer<size_t>(p_.get()) = size;
|
||||
// // Store the characters in the allocation.
|
||||
// memcpy(layout.Pointer<char>(p_.get()), s, size + 1);
|
||||
// }
|
||||
//
|
||||
// size_t size() const {
|
||||
// // Equivalent to reinterpret_cast<size_t&>(*p).
|
||||
// return *L::Partial().Pointer<size_t>(p_.get());
|
||||
// }
|
||||
//
|
||||
// const char* c_str() const {
|
||||
// // Equivalent to reinterpret_cast<char*>(p.get() + sizeof(size_t)).
|
||||
// // The argument in Partial(1) specifies that we have size_t[1] in front
|
||||
// // of the characters.
|
||||
// return L::Partial(1).Pointer<char>(p_.get());
|
||||
// }
|
||||
//
|
||||
// private:
|
||||
// // Our heap allocation contains a size_t followed by an array of chars.
|
||||
// using L = Layout<size_t, char>;
|
||||
// std::unique_ptr<unsigned char[]> p_;
|
||||
// };
|
||||
//
|
||||
// int main() {
|
||||
// CompactString s = "hello";
|
||||
// assert(s.size() == 5);
|
||||
// assert(strcmp(s.c_str(), "hello") == 0);
|
||||
// }
|
||||
//
|
||||
// DOCUMENTATION
|
||||
//
|
||||
// The interface exported by this file consists of:
|
||||
// - class `Layout<>` and its public members.
|
||||
// - The public members of class `internal_layout::LayoutImpl<>`. That class
|
||||
// isn't intended to be used directly, and its name and template parameter
|
||||
// list are internal implementation details, but the class itself provides
|
||||
// most of the functionality in this file. See comments on its members for
|
||||
// detailed documentation.
|
||||
//
|
||||
// `Layout<T1,... Tn>::Partial(count1,..., countm)` (where `m` <= `n`) returns a
|
||||
// `LayoutImpl<>` object. `Layout<T1,..., Tn> layout(count1,..., countn)`
|
||||
// creates a `Layout` object, which exposes the same functionality by inheriting
|
||||
// from `LayoutImpl<>`.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_LAYOUT_H_ |
||||
#define ABSL_CONTAINER_INTERNAL_LAYOUT_H_ |
||||
|
||||
#include <assert.h> |
||||
#include <stddef.h> |
||||
#include <stdint.h> |
||||
#include <ostream> |
||||
#include <string> |
||||
#include <tuple> |
||||
#include <type_traits> |
||||
#include <typeinfo> |
||||
#include <utility> |
||||
|
||||
#ifdef ADDRESS_SANITIZER |
||||
#include <sanitizer/asan_interface.h> |
||||
#endif |
||||
|
||||
#include "absl/meta/type_traits.h" |
||||
#include "absl/strings/str_cat.h" |
||||
#include "absl/types/span.h" |
||||
#include "absl/utility/utility.h" |
||||
|
||||
#if defined(__GXX_RTTI) |
||||
#define ABSL_INTERNAL_HAS_CXA_DEMANGLE |
||||
#endif |
||||
|
||||
#ifdef ABSL_INTERNAL_HAS_CXA_DEMANGLE |
||||
#include <cxxabi.h> |
||||
#endif |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
|
||||
// A type wrapper that instructs `Layout` to use the specific alignment for the
|
||||
// array. `Layout<..., Aligned<T, N>, ...>` has exactly the same API
|
||||
// and behavior as `Layout<..., T, ...>` except that the first element of the
|
||||
// array of `T` is aligned to `N` (the rest of the elements follow without
|
||||
// padding).
|
||||
//
|
||||
// Requires: `N >= alignof(T)` and `N` is a power of 2.
|
||||
template <class T, size_t N> |
||||
struct Aligned; |
||||
|
||||
namespace internal_layout { |
||||
|
||||
template <class T> |
||||
struct NotAligned {}; |
||||
|
||||
template <class T, size_t N> |
||||
struct NotAligned<const Aligned<T, N>> { |
||||
static_assert(sizeof(T) == 0, "Aligned<T, N> cannot be const-qualified"); |
||||
}; |
||||
|
||||
template <size_t> |
||||
using IntToSize = size_t; |
||||
|
||||
template <class> |
||||
using TypeToSize = size_t; |
||||
|
||||
template <class T> |
||||
struct Type : NotAligned<T> { |
||||
using type = T; |
||||
}; |
||||
|
||||
template <class T, size_t N> |
||||
struct Type<Aligned<T, N>> { |
||||
using type = T; |
||||
}; |
||||
|
||||
template <class T> |
||||
struct SizeOf : NotAligned<T>, std::integral_constant<size_t, sizeof(T)> {}; |
||||
|
||||
template <class T, size_t N> |
||||
struct SizeOf<Aligned<T, N>> : std::integral_constant<size_t, sizeof(T)> {}; |
||||
|
||||
template <class T> |
||||
struct AlignOf : NotAligned<T>, std::integral_constant<size_t, alignof(T)> {}; |
||||
|
||||
template <class T, size_t N> |
||||
struct AlignOf<Aligned<T, N>> : std::integral_constant<size_t, N> { |
||||
static_assert(N % alignof(T) == 0, |
||||
"Custom alignment can't be lower than the type's alignment"); |
||||
}; |
||||
|
||||
// Does `Ts...` contain `T`?
|
||||
template <class T, class... Ts> |
||||
using Contains = absl::disjunction<std::is_same<T, Ts>...>; |
||||
|
||||
template <class From, class To> |
||||
using CopyConst = |
||||
typename std::conditional<std::is_const<From>::value, const To, To>::type; |
||||
|
||||
template <class T> |
||||
using SliceType = absl::Span<T>; |
||||
|
||||
// This namespace contains no types. It prevents functions defined in it from
|
||||
// being found by ADL.
|
||||
namespace adl_barrier { |
||||
|
||||
template <class Needle, class... Ts> |
||||
constexpr size_t Find(Needle, Needle, Ts...) { |
||||
static_assert(!Contains<Needle, Ts...>(), "Duplicate element type"); |
||||
return 0; |
||||
} |
||||
|
||||
template <class Needle, class T, class... Ts> |
||||
constexpr size_t Find(Needle, T, Ts...) { |
||||
return adl_barrier::Find(Needle(), Ts()...) + 1; |
||||
} |
||||
|
||||
constexpr bool IsPow2(size_t n) { return !(n & (n - 1)); } |
||||
|
||||
// Returns `q * m` for the smallest `q` such that `q * m >= n`.
|
||||
// Requires: `m` is a power of two. It's enforced by IsLegalElementType below.
|
||||
constexpr size_t Align(size_t n, size_t m) { return (n + m - 1) & ~(m - 1); } |
||||
|
||||
constexpr size_t Min(size_t a, size_t b) { return b < a ? b : a; } |
||||
|
||||
constexpr size_t Max(size_t a) { return a; } |
||||
|
||||
template <class... Ts> |
||||
constexpr size_t Max(size_t a, size_t b, Ts... rest) { |
||||
return adl_barrier::Max(b < a ? a : b, rest...); |
||||
} |
||||
|
||||
template <class T> |
||||
std::string TypeName() { |
||||
std::string out; |
||||
int status = 0; |
||||
char* demangled = nullptr; |
||||
#ifdef ABSL_INTERNAL_HAS_CXA_DEMANGLE |
||||
demangled = abi::__cxa_demangle(typeid(T).name(), nullptr, nullptr, &status); |
||||
#endif |
||||
if (status == 0 && demangled != nullptr) { // Demangling succeeeded.
|
||||
absl::StrAppend(&out, "<", demangled, ">"); |
||||
free(demangled); |
||||
} else { |
||||
#if defined(__GXX_RTTI) || defined(_CPPRTTI) |
||||
absl::StrAppend(&out, "<", typeid(T).name(), ">"); |
||||
#endif |
||||
} |
||||
return out; |
||||
} |
||||
|
||||
} // namespace adl_barrier
|
||||
|
||||
template <bool C> |
||||
using EnableIf = typename std::enable_if<C, int>::type; |
||||
|
||||
// Can `T` be a template argument of `Layout`?
|
||||
template <class T> |
||||
using IsLegalElementType = std::integral_constant< |
||||
bool, !std::is_reference<T>::value && !std::is_volatile<T>::value && |
||||
!std::is_reference<typename Type<T>::type>::value && |
||||
!std::is_volatile<typename Type<T>::type>::value && |
||||
adl_barrier::IsPow2(AlignOf<T>::value)>; |
||||
|
||||
template <class Elements, class SizeSeq, class OffsetSeq> |
||||
class LayoutImpl; |
||||
|
||||
// Public base class of `Layout` and the result type of `Layout::Partial()`.
|
||||
//
|
||||
// `Elements...` contains all template arguments of `Layout` that created this
|
||||
// instance.
|
||||
//
|
||||
// `SizeSeq...` is `[0, NumSizes)` where `NumSizes` is the number of arguments
|
||||
// passed to `Layout::Partial()` or `Layout::Layout()`.
|
||||
//
|
||||
// `OffsetSeq...` is `[0, NumOffsets)` where `NumOffsets` is
|
||||
// `Min(sizeof...(Elements), NumSizes + 1)` (the number of arrays for which we
|
||||
// can compute offsets).
|
||||
template <class... Elements, size_t... SizeSeq, size_t... OffsetSeq> |
||||
class LayoutImpl<std::tuple<Elements...>, absl::index_sequence<SizeSeq...>, |
||||
absl::index_sequence<OffsetSeq...>> { |
||||
private: |
||||
static_assert(sizeof...(Elements) > 0, "At least one field is required"); |
||||
static_assert(absl::conjunction<IsLegalElementType<Elements>...>::value, |
||||
"Invalid element type (see IsLegalElementType)"); |
||||
|
||||
enum { |
||||
NumTypes = sizeof...(Elements), |
||||
NumSizes = sizeof...(SizeSeq), |
||||
NumOffsets = sizeof...(OffsetSeq), |
||||
}; |
||||
|
||||
// These are guaranteed by `Layout`.
|
||||
static_assert(NumOffsets == adl_barrier::Min(NumTypes, NumSizes + 1), |
||||
"Internal error"); |
||||
static_assert(NumTypes > 0, "Internal error"); |
||||
|
||||
// Returns the index of `T` in `Elements...`. Results in a compilation error
|
||||
// if `Elements...` doesn't contain exactly one instance of `T`.
|
||||
template <class T> |
||||
static constexpr size_t ElementIndex() { |
||||
static_assert(Contains<Type<T>, Type<typename Type<Elements>::type>...>(), |
||||
"Type not found"); |
||||
return adl_barrier::Find(Type<T>(), |
||||
Type<typename Type<Elements>::type>()...); |
||||
} |
||||
|
||||
template <size_t N> |
||||
using ElementAlignment = |
||||
AlignOf<typename std::tuple_element<N, std::tuple<Elements...>>::type>; |
||||
|
||||
public: |
||||
// Element types of all arrays packed in a tuple.
|
||||
using ElementTypes = std::tuple<typename Type<Elements>::type...>; |
||||
|
||||
// Element type of the Nth array.
|
||||
template <size_t N> |
||||
using ElementType = typename std::tuple_element<N, ElementTypes>::type; |
||||
|
||||
constexpr explicit LayoutImpl(IntToSize<SizeSeq>... sizes) |
||||
: size_{sizes...} {} |
||||
|
||||
// Alignment of the layout, equal to the strictest alignment of all elements.
|
||||
// All pointers passed to the methods of layout must be aligned to this value.
|
||||
static constexpr size_t Alignment() { |
||||
return adl_barrier::Max(AlignOf<Elements>::value...); |
||||
} |
||||
|
||||
// Offset in bytes of the Nth array.
|
||||
//
|
||||
// // int[3], 4 bytes of padding, double[4].
|
||||
// Layout<int, double> x(3, 4);
|
||||
// assert(x.Offset<0>() == 0); // The ints starts from 0.
|
||||
// assert(x.Offset<1>() == 16); // The doubles starts from 16.
|
||||
//
|
||||
// Requires: `N <= NumSizes && N < sizeof...(Ts)`.
|
||||
template <size_t N, EnableIf<N == 0> = 0> |
||||
constexpr size_t Offset() const { |
||||
return 0; |
||||
} |
||||
|
||||
template <size_t N, EnableIf<N != 0> = 0> |
||||
constexpr size_t Offset() const { |
||||
static_assert(N < NumOffsets, "Index out of bounds"); |
||||
return adl_barrier::Align( |
||||
Offset<N - 1>() + SizeOf<ElementType<N - 1>>() * size_[N - 1], |
||||
ElementAlignment<N>()); |
||||
} |
||||
|
||||
// Offset in bytes of the array with the specified element type. There must
|
||||
// be exactly one such array and its zero-based index must be at most
|
||||
// `NumSizes`.
|
||||
//
|
||||
// // int[3], 4 bytes of padding, double[4].
|
||||
// Layout<int, double> x(3, 4);
|
||||
// assert(x.Offset<int>() == 0); // The ints starts from 0.
|
||||
// assert(x.Offset<double>() == 16); // The doubles starts from 16.
|
||||
template <class T> |
||||
constexpr size_t Offset() const { |
||||
return Offset<ElementIndex<T>()>(); |
||||
} |
||||
|
||||
// Offsets in bytes of all arrays for which the offsets are known.
|
||||
constexpr std::array<size_t, NumOffsets> Offsets() const { |
||||
return {{Offset<OffsetSeq>()...}}; |
||||
} |
||||
|
||||
// The number of elements in the Nth array. This is the Nth argument of
|
||||
// `Layout::Partial()` or `Layout::Layout()` (zero-based).
|
||||
//
|
||||
// // int[3], 4 bytes of padding, double[4].
|
||||
// Layout<int, double> x(3, 4);
|
||||
// assert(x.Size<0>() == 3);
|
||||
// assert(x.Size<1>() == 4);
|
||||
//
|
||||
// Requires: `N < NumSizes`.
|
||||
template <size_t N> |
||||
constexpr size_t Size() const { |
||||
static_assert(N < NumSizes, "Index out of bounds"); |
||||
return size_[N]; |
||||
} |
||||
|
||||
// The number of elements in the array with the specified element type.
|
||||
// There must be exactly one such array and its zero-based index must be
|
||||
// at most `NumSizes`.
|
||||
//
|
||||
// // int[3], 4 bytes of padding, double[4].
|
||||
// Layout<int, double> x(3, 4);
|
||||
// assert(x.Size<int>() == 3);
|
||||
// assert(x.Size<double>() == 4);
|
||||
template <class T> |
||||
constexpr size_t Size() const { |
||||
return Size<ElementIndex<T>()>(); |
||||
} |
||||
|
||||
// The number of elements of all arrays for which they are known.
|
||||
constexpr std::array<size_t, NumSizes> Sizes() const { |
||||
return {{Size<SizeSeq>()...}}; |
||||
} |
||||
|
||||
// Pointer to the beginning of the Nth array.
|
||||
//
|
||||
// `Char` must be `[const] [signed|unsigned] char`.
|
||||
//
|
||||
// // int[3], 4 bytes of padding, double[4].
|
||||
// Layout<int, double> x(3, 4);
|
||||
// unsigned char* p = unsigned char[x.AllocSize()];
|
||||
// int* ints = x.Pointer<0>(p);
|
||||
// double* doubles = x.Pointer<1>(p);
|
||||
//
|
||||
// Requires: `N <= NumSizes && N < sizeof...(Ts)`.
|
||||
// Requires: `p` is aligned to `Alignment()`.
|
||||
template <size_t N, class Char> |
||||
CopyConst<Char, ElementType<N>>* Pointer(Char* p) const { |
||||
using C = typename std::remove_const<Char>::type; |
||||
static_assert( |
||||
std::is_same<C, char>() || std::is_same<C, unsigned char>() || |
||||
std::is_same<C, signed char>(), |
||||
"The argument must be a pointer to [const] [signed|unsigned] char"); |
||||
constexpr size_t alignment = Alignment(); |
||||
(void)alignment; |
||||
assert(reinterpret_cast<uintptr_t>(p) % alignment == 0); |
||||
return reinterpret_cast<CopyConst<Char, ElementType<N>>*>(p + Offset<N>()); |
||||
} |
||||
|
||||
// Pointer to the beginning of the array with the specified element type.
|
||||
// There must be exactly one such array and its zero-based index must be at
|
||||
// most `NumSizes`.
|
||||
//
|
||||
// `Char` must be `[const] [signed|unsigned] char`.
|
||||
//
|
||||
// // int[3], 4 bytes of padding, double[4].
|
||||
// Layout<int, double> x(3, 4);
|
||||
// unsigned char* p = new unsigned char[x.AllocSize()];
|
||||
// int* ints = x.Pointer<int>(p);
|
||||
// double* doubles = x.Pointer<double>(p);
|
||||
//
|
||||
// Requires: `p` is aligned to `Alignment()`.
|
||||
template <class T, class Char> |
||||
CopyConst<Char, T>* Pointer(Char* p) const { |
||||
return Pointer<ElementIndex<T>()>(p); |
||||
} |
||||
|
||||
// Pointers to all arrays for which pointers are known.
|
||||
//
|
||||
// `Char` must be `[const] [signed|unsigned] char`.
|
||||
//
|
||||
// // int[3], 4 bytes of padding, double[4].
|
||||
// Layout<int, double> x(3, 4);
|
||||
// unsigned char* p = new unsigned char[x.AllocSize()];
|
||||
//
|
||||
// int* ints;
|
||||
// double* doubles;
|
||||
// std::tie(ints, doubles) = x.Pointers(p);
|
||||
//
|
||||
// Requires: `p` is aligned to `Alignment()`.
|
||||
//
|
||||
// Note: We're not using ElementType alias here because it does not compile
|
||||
// under MSVC.
|
||||
template <class Char> |
||||
std::tuple<CopyConst< |
||||
Char, typename std::tuple_element<OffsetSeq, ElementTypes>::type>*...> |
||||
Pointers(Char* p) const { |
||||
return std::tuple<CopyConst<Char, ElementType<OffsetSeq>>*...>( |
||||
Pointer<OffsetSeq>(p)...); |
||||
} |
||||
|
||||
// The Nth array.
|
||||
//
|
||||
// `Char` must be `[const] [signed|unsigned] char`.
|
||||
//
|
||||
// // int[3], 4 bytes of padding, double[4].
|
||||
// Layout<int, double> x(3, 4);
|
||||
// unsigned char* p = new unsigned char[x.AllocSize()];
|
||||
// Span<int> ints = x.Slice<0>(p);
|
||||
// Span<double> doubles = x.Slice<1>(p);
|
||||
//
|
||||
// Requires: `N < NumSizes`.
|
||||
// Requires: `p` is aligned to `Alignment()`.
|
||||
template <size_t N, class Char> |
||||
SliceType<CopyConst<Char, ElementType<N>>> Slice(Char* p) const { |
||||
return SliceType<CopyConst<Char, ElementType<N>>>(Pointer<N>(p), Size<N>()); |
||||
} |
||||
|
||||
// The array with the specified element type. There must be exactly one
|
||||
// such array and its zero-based index must be less than `NumSizes`.
|
||||
//
|
||||
// `Char` must be `[const] [signed|unsigned] char`.
|
||||
//
|
||||
// // int[3], 4 bytes of padding, double[4].
|
||||
// Layout<int, double> x(3, 4);
|
||||
// unsigned char* p = new unsigned char[x.AllocSize()];
|
||||
// Span<int> ints = x.Slice<int>(p);
|
||||
// Span<double> doubles = x.Slice<double>(p);
|
||||
//
|
||||
// Requires: `p` is aligned to `Alignment()`.
|
||||
template <class T, class Char> |
||||
SliceType<CopyConst<Char, T>> Slice(Char* p) const { |
||||
return Slice<ElementIndex<T>()>(p); |
||||
} |
||||
|
||||
// All arrays with known sizes.
|
||||
//
|
||||
// `Char` must be `[const] [signed|unsigned] char`.
|
||||
//
|
||||
// // int[3], 4 bytes of padding, double[4].
|
||||
// Layout<int, double> x(3, 4);
|
||||
// unsigned char* p = new unsigned char[x.AllocSize()];
|
||||
//
|
||||
// Span<int> ints;
|
||||
// Span<double> doubles;
|
||||
// std::tie(ints, doubles) = x.Slices(p);
|
||||
//
|
||||
// Requires: `p` is aligned to `Alignment()`.
|
||||
//
|
||||
// Note: We're not using ElementType alias here because it does not compile
|
||||
// under MSVC.
|
||||
template <class Char> |
||||
std::tuple<SliceType<CopyConst< |
||||
Char, typename std::tuple_element<SizeSeq, ElementTypes>::type>>...> |
||||
Slices(Char* p) const { |
||||
// Workaround for https://gcc.gnu.org/bugzilla/show_bug.cgi?id=63875 (fixed
|
||||
// in 6.1).
|
||||
(void)p; |
||||
return std::tuple<SliceType<CopyConst<Char, ElementType<SizeSeq>>>...>( |
||||
Slice<SizeSeq>(p)...); |
||||
} |
||||
|
||||
// The size of the allocation that fits all arrays.
|
||||
//
|
||||
// // int[3], 4 bytes of padding, double[4].
|
||||
// Layout<int, double> x(3, 4);
|
||||
// unsigned char* p = new unsigned char[x.AllocSize()]; // 48 bytes
|
||||
//
|
||||
// Requires: `NumSizes == sizeof...(Ts)`.
|
||||
constexpr size_t AllocSize() const { |
||||
static_assert(NumTypes == NumSizes, "You must specify sizes of all fields"); |
||||
return Offset<NumTypes - 1>() + |
||||
SizeOf<ElementType<NumTypes - 1>>() * size_[NumTypes - 1]; |
||||
} |
||||
|
||||
// If built with --config=asan, poisons padding bytes (if any) in the
|
||||
// allocation. The pointer must point to a memory block at least
|
||||
// `AllocSize()` bytes in length.
|
||||
//
|
||||
// `Char` must be `[const] [signed|unsigned] char`.
|
||||
//
|
||||
// Requires: `p` is aligned to `Alignment()`.
|
||||
template <class Char, size_t N = NumOffsets - 1, EnableIf<N == 0> = 0> |
||||
void PoisonPadding(const Char* p) const { |
||||
Pointer<0>(p); // verify the requirements on `Char` and `p`
|
||||
} |
||||
|
||||
template <class Char, size_t N = NumOffsets - 1, EnableIf<N != 0> = 0> |
||||
void PoisonPadding(const Char* p) const { |
||||
static_assert(N < NumOffsets, "Index out of bounds"); |
||||
(void)p; |
||||
#ifdef ADDRESS_SANITIZER |
||||
PoisonPadding<Char, N - 1>(p); |
||||
// The `if` is an optimization. It doesn't affect the observable behaviour.
|
||||
if (ElementAlignment<N - 1>() % ElementAlignment<N>()) { |
||||
size_t start = |
||||
Offset<N - 1>() + SizeOf<ElementType<N - 1>>() * size_[N - 1]; |
||||
ASAN_POISON_MEMORY_REGION(p + start, Offset<N>() - start); |
||||
} |
||||
#endif |
||||
} |
||||
|
||||
// Human-readable description of the memory layout. Useful for debugging.
|
||||
// Slow.
|
||||
//
|
||||
// // char[5], 3 bytes of padding, int[3], 4 bytes of padding, followed
|
||||
// // by an unknown number of doubles.
|
||||
// auto x = Layout<char, int, double>::Partial(5, 3);
|
||||
// assert(x.DebugString() ==
|
||||
// "@0<char>(1)[5]; @8<int>(4)[3]; @24<double>(8)");
|
||||
//
|
||||
// Each field is in the following format: @offset<type>(sizeof)[size] (<type>
|
||||
// may be missing depending on the target platform). For example,
|
||||
// @8<int>(4)[3] means that at offset 8 we have an array of ints, where each
|
||||
// int is 4 bytes, and we have 3 of those ints. The size of the last field may
|
||||
// be missing (as in the example above). Only fields with known offsets are
|
||||
// described. Type names may differ across platforms: one compiler might
|
||||
// produce "unsigned*" where another produces "unsigned int *".
|
||||
std::string DebugString() const { |
||||
const auto offsets = Offsets(); |
||||
const size_t sizes[] = {SizeOf<ElementType<OffsetSeq>>()...}; |
||||
const std::string types[] = {adl_barrier::TypeName<ElementType<OffsetSeq>>()...}; |
||||
std::string res = absl::StrCat("@0", types[0], "(", sizes[0], ")"); |
||||
for (size_t i = 0; i != NumOffsets - 1; ++i) { |
||||
absl::StrAppend(&res, "[", size_[i], "]; @", offsets[i + 1], types[i + 1], |
||||
"(", sizes[i + 1], ")"); |
||||
} |
||||
// NumSizes is a constant that may be zero. Some compilers cannot see that
|
||||
// inside the if statement "size_[NumSizes - 1]" must be valid.
|
||||
int last = static_cast<int>(NumSizes) - 1; |
||||
if (NumTypes == NumSizes && last >= 0) { |
||||
absl::StrAppend(&res, "[", size_[last], "]"); |
||||
} |
||||
return res; |
||||
} |
||||
|
||||
private: |
||||
// Arguments of `Layout::Partial()` or `Layout::Layout()`.
|
||||
size_t size_[NumSizes > 0 ? NumSizes : 1]; |
||||
}; |
||||
|
||||
template <size_t NumSizes, class... Ts> |
||||
using LayoutType = LayoutImpl< |
||||
std::tuple<Ts...>, absl::make_index_sequence<NumSizes>, |
||||
absl::make_index_sequence<adl_barrier::Min(sizeof...(Ts), NumSizes + 1)>>; |
||||
|
||||
} // namespace internal_layout
|
||||
|
||||
// Descriptor of arrays of various types and sizes laid out in memory one after
|
||||
// another. See the top of the file for documentation.
|
||||
//
|
||||
// Check out the public API of internal_layout::LayoutImpl above. The type is
|
||||
// internal to the library but its methods are public, and they are inherited
|
||||
// by `Layout`.
|
||||
template <class... Ts> |
||||
class Layout : public internal_layout::LayoutType<sizeof...(Ts), Ts...> { |
||||
public: |
||||
static_assert(sizeof...(Ts) > 0, "At least one field is required"); |
||||
static_assert( |
||||
absl::conjunction<internal_layout::IsLegalElementType<Ts>...>::value, |
||||
"Invalid element type (see IsLegalElementType)"); |
||||
|
||||
// The result type of `Partial()` with `NumSizes` arguments.
|
||||
template <size_t NumSizes> |
||||
using PartialType = internal_layout::LayoutType<NumSizes, Ts...>; |
||||
|
||||
// `Layout` knows the element types of the arrays we want to lay out in
|
||||
// memory but not the number of elements in each array.
|
||||
// `Partial(size1, ..., sizeN)` allows us to specify the latter. The
|
||||
// resulting immutable object can be used to obtain pointers to the
|
||||
// individual arrays.
|
||||
//
|
||||
// It's allowed to pass fewer array sizes than the number of arrays. E.g.,
|
||||
// if all you need is to the offset of the second array, you only need to
|
||||
// pass one argument -- the number of elements in the first arrays.
|
||||
//
|
||||
// // int[3] followed by 4 bytes of padding and an unknown number of
|
||||
// // doubles.
|
||||
// auto x = Layout<int, double>::Partial(3);
|
||||
// // doubles start at byte 16.
|
||||
// assert(x.Offset<1>() == 16);
|
||||
//
|
||||
// If you know the number of elements in all arrays, you can still call
|
||||
// `Partial()` but it's more convenient to use the constructor of `Layout`.
|
||||
//
|
||||
// Layout<int, double> x(3, 5);
|
||||
//
|
||||
// Note: The sizes of the arrays must be specified in number of elements,
|
||||
// not in bytes.
|
||||
//
|
||||
// Requires: `sizeof...(Sizes) <= sizeof...(Ts)`.
|
||||
// Requires: all arguments are convertible to `size_t`.
|
||||
template <class... Sizes> |
||||
static constexpr PartialType<sizeof...(Sizes)> Partial(Sizes&&... sizes) { |
||||
static_assert(sizeof...(Sizes) <= sizeof...(Ts), ""); |
||||
return PartialType<sizeof...(Sizes)>(absl::forward<Sizes>(sizes)...); |
||||
} |
||||
|
||||
// Creates a layout with the sizes of all arrays specified. If you know
|
||||
// only the sizes of the first N arrays (where N can be zero), you can use
|
||||
// `Partial()` defined above. The constructor is essentially equivalent to
|
||||
// calling `Partial()` and passing in all array sizes; the constructor is
|
||||
// provided as a convenient abbreviation.
|
||||
//
|
||||
// Note: The sizes of the arrays must be specified in number of elements,
|
||||
// not in bytes.
|
||||
constexpr explicit Layout(internal_layout::TypeToSize<Ts>... sizes) |
||||
: internal_layout::LayoutType<sizeof...(Ts), Ts...>(sizes...) {} |
||||
}; |
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_CONTAINER_INTERNAL_LAYOUT_H_
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,88 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// Adapts a policy for nodes.
|
||||
//
|
||||
// The node policy should model:
|
||||
//
|
||||
// struct Policy {
|
||||
// // Returns a new node allocated and constructed using the allocator, using
|
||||
// // the specified arguments.
|
||||
// template <class Alloc, class... Args>
|
||||
// value_type* new_element(Alloc* alloc, Args&&... args) const;
|
||||
//
|
||||
// // Destroys and deallocates node using the allocator.
|
||||
// template <class Alloc>
|
||||
// void delete_element(Alloc* alloc, value_type* node) const;
|
||||
// };
|
||||
//
|
||||
// It may also optionally define `value()` and `apply()`. For documentation on
|
||||
// these, see hash_policy_traits.h.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_NODE_HASH_POLICY_H_ |
||||
#define ABSL_CONTAINER_INTERNAL_NODE_HASH_POLICY_H_ |
||||
|
||||
#include <cassert> |
||||
#include <cstddef> |
||||
#include <memory> |
||||
#include <type_traits> |
||||
#include <utility> |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
|
||||
template <class Reference, class Policy> |
||||
struct node_hash_policy { |
||||
static_assert(std::is_lvalue_reference<Reference>::value, ""); |
||||
|
||||
using slot_type = typename std::remove_cv< |
||||
typename std::remove_reference<Reference>::type>::type*; |
||||
|
||||
template <class Alloc, class... Args> |
||||
static void construct(Alloc* alloc, slot_type* slot, Args&&... args) { |
||||
*slot = Policy::new_element(alloc, std::forward<Args>(args)...); |
||||
} |
||||
|
||||
template <class Alloc> |
||||
static void destroy(Alloc* alloc, slot_type* slot) { |
||||
Policy::delete_element(alloc, *slot); |
||||
} |
||||
|
||||
template <class Alloc> |
||||
static void transfer(Alloc*, slot_type* new_slot, slot_type* old_slot) { |
||||
*new_slot = *old_slot; |
||||
} |
||||
|
||||
static size_t space_used(const slot_type* slot) { |
||||
if (slot == nullptr) return Policy::element_space_used(nullptr); |
||||
return Policy::element_space_used(*slot); |
||||
} |
||||
|
||||
static Reference element(slot_type* slot) { return **slot; } |
||||
|
||||
template <class T, class P = Policy> |
||||
static auto value(T* elem) -> decltype(P::value(elem)) { |
||||
return P::value(elem); |
||||
} |
||||
|
||||
template <class... Ts, class P = Policy> |
||||
static auto apply(Ts&&... ts) -> decltype(P::apply(std::forward<Ts>(ts)...)) { |
||||
return P::apply(std::forward<Ts>(ts)...); |
||||
} |
||||
}; |
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_CONTAINER_INTERNAL_NODE_HASH_POLICY_H_
|
@ -0,0 +1,67 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/container/internal/node_hash_policy.h" |
||||
|
||||
#include <memory> |
||||
|
||||
#include "gmock/gmock.h" |
||||
#include "gtest/gtest.h" |
||||
#include "absl/container/internal/hash_policy_traits.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
namespace { |
||||
|
||||
using ::testing::Pointee; |
||||
|
||||
struct Policy : node_hash_policy<int&, Policy> { |
||||
using key_type = int; |
||||
using init_type = int; |
||||
|
||||
template <class Alloc> |
||||
static int* new_element(Alloc* alloc, int value) { |
||||
return new int(value); |
||||
} |
||||
|
||||
template <class Alloc> |
||||
static void delete_element(Alloc* alloc, int* elem) { |
||||
delete elem; |
||||
} |
||||
}; |
||||
|
||||
using NodePolicy = hash_policy_traits<Policy>; |
||||
|
||||
struct NodeTest : ::testing::Test { |
||||
std::allocator<int> alloc; |
||||
int n = 53; |
||||
int* a = &n; |
||||
}; |
||||
|
||||
TEST_F(NodeTest, ConstructDestroy) { |
||||
NodePolicy::construct(&alloc, &a, 42); |
||||
EXPECT_THAT(a, Pointee(42)); |
||||
NodePolicy::destroy(&alloc, &a); |
||||
} |
||||
|
||||
TEST_F(NodeTest, transfer) { |
||||
int s = 42; |
||||
int* b = &s; |
||||
NodePolicy::transfer(&alloc, &a, &b); |
||||
EXPECT_EQ(&s, a); |
||||
} |
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
@ -0,0 +1,182 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_MAP_H_ |
||||
#define ABSL_CONTAINER_INTERNAL_RAW_HASH_MAP_H_ |
||||
|
||||
#include <tuple> |
||||
#include <type_traits> |
||||
#include <utility> |
||||
|
||||
#include "absl/container/internal/container_memory.h" |
||||
#include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
|
||||
template <class Policy, class Hash, class Eq, class Alloc> |
||||
class raw_hash_map : public raw_hash_set<Policy, Hash, Eq, Alloc> { |
||||
// P is Policy. It's passed as a template argument to support maps that have
|
||||
// incomplete types as values, as in unordered_map<K, IncompleteType>.
|
||||
// MappedReference<> may be a non-reference type.
|
||||
template <class P> |
||||
using MappedReference = decltype(P::value( |
||||
std::addressof(std::declval<typename raw_hash_map::reference>()))); |
||||
|
||||
// MappedConstReference<> may be a non-reference type.
|
||||
template <class P> |
||||
using MappedConstReference = decltype(P::value( |
||||
std::addressof(std::declval<typename raw_hash_map::const_reference>()))); |
||||
|
||||
public: |
||||
using key_type = typename Policy::key_type; |
||||
using mapped_type = typename Policy::mapped_type; |
||||
template <typename K> |
||||
using key_arg = typename raw_hash_map::raw_hash_set::template key_arg<K>; |
||||
|
||||
static_assert(!std::is_reference<key_type>::value, ""); |
||||
// TODO(alkis): remove this assertion and verify that reference mapped_type is
|
||||
// supported.
|
||||
static_assert(!std::is_reference<mapped_type>::value, ""); |
||||
|
||||
using iterator = typename raw_hash_map::raw_hash_set::iterator; |
||||
using const_iterator = typename raw_hash_map::raw_hash_set::const_iterator; |
||||
|
||||
raw_hash_map() {} |
||||
using raw_hash_map::raw_hash_set::raw_hash_set; |
||||
|
||||
// The last two template parameters ensure that both arguments are rvalues
|
||||
// (lvalue arguments are handled by the overloads below). This is necessary
|
||||
// for supporting bitfield arguments.
|
||||
//
|
||||
// union { int n : 1; };
|
||||
// flat_hash_map<int, int> m;
|
||||
// m.insert_or_assign(n, n);
|
||||
template <class K = key_type, class V = mapped_type, K* = nullptr, |
||||
V* = nullptr> |
||||
std::pair<iterator, bool> insert_or_assign(key_arg<K>&& k, V&& v) { |
||||
return insert_or_assign_impl(std::forward<K>(k), std::forward<V>(v)); |
||||
} |
||||
|
||||
template <class K = key_type, class V = mapped_type, K* = nullptr> |
||||
std::pair<iterator, bool> insert_or_assign(key_arg<K>&& k, const V& v) { |
||||
return insert_or_assign_impl(std::forward<K>(k), v); |
||||
} |
||||
|
||||
template <class K = key_type, class V = mapped_type, V* = nullptr> |
||||
std::pair<iterator, bool> insert_or_assign(const key_arg<K>& k, V&& v) { |
||||
return insert_or_assign_impl(k, std::forward<V>(v)); |
||||
} |
||||
|
||||
template <class K = key_type, class V = mapped_type> |
||||
std::pair<iterator, bool> insert_or_assign(const key_arg<K>& k, const V& v) { |
||||
return insert_or_assign_impl(k, v); |
||||
} |
||||
|
||||
template <class K = key_type, class V = mapped_type, K* = nullptr, |
||||
V* = nullptr> |
||||
iterator insert_or_assign(const_iterator, key_arg<K>&& k, V&& v) { |
||||
return insert_or_assign(std::forward<K>(k), std::forward<V>(v)).first; |
||||
} |
||||
|
||||
template <class K = key_type, class V = mapped_type, K* = nullptr> |
||||
iterator insert_or_assign(const_iterator, key_arg<K>&& k, const V& v) { |
||||
return insert_or_assign(std::forward<K>(k), v).first; |
||||
} |
||||
|
||||
template <class K = key_type, class V = mapped_type, V* = nullptr> |
||||
iterator insert_or_assign(const_iterator, const key_arg<K>& k, V&& v) { |
||||
return insert_or_assign(k, std::forward<V>(v)).first; |
||||
} |
||||
|
||||
template <class K = key_type, class V = mapped_type> |
||||
iterator insert_or_assign(const_iterator, const key_arg<K>& k, const V& v) { |
||||
return insert_or_assign(k, v).first; |
||||
} |
||||
|
||||
template <class K = key_type, class... Args, |
||||
typename std::enable_if< |
||||
!std::is_convertible<K, const_iterator>::value, int>::type = 0, |
||||
K* = nullptr> |
||||
std::pair<iterator, bool> try_emplace(key_arg<K>&& k, Args&&... args) { |
||||
return try_emplace_impl(std::forward<K>(k), std::forward<Args>(args)...); |
||||
} |
||||
|
||||
template <class K = key_type, class... Args, |
||||
typename std::enable_if< |
||||
!std::is_convertible<K, const_iterator>::value, int>::type = 0> |
||||
std::pair<iterator, bool> try_emplace(const key_arg<K>& k, Args&&... args) { |
||||
return try_emplace_impl(k, std::forward<Args>(args)...); |
||||
} |
||||
|
||||
template <class K = key_type, class... Args, K* = nullptr> |
||||
iterator try_emplace(const_iterator, key_arg<K>&& k, Args&&... args) { |
||||
return try_emplace(std::forward<K>(k), std::forward<Args>(args)...).first; |
||||
} |
||||
|
||||
template <class K = key_type, class... Args> |
||||
iterator try_emplace(const_iterator, const key_arg<K>& k, Args&&... args) { |
||||
return try_emplace(k, std::forward<Args>(args)...).first; |
||||
} |
||||
|
||||
template <class K = key_type, class P = Policy> |
||||
MappedReference<P> at(const key_arg<K>& key) { |
||||
auto it = this->find(key); |
||||
if (it == this->end()) std::abort(); |
||||
return Policy::value(&*it); |
||||
} |
||||
|
||||
template <class K = key_type, class P = Policy> |
||||
MappedConstReference<P> at(const key_arg<K>& key) const { |
||||
auto it = this->find(key); |
||||
if (it == this->end()) std::abort(); |
||||
return Policy::value(&*it); |
||||
} |
||||
|
||||
template <class K = key_type, class P = Policy, K* = nullptr> |
||||
MappedReference<P> operator[](key_arg<K>&& key) { |
||||
return Policy::value(&*try_emplace(std::forward<K>(key)).first); |
||||
} |
||||
|
||||
template <class K = key_type, class P = Policy> |
||||
MappedReference<P> operator[](const key_arg<K>& key) { |
||||
return Policy::value(&*try_emplace(key).first); |
||||
} |
||||
|
||||
private: |
||||
template <class K, class V> |
||||
std::pair<iterator, bool> insert_or_assign_impl(K&& k, V&& v) { |
||||
auto res = this->find_or_prepare_insert(k); |
||||
if (res.second) |
||||
this->emplace_at(res.first, std::forward<K>(k), std::forward<V>(v)); |
||||
else |
||||
Policy::value(&*this->iterator_at(res.first)) = std::forward<V>(v); |
||||
return {this->iterator_at(res.first), res.second}; |
||||
} |
||||
|
||||
template <class K = key_type, class... Args> |
||||
std::pair<iterator, bool> try_emplace_impl(K&& k, Args&&... args) { |
||||
auto res = this->find_or_prepare_insert(k); |
||||
if (res.second) |
||||
this->emplace_at(res.first, std::piecewise_construct, |
||||
std::forward_as_tuple(std::forward<K>(k)), |
||||
std::forward_as_tuple(std::forward<Args>(args)...)); |
||||
return {this->iterator_at(res.first), res.second}; |
||||
} |
||||
}; |
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_CONTAINER_INTERNAL_RAW_HASH_MAP_H_
|
@ -0,0 +1,45 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/container/internal/raw_hash_set.h" |
||||
|
||||
#include <cstddef> |
||||
|
||||
#include "absl/base/config.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
|
||||
constexpr size_t Group::kWidth; |
||||
|
||||
// Returns "random" seed.
|
||||
inline size_t RandomSeed() { |
||||
#if ABSL_HAVE_THREAD_LOCAL |
||||
static thread_local size_t counter = 0; |
||||
size_t value = ++counter; |
||||
#else // ABSL_HAVE_THREAD_LOCAL
|
||||
static std::atomic<size_t> counter; |
||||
size_t value = counter.fetch_add(1, std::memory_order_relaxed); |
||||
#endif // ABSL_HAVE_THREAD_LOCAL
|
||||
return value ^ static_cast<size_t>(reinterpret_cast<uintptr_t>(&counter)); |
||||
} |
||||
|
||||
bool ShouldInsertBackwards(size_t hash, ctrl_t* ctrl) { |
||||
// To avoid problems with weak hashes and single bit tests, we use % 13.
|
||||
// TODO(kfm,sbenza): revisit after we do unconditional mixing
|
||||
return (H1(hash, ctrl) ^ RandomSeed()) % 13 > 6; |
||||
} |
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,428 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <limits> |
||||
#include <scoped_allocator> |
||||
|
||||
#include "gtest/gtest.h" |
||||
#include "absl/container/internal/raw_hash_set.h" |
||||
#include "absl/container/internal/tracked.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
namespace { |
||||
|
||||
enum AllocSpec { |
||||
kPropagateOnCopy = 1, |
||||
kPropagateOnMove = 2, |
||||
kPropagateOnSwap = 4, |
||||
}; |
||||
|
||||
struct AllocState { |
||||
size_t num_allocs = 0; |
||||
std::set<void*> owned; |
||||
}; |
||||
|
||||
template <class T, |
||||
int Spec = kPropagateOnCopy | kPropagateOnMove | kPropagateOnSwap> |
||||
class CheckedAlloc { |
||||
public: |
||||
template <class, int> |
||||
friend class CheckedAlloc; |
||||
|
||||
using value_type = T; |
||||
|
||||
CheckedAlloc() {} |
||||
explicit CheckedAlloc(size_t id) : id_(id) {} |
||||
CheckedAlloc(const CheckedAlloc&) = default; |
||||
CheckedAlloc& operator=(const CheckedAlloc&) = default; |
||||
|
||||
template <class U> |
||||
CheckedAlloc(const CheckedAlloc<U, Spec>& that) |
||||
: id_(that.id_), state_(that.state_) {} |
||||
|
||||
template <class U> |
||||
struct rebind { |
||||
using other = CheckedAlloc<U, Spec>; |
||||
}; |
||||
|
||||
using propagate_on_container_copy_assignment = |
||||
std::integral_constant<bool, (Spec & kPropagateOnCopy) != 0>; |
||||
|
||||
using propagate_on_container_move_assignment = |
||||
std::integral_constant<bool, (Spec & kPropagateOnMove) != 0>; |
||||
|
||||
using propagate_on_container_swap = |
||||
std::integral_constant<bool, (Spec & kPropagateOnSwap) != 0>; |
||||
|
||||
CheckedAlloc select_on_container_copy_construction() const { |
||||
if (Spec & kPropagateOnCopy) return *this; |
||||
return {}; |
||||
} |
||||
|
||||
T* allocate(size_t n) { |
||||
T* ptr = std::allocator<T>().allocate(n); |
||||
track_alloc(ptr); |
||||
return ptr; |
||||
} |
||||
void deallocate(T* ptr, size_t n) { |
||||
memset(ptr, 0, n * sizeof(T)); // The freed memory must be unpoisoned.
|
||||
track_dealloc(ptr); |
||||
return std::allocator<T>().deallocate(ptr, n); |
||||
} |
||||
|
||||
friend bool operator==(const CheckedAlloc& a, const CheckedAlloc& b) { |
||||
return a.id_ == b.id_; |
||||
} |
||||
friend bool operator!=(const CheckedAlloc& a, const CheckedAlloc& b) { |
||||
return !(a == b); |
||||
} |
||||
|
||||
size_t num_allocs() const { return state_->num_allocs; } |
||||
|
||||
void swap(CheckedAlloc& that) { |
||||
using std::swap; |
||||
swap(id_, that.id_); |
||||
swap(state_, that.state_); |
||||
} |
||||
|
||||
friend void swap(CheckedAlloc& a, CheckedAlloc& b) { a.swap(b); } |
||||
|
||||
friend std::ostream& operator<<(std::ostream& o, const CheckedAlloc& a) { |
||||
return o << "alloc(" << a.id_ << ")"; |
||||
} |
||||
|
||||
private: |
||||
void track_alloc(void* ptr) { |
||||
AllocState* state = state_.get(); |
||||
++state->num_allocs; |
||||
if (!state->owned.insert(ptr).second) |
||||
ADD_FAILURE() << *this << " got previously allocated memory: " << ptr; |
||||
} |
||||
void track_dealloc(void* ptr) { |
||||
if (state_->owned.erase(ptr) != 1) |
||||
ADD_FAILURE() << *this |
||||
<< " deleting memory owned by another allocator: " << ptr; |
||||
} |
||||
|
||||
size_t id_ = std::numeric_limits<size_t>::max(); |
||||
|
||||
std::shared_ptr<AllocState> state_ = std::make_shared<AllocState>(); |
||||
}; |
||||
|
||||
struct Identity { |
||||
int32_t operator()(int32_t v) const { return v; } |
||||
}; |
||||
|
||||
struct Policy { |
||||
using slot_type = Tracked<int32_t>; |
||||
using init_type = Tracked<int32_t>; |
||||
using key_type = int32_t; |
||||
|
||||
template <class allocator_type, class... Args> |
||||
static void construct(allocator_type* alloc, slot_type* slot, |
||||
Args&&... args) { |
||||
std::allocator_traits<allocator_type>::construct( |
||||
*alloc, slot, std::forward<Args>(args)...); |
||||
} |
||||
|
||||
template <class allocator_type> |
||||
static void destroy(allocator_type* alloc, slot_type* slot) { |
||||
std::allocator_traits<allocator_type>::destroy(*alloc, slot); |
||||
} |
||||
|
||||
template <class allocator_type> |
||||
static void transfer(allocator_type* alloc, slot_type* new_slot, |
||||
slot_type* old_slot) { |
||||
construct(alloc, new_slot, std::move(*old_slot)); |
||||
destroy(alloc, old_slot); |
||||
} |
||||
|
||||
template <class F> |
||||
static auto apply(F&& f, int32_t v) -> decltype(std::forward<F>(f)(v, v)) { |
||||
return std::forward<F>(f)(v, v); |
||||
} |
||||
|
||||
template <class F> |
||||
static auto apply(F&& f, const slot_type& v) |
||||
-> decltype(std::forward<F>(f)(v.val(), v)) { |
||||
return std::forward<F>(f)(v.val(), v); |
||||
} |
||||
|
||||
template <class F> |
||||
static auto apply(F&& f, slot_type&& v) |
||||
-> decltype(std::forward<F>(f)(v.val(), std::move(v))) { |
||||
return std::forward<F>(f)(v.val(), std::move(v)); |
||||
} |
||||
|
||||
static slot_type& element(slot_type* slot) { return *slot; } |
||||
}; |
||||
|
||||
template <int Spec> |
||||
struct PropagateTest : public ::testing::Test { |
||||
using Alloc = CheckedAlloc<Tracked<int32_t>, Spec>; |
||||
|
||||
using Table = raw_hash_set<Policy, Identity, std::equal_to<int32_t>, Alloc>; |
||||
|
||||
PropagateTest() { |
||||
EXPECT_EQ(a1, t1.get_allocator()); |
||||
EXPECT_NE(a2, t1.get_allocator()); |
||||
} |
||||
|
||||
Alloc a1 = Alloc(1); |
||||
Table t1 = Table(0, a1); |
||||
Alloc a2 = Alloc(2); |
||||
}; |
||||
|
||||
using PropagateOnAll = |
||||
PropagateTest<kPropagateOnCopy | kPropagateOnMove | kPropagateOnSwap>; |
||||
using NoPropagateOnCopy = PropagateTest<kPropagateOnMove | kPropagateOnSwap>; |
||||
using NoPropagateOnMove = PropagateTest<kPropagateOnCopy | kPropagateOnSwap>; |
||||
|
||||
TEST_F(PropagateOnAll, Empty) { EXPECT_EQ(0, a1.num_allocs()); } |
||||
|
||||
TEST_F(PropagateOnAll, InsertAllocates) { |
||||
auto it = t1.insert(0).first; |
||||
EXPECT_EQ(1, a1.num_allocs()); |
||||
EXPECT_EQ(0, it->num_moves()); |
||||
EXPECT_EQ(0, it->num_copies()); |
||||
} |
||||
|
||||
TEST_F(PropagateOnAll, InsertDecomposes) { |
||||
auto it = t1.insert(0).first; |
||||
EXPECT_EQ(1, a1.num_allocs()); |
||||
EXPECT_EQ(0, it->num_moves()); |
||||
EXPECT_EQ(0, it->num_copies()); |
||||
|
||||
EXPECT_FALSE(t1.insert(0).second); |
||||
EXPECT_EQ(1, a1.num_allocs()); |
||||
EXPECT_EQ(0, it->num_moves()); |
||||
EXPECT_EQ(0, it->num_copies()); |
||||
} |
||||
|
||||
TEST_F(PropagateOnAll, RehashMoves) { |
||||
auto it = t1.insert(0).first; |
||||
EXPECT_EQ(0, it->num_moves()); |
||||
t1.rehash(2 * t1.capacity()); |
||||
EXPECT_EQ(2, a1.num_allocs()); |
||||
it = t1.find(0); |
||||
EXPECT_EQ(1, it->num_moves()); |
||||
EXPECT_EQ(0, it->num_copies()); |
||||
} |
||||
|
||||
TEST_F(PropagateOnAll, CopyConstructor) { |
||||
auto it = t1.insert(0).first; |
||||
Table u(t1); |
||||
EXPECT_EQ(2, a1.num_allocs()); |
||||
EXPECT_EQ(0, it->num_moves()); |
||||
EXPECT_EQ(1, it->num_copies()); |
||||
} |
||||
|
||||
TEST_F(NoPropagateOnCopy, CopyConstructor) { |
||||
auto it = t1.insert(0).first; |
||||
Table u(t1); |
||||
EXPECT_EQ(1, a1.num_allocs()); |
||||
EXPECT_EQ(1, u.get_allocator().num_allocs()); |
||||
EXPECT_EQ(0, it->num_moves()); |
||||
EXPECT_EQ(1, it->num_copies()); |
||||
} |
||||
|
||||
TEST_F(PropagateOnAll, CopyConstructorWithSameAlloc) { |
||||
auto it = t1.insert(0).first; |
||||
Table u(t1, a1); |
||||
EXPECT_EQ(2, a1.num_allocs()); |
||||
EXPECT_EQ(0, it->num_moves()); |
||||
EXPECT_EQ(1, it->num_copies()); |
||||
} |
||||
|
||||
TEST_F(NoPropagateOnCopy, CopyConstructorWithSameAlloc) { |
||||
auto it = t1.insert(0).first; |
||||
Table u(t1, a1); |
||||
EXPECT_EQ(2, a1.num_allocs()); |
||||
EXPECT_EQ(0, it->num_moves()); |
||||
EXPECT_EQ(1, it->num_copies()); |
||||
} |
||||
|
||||
TEST_F(PropagateOnAll, CopyConstructorWithDifferentAlloc) { |
||||
auto it = t1.insert(0).first; |
||||
Table u(t1, a2); |
||||
EXPECT_EQ(a2, u.get_allocator()); |
||||
EXPECT_EQ(1, a1.num_allocs()); |
||||
EXPECT_EQ(1, a2.num_allocs()); |
||||
EXPECT_EQ(0, it->num_moves()); |
||||
EXPECT_EQ(1, it->num_copies()); |
||||
} |
||||
|
||||
TEST_F(NoPropagateOnCopy, CopyConstructorWithDifferentAlloc) { |
||||
auto it = t1.insert(0).first; |
||||
Table u(t1, a2); |
||||
EXPECT_EQ(a2, u.get_allocator()); |
||||
EXPECT_EQ(1, a1.num_allocs()); |
||||
EXPECT_EQ(1, a2.num_allocs()); |
||||
EXPECT_EQ(0, it->num_moves()); |
||||
EXPECT_EQ(1, it->num_copies()); |
||||
} |
||||
|
||||
TEST_F(PropagateOnAll, MoveConstructor) { |
||||
auto it = t1.insert(0).first; |
||||
Table u(std::move(t1)); |
||||
EXPECT_EQ(1, a1.num_allocs()); |
||||
EXPECT_EQ(0, it->num_moves()); |
||||
EXPECT_EQ(0, it->num_copies()); |
||||
} |
||||
|
||||
TEST_F(NoPropagateOnMove, MoveConstructor) { |
||||
auto it = t1.insert(0).first; |
||||
Table u(std::move(t1)); |
||||
EXPECT_EQ(1, a1.num_allocs()); |
||||
EXPECT_EQ(0, it->num_moves()); |
||||
EXPECT_EQ(0, it->num_copies()); |
||||
} |
||||
|
||||
TEST_F(PropagateOnAll, MoveConstructorWithSameAlloc) { |
||||
auto it = t1.insert(0).first; |
||||
Table u(std::move(t1), a1); |
||||
EXPECT_EQ(1, a1.num_allocs()); |
||||
EXPECT_EQ(0, it->num_moves()); |
||||
EXPECT_EQ(0, it->num_copies()); |
||||
} |
||||
|
||||
TEST_F(NoPropagateOnMove, MoveConstructorWithSameAlloc) { |
||||
auto it = t1.insert(0).first; |
||||
Table u(std::move(t1), a1); |
||||
EXPECT_EQ(1, a1.num_allocs()); |
||||
EXPECT_EQ(0, it->num_moves()); |
||||
EXPECT_EQ(0, it->num_copies()); |
||||
} |
||||
|
||||
TEST_F(PropagateOnAll, MoveConstructorWithDifferentAlloc) { |
||||
auto it = t1.insert(0).first; |
||||
Table u(std::move(t1), a2); |
||||
it = u.find(0); |
||||
EXPECT_EQ(a2, u.get_allocator()); |
||||
EXPECT_EQ(1, a1.num_allocs()); |
||||
EXPECT_EQ(1, a2.num_allocs()); |
||||
EXPECT_EQ(1, it->num_moves()); |
||||
EXPECT_EQ(0, it->num_copies()); |
||||
} |
||||
|
||||
TEST_F(NoPropagateOnMove, MoveConstructorWithDifferentAlloc) { |
||||
auto it = t1.insert(0).first; |
||||
Table u(std::move(t1), a2); |
||||
it = u.find(0); |
||||
EXPECT_EQ(a2, u.get_allocator()); |
||||
EXPECT_EQ(1, a1.num_allocs()); |
||||
EXPECT_EQ(1, a2.num_allocs()); |
||||
EXPECT_EQ(1, it->num_moves()); |
||||
EXPECT_EQ(0, it->num_copies()); |
||||
} |
||||
|
||||
TEST_F(PropagateOnAll, CopyAssignmentWithSameAlloc) { |
||||
auto it = t1.insert(0).first; |
||||
Table u(0, a1); |
||||
u = t1; |
||||
EXPECT_EQ(2, a1.num_allocs()); |
||||
EXPECT_EQ(0, it->num_moves()); |
||||
EXPECT_EQ(1, it->num_copies()); |
||||
} |
||||
|
||||
TEST_F(NoPropagateOnCopy, CopyAssignmentWithSameAlloc) { |
||||
auto it = t1.insert(0).first; |
||||
Table u(0, a1); |
||||
u = t1; |
||||
EXPECT_EQ(2, a1.num_allocs()); |
||||
EXPECT_EQ(0, it->num_moves()); |
||||
EXPECT_EQ(1, it->num_copies()); |
||||
} |
||||
|
||||
TEST_F(PropagateOnAll, CopyAssignmentWithDifferentAlloc) { |
||||
auto it = t1.insert(0).first; |
||||
Table u(0, a2); |
||||
u = t1; |
||||
EXPECT_EQ(a1, u.get_allocator()); |
||||
EXPECT_EQ(2, a1.num_allocs()); |
||||
EXPECT_EQ(0, a2.num_allocs()); |
||||
EXPECT_EQ(0, it->num_moves()); |
||||
EXPECT_EQ(1, it->num_copies()); |
||||
} |
||||
|
||||
TEST_F(NoPropagateOnCopy, CopyAssignmentWithDifferentAlloc) { |
||||
auto it = t1.insert(0).first; |
||||
Table u(0, a2); |
||||
u = t1; |
||||
EXPECT_EQ(a2, u.get_allocator()); |
||||
EXPECT_EQ(1, a1.num_allocs()); |
||||
EXPECT_EQ(1, a2.num_allocs()); |
||||
EXPECT_EQ(0, it->num_moves()); |
||||
EXPECT_EQ(1, it->num_copies()); |
||||
} |
||||
|
||||
TEST_F(PropagateOnAll, MoveAssignmentWithSameAlloc) { |
||||
auto it = t1.insert(0).first; |
||||
Table u(0, a1); |
||||
u = std::move(t1); |
||||
EXPECT_EQ(a1, u.get_allocator()); |
||||
EXPECT_EQ(1, a1.num_allocs()); |
||||
EXPECT_EQ(0, it->num_moves()); |
||||
EXPECT_EQ(0, it->num_copies()); |
||||
} |
||||
|
||||
TEST_F(NoPropagateOnMove, MoveAssignmentWithSameAlloc) { |
||||
auto it = t1.insert(0).first; |
||||
Table u(0, a1); |
||||
u = std::move(t1); |
||||
EXPECT_EQ(a1, u.get_allocator()); |
||||
EXPECT_EQ(1, a1.num_allocs()); |
||||
EXPECT_EQ(0, it->num_moves()); |
||||
EXPECT_EQ(0, it->num_copies()); |
||||
} |
||||
|
||||
TEST_F(PropagateOnAll, MoveAssignmentWithDifferentAlloc) { |
||||
auto it = t1.insert(0).first; |
||||
Table u(0, a2); |
||||
u = std::move(t1); |
||||
EXPECT_EQ(a1, u.get_allocator()); |
||||
EXPECT_EQ(1, a1.num_allocs()); |
||||
EXPECT_EQ(0, a2.num_allocs()); |
||||
EXPECT_EQ(0, it->num_moves()); |
||||
EXPECT_EQ(0, it->num_copies()); |
||||
} |
||||
|
||||
TEST_F(NoPropagateOnMove, MoveAssignmentWithDifferentAlloc) { |
||||
auto it = t1.insert(0).first; |
||||
Table u(0, a2); |
||||
u = std::move(t1); |
||||
it = u.find(0); |
||||
EXPECT_EQ(a2, u.get_allocator()); |
||||
EXPECT_EQ(1, a1.num_allocs()); |
||||
EXPECT_EQ(1, a2.num_allocs()); |
||||
EXPECT_EQ(1, it->num_moves()); |
||||
EXPECT_EQ(0, it->num_copies()); |
||||
} |
||||
|
||||
TEST_F(PropagateOnAll, Swap) { |
||||
auto it = t1.insert(0).first; |
||||
Table u(0, a2); |
||||
u.swap(t1); |
||||
EXPECT_EQ(a1, u.get_allocator()); |
||||
EXPECT_EQ(a2, t1.get_allocator()); |
||||
EXPECT_EQ(1, a1.num_allocs()); |
||||
EXPECT_EQ(0, a2.num_allocs()); |
||||
EXPECT_EQ(0, it->num_moves()); |
||||
EXPECT_EQ(0, it->num_copies()); |
||||
} |
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,78 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_TRACKED_H_ |
||||
#define ABSL_CONTAINER_INTERNAL_TRACKED_H_ |
||||
|
||||
#include <stddef.h> |
||||
#include <memory> |
||||
#include <utility> |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
|
||||
// A class that tracks its copies and moves so that it can be queried in tests.
|
||||
template <class T> |
||||
class Tracked { |
||||
public: |
||||
Tracked() {} |
||||
// NOLINTNEXTLINE(runtime/explicit)
|
||||
Tracked(const T& val) : val_(val) {} |
||||
Tracked(const Tracked& that) |
||||
: val_(that.val_), |
||||
num_moves_(that.num_moves_), |
||||
num_copies_(that.num_copies_) { |
||||
++(*num_copies_); |
||||
} |
||||
Tracked(Tracked&& that) |
||||
: val_(std::move(that.val_)), |
||||
num_moves_(std::move(that.num_moves_)), |
||||
num_copies_(std::move(that.num_copies_)) { |
||||
++(*num_moves_); |
||||
} |
||||
Tracked& operator=(const Tracked& that) { |
||||
val_ = that.val_; |
||||
num_moves_ = that.num_moves_; |
||||
num_copies_ = that.num_copies_; |
||||
++(*num_copies_); |
||||
} |
||||
Tracked& operator=(Tracked&& that) { |
||||
val_ = std::move(that.val_); |
||||
num_moves_ = std::move(that.num_moves_); |
||||
num_copies_ = std::move(that.num_copies_); |
||||
++(*num_moves_); |
||||
} |
||||
|
||||
const T& val() const { return val_; } |
||||
|
||||
friend bool operator==(const Tracked& a, const Tracked& b) { |
||||
return a.val_ == b.val_; |
||||
} |
||||
friend bool operator!=(const Tracked& a, const Tracked& b) { |
||||
return !(a == b); |
||||
} |
||||
|
||||
size_t num_copies() { return *num_copies_; } |
||||
size_t num_moves() { return *num_moves_; } |
||||
|
||||
private: |
||||
T val_; |
||||
std::shared_ptr<size_t> num_moves_ = std::make_shared<size_t>(0); |
||||
std::shared_ptr<size_t> num_copies_ = std::make_shared<size_t>(0); |
||||
}; |
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_CONTAINER_INTERNAL_TRACKED_H_
|
@ -0,0 +1,404 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_CONSTRUCTOR_TEST_H_ |
||||
#define ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_CONSTRUCTOR_TEST_H_ |
||||
|
||||
#include <algorithm> |
||||
#include <vector> |
||||
|
||||
#include "gmock/gmock.h" |
||||
#include "gtest/gtest.h" |
||||
#include "absl/container/internal/hash_generator_testing.h" |
||||
#include "absl/container/internal/hash_policy_testing.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
|
||||
template <class UnordMap> |
||||
class ConstructorTest : public ::testing::Test {}; |
||||
|
||||
TYPED_TEST_CASE_P(ConstructorTest); |
||||
|
||||
TYPED_TEST_P(ConstructorTest, NoArgs) { |
||||
TypeParam m; |
||||
EXPECT_TRUE(m.empty()); |
||||
EXPECT_THAT(m, ::testing::UnorderedElementsAre()); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketCount) { |
||||
TypeParam m(123); |
||||
EXPECT_TRUE(m.empty()); |
||||
EXPECT_THAT(m, ::testing::UnorderedElementsAre()); |
||||
EXPECT_GE(m.bucket_count(), 123); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketCountHash) { |
||||
using H = typename TypeParam::hasher; |
||||
H hasher; |
||||
TypeParam m(123, hasher); |
||||
EXPECT_EQ(m.hash_function(), hasher); |
||||
EXPECT_TRUE(m.empty()); |
||||
EXPECT_THAT(m, ::testing::UnorderedElementsAre()); |
||||
EXPECT_GE(m.bucket_count(), 123); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketCountHashEqual) { |
||||
using H = typename TypeParam::hasher; |
||||
using E = typename TypeParam::key_equal; |
||||
H hasher; |
||||
E equal; |
||||
TypeParam m(123, hasher, equal); |
||||
EXPECT_EQ(m.hash_function(), hasher); |
||||
EXPECT_EQ(m.key_eq(), equal); |
||||
EXPECT_TRUE(m.empty()); |
||||
EXPECT_THAT(m, ::testing::UnorderedElementsAre()); |
||||
EXPECT_GE(m.bucket_count(), 123); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketCountHashEqualAlloc) { |
||||
using H = typename TypeParam::hasher; |
||||
using E = typename TypeParam::key_equal; |
||||
using A = typename TypeParam::allocator_type; |
||||
H hasher; |
||||
E equal; |
||||
A alloc(0); |
||||
TypeParam m(123, hasher, equal, alloc); |
||||
EXPECT_EQ(m.hash_function(), hasher); |
||||
EXPECT_EQ(m.key_eq(), equal); |
||||
EXPECT_EQ(m.get_allocator(), alloc); |
||||
EXPECT_TRUE(m.empty()); |
||||
EXPECT_THAT(m, ::testing::UnorderedElementsAre()); |
||||
EXPECT_GE(m.bucket_count(), 123); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketCountAlloc) { |
||||
#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17) |
||||
using A = typename TypeParam::allocator_type; |
||||
A alloc(0); |
||||
TypeParam m(123, alloc); |
||||
EXPECT_EQ(m.get_allocator(), alloc); |
||||
EXPECT_TRUE(m.empty()); |
||||
EXPECT_THAT(m, ::testing::UnorderedElementsAre()); |
||||
EXPECT_GE(m.bucket_count(), 123); |
||||
#endif |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketCountHashAlloc) { |
||||
#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17) |
||||
using H = typename TypeParam::hasher; |
||||
using A = typename TypeParam::allocator_type; |
||||
H hasher; |
||||
A alloc(0); |
||||
TypeParam m(123, hasher, alloc); |
||||
EXPECT_EQ(m.hash_function(), hasher); |
||||
EXPECT_EQ(m.get_allocator(), alloc); |
||||
EXPECT_TRUE(m.empty()); |
||||
EXPECT_THAT(m, ::testing::UnorderedElementsAre()); |
||||
EXPECT_GE(m.bucket_count(), 123); |
||||
#endif |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketAlloc) { |
||||
#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS |
||||
using A = typename TypeParam::allocator_type; |
||||
A alloc(0); |
||||
TypeParam m(alloc); |
||||
EXPECT_EQ(m.get_allocator(), alloc); |
||||
EXPECT_TRUE(m.empty()); |
||||
EXPECT_THAT(m, ::testing::UnorderedElementsAre()); |
||||
#endif |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, InputIteratorBucketHashEqualAlloc) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using H = typename TypeParam::hasher; |
||||
using E = typename TypeParam::key_equal; |
||||
using A = typename TypeParam::allocator_type; |
||||
H hasher; |
||||
E equal; |
||||
A alloc(0); |
||||
std::vector<T> values; |
||||
std::generate_n(std::back_inserter(values), 10, |
||||
hash_internal::Generator<T>()); |
||||
TypeParam m(values.begin(), values.end(), 123, hasher, equal, alloc); |
||||
EXPECT_EQ(m.hash_function(), hasher); |
||||
EXPECT_EQ(m.key_eq(), equal); |
||||
EXPECT_EQ(m.get_allocator(), alloc); |
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); |
||||
EXPECT_GE(m.bucket_count(), 123); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, InputIteratorBucketAlloc) { |
||||
#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17) |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using A = typename TypeParam::allocator_type; |
||||
A alloc(0); |
||||
std::vector<T> values; |
||||
std::generate_n(std::back_inserter(values), 10, |
||||
hash_internal::Generator<T>()); |
||||
TypeParam m(values.begin(), values.end(), 123, alloc); |
||||
EXPECT_EQ(m.get_allocator(), alloc); |
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); |
||||
EXPECT_GE(m.bucket_count(), 123); |
||||
#endif |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, InputIteratorBucketHashAlloc) { |
||||
#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17) |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using H = typename TypeParam::hasher; |
||||
using A = typename TypeParam::allocator_type; |
||||
H hasher; |
||||
A alloc(0); |
||||
std::vector<T> values; |
||||
std::generate_n(std::back_inserter(values), 10, |
||||
hash_internal::Generator<T>()); |
||||
TypeParam m(values.begin(), values.end(), 123, hasher, alloc); |
||||
EXPECT_EQ(m.hash_function(), hasher); |
||||
EXPECT_EQ(m.get_allocator(), alloc); |
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); |
||||
EXPECT_GE(m.bucket_count(), 123); |
||||
#endif |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, CopyConstructor) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using H = typename TypeParam::hasher; |
||||
using E = typename TypeParam::key_equal; |
||||
using A = typename TypeParam::allocator_type; |
||||
H hasher; |
||||
E equal; |
||||
A alloc(0); |
||||
TypeParam m(123, hasher, equal, alloc); |
||||
for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()()); |
||||
TypeParam n(m); |
||||
EXPECT_EQ(m.hash_function(), n.hash_function()); |
||||
EXPECT_EQ(m.key_eq(), n.key_eq()); |
||||
EXPECT_EQ(m.get_allocator(), n.get_allocator()); |
||||
EXPECT_EQ(m, n); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, CopyConstructorAlloc) { |
||||
#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using H = typename TypeParam::hasher; |
||||
using E = typename TypeParam::key_equal; |
||||
using A = typename TypeParam::allocator_type; |
||||
H hasher; |
||||
E equal; |
||||
A alloc(0); |
||||
TypeParam m(123, hasher, equal, alloc); |
||||
for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()()); |
||||
TypeParam n(m, A(11)); |
||||
EXPECT_EQ(m.hash_function(), n.hash_function()); |
||||
EXPECT_EQ(m.key_eq(), n.key_eq()); |
||||
EXPECT_NE(m.get_allocator(), n.get_allocator()); |
||||
EXPECT_EQ(m, n); |
||||
#endif |
||||
} |
||||
|
||||
// TODO(alkis): Test non-propagating allocators on copy constructors.
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, MoveConstructor) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using H = typename TypeParam::hasher; |
||||
using E = typename TypeParam::key_equal; |
||||
using A = typename TypeParam::allocator_type; |
||||
H hasher; |
||||
E equal; |
||||
A alloc(0); |
||||
TypeParam m(123, hasher, equal, alloc); |
||||
for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()()); |
||||
TypeParam t(m); |
||||
TypeParam n(std::move(t)); |
||||
EXPECT_EQ(m.hash_function(), n.hash_function()); |
||||
EXPECT_EQ(m.key_eq(), n.key_eq()); |
||||
EXPECT_EQ(m.get_allocator(), n.get_allocator()); |
||||
EXPECT_EQ(m, n); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, MoveConstructorAlloc) { |
||||
#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using H = typename TypeParam::hasher; |
||||
using E = typename TypeParam::key_equal; |
||||
using A = typename TypeParam::allocator_type; |
||||
H hasher; |
||||
E equal; |
||||
A alloc(0); |
||||
TypeParam m(123, hasher, equal, alloc); |
||||
for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()()); |
||||
TypeParam t(m); |
||||
TypeParam n(std::move(t), A(1)); |
||||
EXPECT_EQ(m.hash_function(), n.hash_function()); |
||||
EXPECT_EQ(m.key_eq(), n.key_eq()); |
||||
EXPECT_NE(m.get_allocator(), n.get_allocator()); |
||||
EXPECT_EQ(m, n); |
||||
#endif |
||||
} |
||||
|
||||
// TODO(alkis): Test non-propagating allocators on move constructors.
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, InitializerListBucketHashEqualAlloc) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
hash_internal::Generator<T> gen; |
||||
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()}; |
||||
using H = typename TypeParam::hasher; |
||||
using E = typename TypeParam::key_equal; |
||||
using A = typename TypeParam::allocator_type; |
||||
H hasher; |
||||
E equal; |
||||
A alloc(0); |
||||
TypeParam m(values, 123, hasher, equal, alloc); |
||||
EXPECT_EQ(m.hash_function(), hasher); |
||||
EXPECT_EQ(m.key_eq(), equal); |
||||
EXPECT_EQ(m.get_allocator(), alloc); |
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); |
||||
EXPECT_GE(m.bucket_count(), 123); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, InitializerListBucketAlloc) { |
||||
#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17) |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using A = typename TypeParam::allocator_type; |
||||
hash_internal::Generator<T> gen; |
||||
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()}; |
||||
A alloc(0); |
||||
TypeParam m(values, 123, alloc); |
||||
EXPECT_EQ(m.get_allocator(), alloc); |
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); |
||||
EXPECT_GE(m.bucket_count(), 123); |
||||
#endif |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, InitializerListBucketHashAlloc) { |
||||
#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17) |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using H = typename TypeParam::hasher; |
||||
using A = typename TypeParam::allocator_type; |
||||
H hasher; |
||||
A alloc(0); |
||||
hash_internal::Generator<T> gen; |
||||
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()}; |
||||
TypeParam m(values, 123, hasher, alloc); |
||||
EXPECT_EQ(m.hash_function(), hasher); |
||||
EXPECT_EQ(m.get_allocator(), alloc); |
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); |
||||
EXPECT_GE(m.bucket_count(), 123); |
||||
#endif |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, Assignment) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using H = typename TypeParam::hasher; |
||||
using E = typename TypeParam::key_equal; |
||||
using A = typename TypeParam::allocator_type; |
||||
H hasher; |
||||
E equal; |
||||
A alloc(0); |
||||
hash_internal::Generator<T> gen; |
||||
TypeParam m({gen(), gen(), gen()}, 123, hasher, equal, alloc); |
||||
TypeParam n; |
||||
n = m; |
||||
EXPECT_EQ(m.hash_function(), n.hash_function()); |
||||
EXPECT_EQ(m.key_eq(), n.key_eq()); |
||||
EXPECT_EQ(m, n); |
||||
} |
||||
|
||||
// TODO(alkis): Test [non-]propagating allocators on move/copy assignments
|
||||
// (it depends on traits).
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, MoveAssignment) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using H = typename TypeParam::hasher; |
||||
using E = typename TypeParam::key_equal; |
||||
using A = typename TypeParam::allocator_type; |
||||
H hasher; |
||||
E equal; |
||||
A alloc(0); |
||||
hash_internal::Generator<T> gen; |
||||
TypeParam m({gen(), gen(), gen()}, 123, hasher, equal, alloc); |
||||
TypeParam t(m); |
||||
TypeParam n; |
||||
n = std::move(t); |
||||
EXPECT_EQ(m.hash_function(), n.hash_function()); |
||||
EXPECT_EQ(m.key_eq(), n.key_eq()); |
||||
EXPECT_EQ(m, n); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, AssignmentFromInitializerList) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
hash_internal::Generator<T> gen; |
||||
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()}; |
||||
TypeParam m; |
||||
m = values; |
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, AssignmentOverwritesExisting) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
hash_internal::Generator<T> gen; |
||||
TypeParam m({gen(), gen(), gen()}); |
||||
TypeParam n({gen()}); |
||||
n = m; |
||||
EXPECT_EQ(m, n); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, MoveAssignmentOverwritesExisting) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
hash_internal::Generator<T> gen; |
||||
TypeParam m({gen(), gen(), gen()}); |
||||
TypeParam t(m); |
||||
TypeParam n({gen()}); |
||||
n = std::move(t); |
||||
EXPECT_EQ(m, n); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, AssignmentFromInitializerListOverwritesExisting) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
hash_internal::Generator<T> gen; |
||||
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()}; |
||||
TypeParam m; |
||||
m = values; |
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, AssignmentOnSelf) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
hash_internal::Generator<T> gen; |
||||
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()}; |
||||
TypeParam m(values); |
||||
m = *&m; // Avoid -Wself-assign
|
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); |
||||
} |
||||
|
||||
// We cannot test self move as standard states that it leaves standard
|
||||
// containers in unspecified state (and in practice in causes memory-leak
|
||||
// according to heap-checker!).
|
||||
|
||||
REGISTER_TYPED_TEST_CASE_P( |
||||
ConstructorTest, NoArgs, BucketCount, BucketCountHash, BucketCountHashEqual, |
||||
BucketCountHashEqualAlloc, BucketCountAlloc, BucketCountHashAlloc, |
||||
BucketAlloc, InputIteratorBucketHashEqualAlloc, InputIteratorBucketAlloc, |
||||
InputIteratorBucketHashAlloc, CopyConstructor, CopyConstructorAlloc, |
||||
MoveConstructor, MoveConstructorAlloc, InitializerListBucketHashEqualAlloc, |
||||
InitializerListBucketAlloc, InitializerListBucketHashAlloc, Assignment, |
||||
MoveAssignment, AssignmentFromInitializerList, |
||||
AssignmentOverwritesExisting, MoveAssignmentOverwritesExisting, |
||||
AssignmentFromInitializerListOverwritesExisting, AssignmentOnSelf); |
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_CONSTRUCTOR_TEST_H_
|
@ -0,0 +1,114 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_LOOKUP_TEST_H_ |
||||
#define ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_LOOKUP_TEST_H_ |
||||
|
||||
#include "gmock/gmock.h" |
||||
#include "gtest/gtest.h" |
||||
#include "absl/container/internal/hash_generator_testing.h" |
||||
#include "absl/container/internal/hash_policy_testing.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
|
||||
template <class UnordMap> |
||||
class LookupTest : public ::testing::Test {}; |
||||
|
||||
TYPED_TEST_CASE_P(LookupTest); |
||||
|
||||
TYPED_TEST_P(LookupTest, At) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
std::vector<T> values; |
||||
std::generate_n(std::back_inserter(values), 10, |
||||
hash_internal::Generator<T>()); |
||||
TypeParam m(values.begin(), values.end()); |
||||
for (const auto& p : values) { |
||||
const auto& val = m.at(p.first); |
||||
EXPECT_EQ(p.second, val) << ::testing::PrintToString(p.first); |
||||
} |
||||
} |
||||
|
||||
TYPED_TEST_P(LookupTest, OperatorBracket) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using V = typename TypeParam::mapped_type; |
||||
std::vector<T> values; |
||||
std::generate_n(std::back_inserter(values), 10, |
||||
hash_internal::Generator<T>()); |
||||
TypeParam m; |
||||
for (const auto& p : values) { |
||||
auto& val = m[p.first]; |
||||
EXPECT_EQ(V(), val) << ::testing::PrintToString(p.first); |
||||
val = p.second; |
||||
} |
||||
for (const auto& p : values) |
||||
EXPECT_EQ(p.second, m[p.first]) << ::testing::PrintToString(p.first); |
||||
} |
||||
|
||||
TYPED_TEST_P(LookupTest, Count) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
std::vector<T> values; |
||||
std::generate_n(std::back_inserter(values), 10, |
||||
hash_internal::Generator<T>()); |
||||
TypeParam m; |
||||
for (const auto& p : values) |
||||
EXPECT_EQ(0, m.count(p.first)) << ::testing::PrintToString(p.first); |
||||
m.insert(values.begin(), values.end()); |
||||
for (const auto& p : values) |
||||
EXPECT_EQ(1, m.count(p.first)) << ::testing::PrintToString(p.first); |
||||
} |
||||
|
||||
TYPED_TEST_P(LookupTest, Find) { |
||||
using std::get; |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
std::vector<T> values; |
||||
std::generate_n(std::back_inserter(values), 10, |
||||
hash_internal::Generator<T>()); |
||||
TypeParam m; |
||||
for (const auto& p : values) |
||||
EXPECT_TRUE(m.end() == m.find(p.first)) |
||||
<< ::testing::PrintToString(p.first); |
||||
m.insert(values.begin(), values.end()); |
||||
for (const auto& p : values) { |
||||
auto it = m.find(p.first); |
||||
EXPECT_TRUE(m.end() != it) << ::testing::PrintToString(p.first); |
||||
EXPECT_EQ(p.second, get<1>(*it)) << ::testing::PrintToString(p.first); |
||||
} |
||||
} |
||||
|
||||
TYPED_TEST_P(LookupTest, EqualRange) { |
||||
using std::get; |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
std::vector<T> values; |
||||
std::generate_n(std::back_inserter(values), 10, |
||||
hash_internal::Generator<T>()); |
||||
TypeParam m; |
||||
for (const auto& p : values) { |
||||
auto r = m.equal_range(p.first); |
||||
ASSERT_EQ(0, std::distance(r.first, r.second)); |
||||
} |
||||
m.insert(values.begin(), values.end()); |
||||
for (const auto& p : values) { |
||||
auto r = m.equal_range(p.first); |
||||
ASSERT_EQ(1, std::distance(r.first, r.second)); |
||||
EXPECT_EQ(p.second, get<1>(*r.first)) << ::testing::PrintToString(p.first); |
||||
} |
||||
} |
||||
|
||||
REGISTER_TYPED_TEST_CASE_P(LookupTest, At, OperatorBracket, Count, Find, |
||||
EqualRange); |
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_LOOKUP_TEST_H_
|
@ -0,0 +1,272 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_MODIFIERS_TEST_H_ |
||||
#define ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_MODIFIERS_TEST_H_ |
||||
|
||||
#include "gmock/gmock.h" |
||||
#include "gtest/gtest.h" |
||||
#include "absl/container/internal/hash_generator_testing.h" |
||||
#include "absl/container/internal/hash_policy_testing.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
|
||||
template <class UnordMap> |
||||
class ModifiersTest : public ::testing::Test {}; |
||||
|
||||
TYPED_TEST_CASE_P(ModifiersTest); |
||||
|
||||
TYPED_TEST_P(ModifiersTest, Clear) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
std::vector<T> values; |
||||
std::generate_n(std::back_inserter(values), 10, |
||||
hash_internal::Generator<T>()); |
||||
TypeParam m(values.begin(), values.end()); |
||||
ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); |
||||
m.clear(); |
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAre()); |
||||
EXPECT_TRUE(m.empty()); |
||||
} |
||||
|
||||
TYPED_TEST_P(ModifiersTest, Insert) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using V = typename TypeParam::mapped_type; |
||||
T val = hash_internal::Generator<T>()(); |
||||
TypeParam m; |
||||
auto p = m.insert(val); |
||||
EXPECT_TRUE(p.second); |
||||
EXPECT_EQ(val, *p.first); |
||||
T val2 = {val.first, hash_internal::Generator<V>()()}; |
||||
p = m.insert(val2); |
||||
EXPECT_FALSE(p.second); |
||||
EXPECT_EQ(val, *p.first); |
||||
} |
||||
|
||||
TYPED_TEST_P(ModifiersTest, InsertHint) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using V = typename TypeParam::mapped_type; |
||||
T val = hash_internal::Generator<T>()(); |
||||
TypeParam m; |
||||
auto it = m.insert(m.end(), val); |
||||
EXPECT_TRUE(it != m.end()); |
||||
EXPECT_EQ(val, *it); |
||||
T val2 = {val.first, hash_internal::Generator<V>()()}; |
||||
it = m.insert(it, val2); |
||||
EXPECT_TRUE(it != m.end()); |
||||
EXPECT_EQ(val, *it); |
||||
} |
||||
|
||||
TYPED_TEST_P(ModifiersTest, InsertRange) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
std::vector<T> values; |
||||
std::generate_n(std::back_inserter(values), 10, |
||||
hash_internal::Generator<T>()); |
||||
TypeParam m; |
||||
m.insert(values.begin(), values.end()); |
||||
ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); |
||||
} |
||||
|
||||
TYPED_TEST_P(ModifiersTest, InsertOrAssign) { |
||||
#ifdef UNORDERED_MAP_CXX17 |
||||
using std::get; |
||||
using K = typename TypeParam::key_type; |
||||
using V = typename TypeParam::mapped_type; |
||||
K k = hash_internal::Generator<K>()(); |
||||
V val = hash_internal::Generator<V>()(); |
||||
TypeParam m; |
||||
auto p = m.insert_or_assign(k, val); |
||||
EXPECT_TRUE(p.second); |
||||
EXPECT_EQ(k, get<0>(*p.first)); |
||||
EXPECT_EQ(val, get<1>(*p.first)); |
||||
V val2 = hash_internal::Generator<V>()(); |
||||
p = m.insert_or_assign(k, val2); |
||||
EXPECT_FALSE(p.second); |
||||
EXPECT_EQ(k, get<0>(*p.first)); |
||||
EXPECT_EQ(val2, get<1>(*p.first)); |
||||
#endif |
||||
} |
||||
|
||||
TYPED_TEST_P(ModifiersTest, InsertOrAssignHint) { |
||||
#ifdef UNORDERED_MAP_CXX17 |
||||
using std::get; |
||||
using K = typename TypeParam::key_type; |
||||
using V = typename TypeParam::mapped_type; |
||||
K k = hash_internal::Generator<K>()(); |
||||
V val = hash_internal::Generator<V>()(); |
||||
TypeParam m; |
||||
auto it = m.insert_or_assign(m.end(), k, val); |
||||
EXPECT_TRUE(it != m.end()); |
||||
EXPECT_EQ(k, get<0>(*it)); |
||||
EXPECT_EQ(val, get<1>(*it)); |
||||
V val2 = hash_internal::Generator<V>()(); |
||||
it = m.insert_or_assign(it, k, val2); |
||||
EXPECT_EQ(k, get<0>(*it)); |
||||
EXPECT_EQ(val2, get<1>(*it)); |
||||
#endif |
||||
} |
||||
|
||||
TYPED_TEST_P(ModifiersTest, Emplace) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using V = typename TypeParam::mapped_type; |
||||
T val = hash_internal::Generator<T>()(); |
||||
TypeParam m; |
||||
// TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps
|
||||
// with test traits/policy.
|
||||
auto p = m.emplace(val); |
||||
EXPECT_TRUE(p.second); |
||||
EXPECT_EQ(val, *p.first); |
||||
T val2 = {val.first, hash_internal::Generator<V>()()}; |
||||
p = m.emplace(val2); |
||||
EXPECT_FALSE(p.second); |
||||
EXPECT_EQ(val, *p.first); |
||||
} |
||||
|
||||
TYPED_TEST_P(ModifiersTest, EmplaceHint) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using V = typename TypeParam::mapped_type; |
||||
T val = hash_internal::Generator<T>()(); |
||||
TypeParam m; |
||||
// TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps
|
||||
// with test traits/policy.
|
||||
auto it = m.emplace_hint(m.end(), val); |
||||
EXPECT_EQ(val, *it); |
||||
T val2 = {val.first, hash_internal::Generator<V>()()}; |
||||
it = m.emplace_hint(it, val2); |
||||
EXPECT_EQ(val, *it); |
||||
} |
||||
|
||||
TYPED_TEST_P(ModifiersTest, TryEmplace) { |
||||
#ifdef UNORDERED_MAP_CXX17 |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using V = typename TypeParam::mapped_type; |
||||
T val = hash_internal::Generator<T>()(); |
||||
TypeParam m; |
||||
// TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps
|
||||
// with test traits/policy.
|
||||
auto p = m.try_emplace(val.first, val.second); |
||||
EXPECT_TRUE(p.second); |
||||
EXPECT_EQ(val, *p.first); |
||||
T val2 = {val.first, hash_internal::Generator<V>()()}; |
||||
p = m.try_emplace(val2.first, val2.second); |
||||
EXPECT_FALSE(p.second); |
||||
EXPECT_EQ(val, *p.first); |
||||
#endif |
||||
} |
||||
|
||||
TYPED_TEST_P(ModifiersTest, TryEmplaceHint) { |
||||
#ifdef UNORDERED_MAP_CXX17 |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using V = typename TypeParam::mapped_type; |
||||
T val = hash_internal::Generator<T>()(); |
||||
TypeParam m; |
||||
// TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps
|
||||
// with test traits/policy.
|
||||
auto it = m.try_emplace(m.end(), val.first, val.second); |
||||
EXPECT_EQ(val, *it); |
||||
T val2 = {val.first, hash_internal::Generator<V>()()}; |
||||
it = m.try_emplace(it, val2.first, val2.second); |
||||
EXPECT_EQ(val, *it); |
||||
#endif |
||||
} |
||||
|
||||
template <class V> |
||||
using IfNotVoid = typename std::enable_if<!std::is_void<V>::value, V>::type; |
||||
|
||||
// In openmap we chose not to return the iterator from erase because that's
|
||||
// more expensive. As such we adapt erase to return an iterator here.
|
||||
struct EraseFirst { |
||||
template <class Map> |
||||
auto operator()(Map* m, int) const |
||||
-> IfNotVoid<decltype(m->erase(m->begin()))> { |
||||
return m->erase(m->begin()); |
||||
} |
||||
template <class Map> |
||||
typename Map::iterator operator()(Map* m, ...) const { |
||||
auto it = m->begin(); |
||||
m->erase(it++); |
||||
return it; |
||||
} |
||||
}; |
||||
|
||||
TYPED_TEST_P(ModifiersTest, Erase) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using std::get; |
||||
std::vector<T> values; |
||||
std::generate_n(std::back_inserter(values), 10, |
||||
hash_internal::Generator<T>()); |
||||
TypeParam m(values.begin(), values.end()); |
||||
ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); |
||||
auto& first = *m.begin(); |
||||
std::vector<T> values2; |
||||
for (const auto& val : values) |
||||
if (get<0>(val) != get<0>(first)) values2.push_back(val); |
||||
auto it = EraseFirst()(&m, 0); |
||||
ASSERT_TRUE(it != m.end()); |
||||
EXPECT_EQ(1, std::count(values2.begin(), values2.end(), *it)); |
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values2.begin(), |
||||
values2.end())); |
||||
} |
||||
|
||||
TYPED_TEST_P(ModifiersTest, EraseRange) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
std::vector<T> values; |
||||
std::generate_n(std::back_inserter(values), 10, |
||||
hash_internal::Generator<T>()); |
||||
TypeParam m(values.begin(), values.end()); |
||||
ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); |
||||
auto it = m.erase(m.begin(), m.end()); |
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAre()); |
||||
EXPECT_TRUE(it == m.end()); |
||||
} |
||||
|
||||
TYPED_TEST_P(ModifiersTest, EraseKey) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
std::vector<T> values; |
||||
std::generate_n(std::back_inserter(values), 10, |
||||
hash_internal::Generator<T>()); |
||||
TypeParam m(values.begin(), values.end()); |
||||
ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values)); |
||||
EXPECT_EQ(1, m.erase(values[0].first)); |
||||
EXPECT_EQ(0, std::count(m.begin(), m.end(), values[0])); |
||||
EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values.begin() + 1, |
||||
values.end())); |
||||
} |
||||
|
||||
TYPED_TEST_P(ModifiersTest, Swap) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
std::vector<T> v1; |
||||
std::vector<T> v2; |
||||
std::generate_n(std::back_inserter(v1), 5, hash_internal::Generator<T>()); |
||||
std::generate_n(std::back_inserter(v2), 5, hash_internal::Generator<T>()); |
||||
TypeParam m1(v1.begin(), v1.end()); |
||||
TypeParam m2(v2.begin(), v2.end()); |
||||
EXPECT_THAT(items(m1), ::testing::UnorderedElementsAreArray(v1)); |
||||
EXPECT_THAT(items(m2), ::testing::UnorderedElementsAreArray(v2)); |
||||
m1.swap(m2); |
||||
EXPECT_THAT(items(m1), ::testing::UnorderedElementsAreArray(v2)); |
||||
EXPECT_THAT(items(m2), ::testing::UnorderedElementsAreArray(v1)); |
||||
} |
||||
|
||||
// TODO(alkis): Write tests for extract.
|
||||
// TODO(alkis): Write tests for merge.
|
||||
|
||||
REGISTER_TYPED_TEST_CASE_P(ModifiersTest, Clear, Insert, InsertHint, |
||||
InsertRange, InsertOrAssign, InsertOrAssignHint, |
||||
Emplace, EmplaceHint, TryEmplace, TryEmplaceHint, |
||||
Erase, EraseRange, EraseKey, Swap); |
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_MODIFIERS_TEST_H_
|
@ -0,0 +1,38 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <unordered_map> |
||||
|
||||
#include "absl/container/internal/unordered_map_constructor_test.h" |
||||
#include "absl/container/internal/unordered_map_lookup_test.h" |
||||
#include "absl/container/internal/unordered_map_modifiers_test.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
namespace { |
||||
|
||||
using MapTypes = ::testing::Types< |
||||
std::unordered_map<int, int, StatefulTestingHash, StatefulTestingEqual, |
||||
Alloc<std::pair<const int, int>>>, |
||||
std::unordered_map<std::string, std::string, StatefulTestingHash, |
||||
StatefulTestingEqual, |
||||
Alloc<std::pair<const std::string, std::string>>>>; |
||||
|
||||
INSTANTIATE_TYPED_TEST_CASE_P(UnorderedMap, ConstructorTest, MapTypes); |
||||
INSTANTIATE_TYPED_TEST_CASE_P(UnorderedMap, LookupTest, MapTypes); |
||||
INSTANTIATE_TYPED_TEST_CASE_P(UnorderedMap, ModifiersTest, MapTypes); |
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
@ -0,0 +1,408 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_SET_CONSTRUCTOR_TEST_H_ |
||||
#define ABSL_CONTAINER_INTERNAL_UNORDERED_SET_CONSTRUCTOR_TEST_H_ |
||||
|
||||
#include <algorithm> |
||||
#include <vector> |
||||
|
||||
#include "gmock/gmock.h" |
||||
#include "gtest/gtest.h" |
||||
#include "absl/container/internal/hash_generator_testing.h" |
||||
#include "absl/container/internal/hash_policy_testing.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
|
||||
template <class UnordMap> |
||||
class ConstructorTest : public ::testing::Test {}; |
||||
|
||||
TYPED_TEST_CASE_P(ConstructorTest); |
||||
|
||||
TYPED_TEST_P(ConstructorTest, NoArgs) { |
||||
TypeParam m; |
||||
EXPECT_TRUE(m.empty()); |
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre()); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketCount) { |
||||
TypeParam m(123); |
||||
EXPECT_TRUE(m.empty()); |
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre()); |
||||
EXPECT_GE(m.bucket_count(), 123); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketCountHash) { |
||||
using H = typename TypeParam::hasher; |
||||
H hasher; |
||||
TypeParam m(123, hasher); |
||||
EXPECT_EQ(m.hash_function(), hasher); |
||||
EXPECT_TRUE(m.empty()); |
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre()); |
||||
EXPECT_GE(m.bucket_count(), 123); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketCountHashEqual) { |
||||
using H = typename TypeParam::hasher; |
||||
using E = typename TypeParam::key_equal; |
||||
H hasher; |
||||
E equal; |
||||
TypeParam m(123, hasher, equal); |
||||
EXPECT_EQ(m.hash_function(), hasher); |
||||
EXPECT_EQ(m.key_eq(), equal); |
||||
EXPECT_TRUE(m.empty()); |
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre()); |
||||
EXPECT_GE(m.bucket_count(), 123); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketCountHashEqualAlloc) { |
||||
using H = typename TypeParam::hasher; |
||||
using E = typename TypeParam::key_equal; |
||||
using A = typename TypeParam::allocator_type; |
||||
H hasher; |
||||
E equal; |
||||
A alloc(0); |
||||
TypeParam m(123, hasher, equal, alloc); |
||||
EXPECT_EQ(m.hash_function(), hasher); |
||||
EXPECT_EQ(m.key_eq(), equal); |
||||
EXPECT_EQ(m.get_allocator(), alloc); |
||||
EXPECT_TRUE(m.empty()); |
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre()); |
||||
EXPECT_GE(m.bucket_count(), 123); |
||||
|
||||
const auto& cm = m; |
||||
EXPECT_EQ(cm.hash_function(), hasher); |
||||
EXPECT_EQ(cm.key_eq(), equal); |
||||
EXPECT_EQ(cm.get_allocator(), alloc); |
||||
EXPECT_TRUE(cm.empty()); |
||||
EXPECT_THAT(keys(cm), ::testing::UnorderedElementsAre()); |
||||
EXPECT_GE(cm.bucket_count(), 123); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketCountAlloc) { |
||||
#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17) |
||||
using A = typename TypeParam::allocator_type; |
||||
A alloc(0); |
||||
TypeParam m(123, alloc); |
||||
EXPECT_EQ(m.get_allocator(), alloc); |
||||
EXPECT_TRUE(m.empty()); |
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre()); |
||||
EXPECT_GE(m.bucket_count(), 123); |
||||
#endif |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketCountHashAlloc) { |
||||
#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17) |
||||
using H = typename TypeParam::hasher; |
||||
using A = typename TypeParam::allocator_type; |
||||
H hasher; |
||||
A alloc(0); |
||||
TypeParam m(123, hasher, alloc); |
||||
EXPECT_EQ(m.hash_function(), hasher); |
||||
EXPECT_EQ(m.get_allocator(), alloc); |
||||
EXPECT_TRUE(m.empty()); |
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre()); |
||||
EXPECT_GE(m.bucket_count(), 123); |
||||
#endif |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, BucketAlloc) { |
||||
#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS |
||||
using A = typename TypeParam::allocator_type; |
||||
A alloc(0); |
||||
TypeParam m(alloc); |
||||
EXPECT_EQ(m.get_allocator(), alloc); |
||||
EXPECT_TRUE(m.empty()); |
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre()); |
||||
#endif |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, InputIteratorBucketHashEqualAlloc) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using H = typename TypeParam::hasher; |
||||
using E = typename TypeParam::key_equal; |
||||
using A = typename TypeParam::allocator_type; |
||||
H hasher; |
||||
E equal; |
||||
A alloc(0); |
||||
std::vector<T> values; |
||||
for (size_t i = 0; i != 10; ++i) |
||||
values.push_back(hash_internal::Generator<T>()()); |
||||
TypeParam m(values.begin(), values.end(), 123, hasher, equal, alloc); |
||||
EXPECT_EQ(m.hash_function(), hasher); |
||||
EXPECT_EQ(m.key_eq(), equal); |
||||
EXPECT_EQ(m.get_allocator(), alloc); |
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); |
||||
EXPECT_GE(m.bucket_count(), 123); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, InputIteratorBucketAlloc) { |
||||
#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17) |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using A = typename TypeParam::allocator_type; |
||||
A alloc(0); |
||||
std::vector<T> values; |
||||
for (size_t i = 0; i != 10; ++i) |
||||
values.push_back(hash_internal::Generator<T>()()); |
||||
TypeParam m(values.begin(), values.end(), 123, alloc); |
||||
EXPECT_EQ(m.get_allocator(), alloc); |
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); |
||||
EXPECT_GE(m.bucket_count(), 123); |
||||
#endif |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, InputIteratorBucketHashAlloc) { |
||||
#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17) |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using H = typename TypeParam::hasher; |
||||
using A = typename TypeParam::allocator_type; |
||||
H hasher; |
||||
A alloc(0); |
||||
std::vector<T> values; |
||||
for (size_t i = 0; i != 10; ++i) |
||||
values.push_back(hash_internal::Generator<T>()()); |
||||
TypeParam m(values.begin(), values.end(), 123, hasher, alloc); |
||||
EXPECT_EQ(m.hash_function(), hasher); |
||||
EXPECT_EQ(m.get_allocator(), alloc); |
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); |
||||
EXPECT_GE(m.bucket_count(), 123); |
||||
#endif |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, CopyConstructor) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using H = typename TypeParam::hasher; |
||||
using E = typename TypeParam::key_equal; |
||||
using A = typename TypeParam::allocator_type; |
||||
H hasher; |
||||
E equal; |
||||
A alloc(0); |
||||
TypeParam m(123, hasher, equal, alloc); |
||||
for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()()); |
||||
TypeParam n(m); |
||||
EXPECT_EQ(m.hash_function(), n.hash_function()); |
||||
EXPECT_EQ(m.key_eq(), n.key_eq()); |
||||
EXPECT_EQ(m.get_allocator(), n.get_allocator()); |
||||
EXPECT_EQ(m, n); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, CopyConstructorAlloc) { |
||||
#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using H = typename TypeParam::hasher; |
||||
using E = typename TypeParam::key_equal; |
||||
using A = typename TypeParam::allocator_type; |
||||
H hasher; |
||||
E equal; |
||||
A alloc(0); |
||||
TypeParam m(123, hasher, equal, alloc); |
||||
for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()()); |
||||
TypeParam n(m, A(11)); |
||||
EXPECT_EQ(m.hash_function(), n.hash_function()); |
||||
EXPECT_EQ(m.key_eq(), n.key_eq()); |
||||
EXPECT_NE(m.get_allocator(), n.get_allocator()); |
||||
EXPECT_EQ(m, n); |
||||
#endif |
||||
} |
||||
|
||||
// TODO(alkis): Test non-propagating allocators on copy constructors.
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, MoveConstructor) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using H = typename TypeParam::hasher; |
||||
using E = typename TypeParam::key_equal; |
||||
using A = typename TypeParam::allocator_type; |
||||
H hasher; |
||||
E equal; |
||||
A alloc(0); |
||||
TypeParam m(123, hasher, equal, alloc); |
||||
for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()()); |
||||
TypeParam t(m); |
||||
TypeParam n(std::move(t)); |
||||
EXPECT_EQ(m.hash_function(), n.hash_function()); |
||||
EXPECT_EQ(m.key_eq(), n.key_eq()); |
||||
EXPECT_EQ(m.get_allocator(), n.get_allocator()); |
||||
EXPECT_EQ(m, n); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, MoveConstructorAlloc) { |
||||
#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using H = typename TypeParam::hasher; |
||||
using E = typename TypeParam::key_equal; |
||||
using A = typename TypeParam::allocator_type; |
||||
H hasher; |
||||
E equal; |
||||
A alloc(0); |
||||
TypeParam m(123, hasher, equal, alloc); |
||||
for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()()); |
||||
TypeParam t(m); |
||||
TypeParam n(std::move(t), A(1)); |
||||
EXPECT_EQ(m.hash_function(), n.hash_function()); |
||||
EXPECT_EQ(m.key_eq(), n.key_eq()); |
||||
EXPECT_NE(m.get_allocator(), n.get_allocator()); |
||||
EXPECT_EQ(m, n); |
||||
#endif |
||||
} |
||||
|
||||
// TODO(alkis): Test non-propagating allocators on move constructors.
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, InitializerListBucketHashEqualAlloc) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
hash_internal::Generator<T> gen; |
||||
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()}; |
||||
using H = typename TypeParam::hasher; |
||||
using E = typename TypeParam::key_equal; |
||||
using A = typename TypeParam::allocator_type; |
||||
H hasher; |
||||
E equal; |
||||
A alloc(0); |
||||
TypeParam m(values, 123, hasher, equal, alloc); |
||||
EXPECT_EQ(m.hash_function(), hasher); |
||||
EXPECT_EQ(m.key_eq(), equal); |
||||
EXPECT_EQ(m.get_allocator(), alloc); |
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); |
||||
EXPECT_GE(m.bucket_count(), 123); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, InitializerListBucketAlloc) { |
||||
#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17) |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using A = typename TypeParam::allocator_type; |
||||
hash_internal::Generator<T> gen; |
||||
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()}; |
||||
A alloc(0); |
||||
TypeParam m(values, 123, alloc); |
||||
EXPECT_EQ(m.get_allocator(), alloc); |
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); |
||||
EXPECT_GE(m.bucket_count(), 123); |
||||
#endif |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, InitializerListBucketHashAlloc) { |
||||
#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17) |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using H = typename TypeParam::hasher; |
||||
using A = typename TypeParam::allocator_type; |
||||
H hasher; |
||||
A alloc(0); |
||||
hash_internal::Generator<T> gen; |
||||
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()}; |
||||
TypeParam m(values, 123, hasher, alloc); |
||||
EXPECT_EQ(m.hash_function(), hasher); |
||||
EXPECT_EQ(m.get_allocator(), alloc); |
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); |
||||
EXPECT_GE(m.bucket_count(), 123); |
||||
#endif |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, Assignment) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using H = typename TypeParam::hasher; |
||||
using E = typename TypeParam::key_equal; |
||||
using A = typename TypeParam::allocator_type; |
||||
H hasher; |
||||
E equal; |
||||
A alloc(0); |
||||
hash_internal::Generator<T> gen; |
||||
TypeParam m({gen(), gen(), gen()}, 123, hasher, equal, alloc); |
||||
TypeParam n; |
||||
n = m; |
||||
EXPECT_EQ(m.hash_function(), n.hash_function()); |
||||
EXPECT_EQ(m.key_eq(), n.key_eq()); |
||||
EXPECT_EQ(m, n); |
||||
} |
||||
|
||||
// TODO(alkis): Test [non-]propagating allocators on move/copy assignments
|
||||
// (it depends on traits).
|
||||
|
||||
TYPED_TEST_P(ConstructorTest, MoveAssignment) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
using H = typename TypeParam::hasher; |
||||
using E = typename TypeParam::key_equal; |
||||
using A = typename TypeParam::allocator_type; |
||||
H hasher; |
||||
E equal; |
||||
A alloc(0); |
||||
hash_internal::Generator<T> gen; |
||||
TypeParam m({gen(), gen(), gen()}, 123, hasher, equal, alloc); |
||||
TypeParam t(m); |
||||
TypeParam n; |
||||
n = std::move(t); |
||||
EXPECT_EQ(m.hash_function(), n.hash_function()); |
||||
EXPECT_EQ(m.key_eq(), n.key_eq()); |
||||
EXPECT_EQ(m, n); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, AssignmentFromInitializerList) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
hash_internal::Generator<T> gen; |
||||
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()}; |
||||
TypeParam m; |
||||
m = values; |
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, AssignmentOverwritesExisting) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
hash_internal::Generator<T> gen; |
||||
TypeParam m({gen(), gen(), gen()}); |
||||
TypeParam n({gen()}); |
||||
n = m; |
||||
EXPECT_EQ(m, n); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, MoveAssignmentOverwritesExisting) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
hash_internal::Generator<T> gen; |
||||
TypeParam m({gen(), gen(), gen()}); |
||||
TypeParam t(m); |
||||
TypeParam n({gen()}); |
||||
n = std::move(t); |
||||
EXPECT_EQ(m, n); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, AssignmentFromInitializerListOverwritesExisting) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
hash_internal::Generator<T> gen; |
||||
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()}; |
||||
TypeParam m; |
||||
m = values; |
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); |
||||
} |
||||
|
||||
TYPED_TEST_P(ConstructorTest, AssignmentOnSelf) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
hash_internal::Generator<T> gen; |
||||
std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()}; |
||||
TypeParam m(values); |
||||
m = *&m; // Avoid -Wself-assign.
|
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); |
||||
} |
||||
|
||||
REGISTER_TYPED_TEST_CASE_P( |
||||
ConstructorTest, NoArgs, BucketCount, BucketCountHash, BucketCountHashEqual, |
||||
BucketCountHashEqualAlloc, BucketCountAlloc, BucketCountHashAlloc, |
||||
BucketAlloc, InputIteratorBucketHashEqualAlloc, InputIteratorBucketAlloc, |
||||
InputIteratorBucketHashAlloc, CopyConstructor, CopyConstructorAlloc, |
||||
MoveConstructor, MoveConstructorAlloc, InitializerListBucketHashEqualAlloc, |
||||
InitializerListBucketAlloc, InitializerListBucketHashAlloc, Assignment, |
||||
MoveAssignment, AssignmentFromInitializerList, |
||||
AssignmentOverwritesExisting, MoveAssignmentOverwritesExisting, |
||||
AssignmentFromInitializerListOverwritesExisting, AssignmentOnSelf); |
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_SET_CONSTRUCTOR_TEST_H_
|
@ -0,0 +1,88 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_SET_LOOKUP_TEST_H_ |
||||
#define ABSL_CONTAINER_INTERNAL_UNORDERED_SET_LOOKUP_TEST_H_ |
||||
|
||||
#include "gmock/gmock.h" |
||||
#include "gtest/gtest.h" |
||||
#include "absl/container/internal/hash_generator_testing.h" |
||||
#include "absl/container/internal/hash_policy_testing.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
|
||||
template <class UnordSet> |
||||
class LookupTest : public ::testing::Test {}; |
||||
|
||||
TYPED_TEST_CASE_P(LookupTest); |
||||
|
||||
TYPED_TEST_P(LookupTest, Count) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
std::vector<T> values; |
||||
std::generate_n(std::back_inserter(values), 10, |
||||
hash_internal::Generator<T>()); |
||||
TypeParam m; |
||||
for (const auto& v : values) |
||||
EXPECT_EQ(0, m.count(v)) << ::testing::PrintToString(v); |
||||
m.insert(values.begin(), values.end()); |
||||
for (const auto& v : values) |
||||
EXPECT_EQ(1, m.count(v)) << ::testing::PrintToString(v); |
||||
} |
||||
|
||||
TYPED_TEST_P(LookupTest, Find) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
std::vector<T> values; |
||||
std::generate_n(std::back_inserter(values), 10, |
||||
hash_internal::Generator<T>()); |
||||
TypeParam m; |
||||
for (const auto& v : values) |
||||
EXPECT_TRUE(m.end() == m.find(v)) << ::testing::PrintToString(v); |
||||
m.insert(values.begin(), values.end()); |
||||
for (const auto& v : values) { |
||||
typename TypeParam::iterator it = m.find(v); |
||||
static_assert(std::is_same<const typename TypeParam::value_type&, |
||||
decltype(*it)>::value, |
||||
""); |
||||
static_assert(std::is_same<const typename TypeParam::value_type*, |
||||
decltype(it.operator->())>::value, |
||||
""); |
||||
EXPECT_TRUE(m.end() != it) << ::testing::PrintToString(v); |
||||
EXPECT_EQ(v, *it) << ::testing::PrintToString(v); |
||||
} |
||||
} |
||||
|
||||
TYPED_TEST_P(LookupTest, EqualRange) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
std::vector<T> values; |
||||
std::generate_n(std::back_inserter(values), 10, |
||||
hash_internal::Generator<T>()); |
||||
TypeParam m; |
||||
for (const auto& v : values) { |
||||
auto r = m.equal_range(v); |
||||
ASSERT_EQ(0, std::distance(r.first, r.second)); |
||||
} |
||||
m.insert(values.begin(), values.end()); |
||||
for (const auto& v : values) { |
||||
auto r = m.equal_range(v); |
||||
ASSERT_EQ(1, std::distance(r.first, r.second)); |
||||
EXPECT_EQ(v, *r.first); |
||||
} |
||||
} |
||||
|
||||
REGISTER_TYPED_TEST_CASE_P(LookupTest, Count, Find, EqualRange); |
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_SET_LOOKUP_TEST_H_
|
@ -0,0 +1,187 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_SET_MODIFIERS_TEST_H_ |
||||
#define ABSL_CONTAINER_INTERNAL_UNORDERED_SET_MODIFIERS_TEST_H_ |
||||
|
||||
#include "gmock/gmock.h" |
||||
#include "gtest/gtest.h" |
||||
#include "absl/container/internal/hash_generator_testing.h" |
||||
#include "absl/container/internal/hash_policy_testing.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
|
||||
template <class UnordSet> |
||||
class ModifiersTest : public ::testing::Test {}; |
||||
|
||||
TYPED_TEST_CASE_P(ModifiersTest); |
||||
|
||||
TYPED_TEST_P(ModifiersTest, Clear) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
std::vector<T> values; |
||||
std::generate_n(std::back_inserter(values), 10, |
||||
hash_internal::Generator<T>()); |
||||
TypeParam m(values.begin(), values.end()); |
||||
ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); |
||||
m.clear(); |
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre()); |
||||
EXPECT_TRUE(m.empty()); |
||||
} |
||||
|
||||
TYPED_TEST_P(ModifiersTest, Insert) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
T val = hash_internal::Generator<T>()(); |
||||
TypeParam m; |
||||
auto p = m.insert(val); |
||||
EXPECT_TRUE(p.second); |
||||
EXPECT_EQ(val, *p.first); |
||||
p = m.insert(val); |
||||
EXPECT_FALSE(p.second); |
||||
} |
||||
|
||||
TYPED_TEST_P(ModifiersTest, InsertHint) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
T val = hash_internal::Generator<T>()(); |
||||
TypeParam m; |
||||
auto it = m.insert(m.end(), val); |
||||
EXPECT_TRUE(it != m.end()); |
||||
EXPECT_EQ(val, *it); |
||||
it = m.insert(it, val); |
||||
EXPECT_TRUE(it != m.end()); |
||||
EXPECT_EQ(val, *it); |
||||
} |
||||
|
||||
TYPED_TEST_P(ModifiersTest, InsertRange) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
std::vector<T> values; |
||||
std::generate_n(std::back_inserter(values), 10, |
||||
hash_internal::Generator<T>()); |
||||
TypeParam m; |
||||
m.insert(values.begin(), values.end()); |
||||
ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); |
||||
} |
||||
|
||||
TYPED_TEST_P(ModifiersTest, Emplace) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
T val = hash_internal::Generator<T>()(); |
||||
TypeParam m; |
||||
// TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps
|
||||
// with test traits/policy.
|
||||
auto p = m.emplace(val); |
||||
EXPECT_TRUE(p.second); |
||||
EXPECT_EQ(val, *p.first); |
||||
p = m.emplace(val); |
||||
EXPECT_FALSE(p.second); |
||||
EXPECT_EQ(val, *p.first); |
||||
} |
||||
|
||||
TYPED_TEST_P(ModifiersTest, EmplaceHint) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
T val = hash_internal::Generator<T>()(); |
||||
TypeParam m; |
||||
// TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps
|
||||
// with test traits/policy.
|
||||
auto it = m.emplace_hint(m.end(), val); |
||||
EXPECT_EQ(val, *it); |
||||
it = m.emplace_hint(it, val); |
||||
EXPECT_EQ(val, *it); |
||||
} |
||||
|
||||
template <class V> |
||||
using IfNotVoid = typename std::enable_if<!std::is_void<V>::value, V>::type; |
||||
|
||||
// In openmap we chose not to return the iterator from erase because that's
|
||||
// more expensive. As such we adapt erase to return an iterator here.
|
||||
struct EraseFirst { |
||||
template <class Map> |
||||
auto operator()(Map* m, int) const |
||||
-> IfNotVoid<decltype(m->erase(m->begin()))> { |
||||
return m->erase(m->begin()); |
||||
} |
||||
template <class Map> |
||||
typename Map::iterator operator()(Map* m, ...) const { |
||||
auto it = m->begin(); |
||||
m->erase(it++); |
||||
return it; |
||||
} |
||||
}; |
||||
|
||||
TYPED_TEST_P(ModifiersTest, Erase) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
std::vector<T> values; |
||||
std::generate_n(std::back_inserter(values), 10, |
||||
hash_internal::Generator<T>()); |
||||
TypeParam m(values.begin(), values.end()); |
||||
ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); |
||||
std::vector<T> values2; |
||||
for (const auto& val : values) |
||||
if (val != *m.begin()) values2.push_back(val); |
||||
auto it = EraseFirst()(&m, 0); |
||||
ASSERT_TRUE(it != m.end()); |
||||
EXPECT_EQ(1, std::count(values2.begin(), values2.end(), *it)); |
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values2.begin(), |
||||
values2.end())); |
||||
} |
||||
|
||||
TYPED_TEST_P(ModifiersTest, EraseRange) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
std::vector<T> values; |
||||
std::generate_n(std::back_inserter(values), 10, |
||||
hash_internal::Generator<T>()); |
||||
TypeParam m(values.begin(), values.end()); |
||||
ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); |
||||
auto it = m.erase(m.begin(), m.end()); |
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre()); |
||||
EXPECT_TRUE(it == m.end()); |
||||
} |
||||
|
||||
TYPED_TEST_P(ModifiersTest, EraseKey) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
std::vector<T> values; |
||||
std::generate_n(std::back_inserter(values), 10, |
||||
hash_internal::Generator<T>()); |
||||
TypeParam m(values.begin(), values.end()); |
||||
ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values)); |
||||
EXPECT_EQ(1, m.erase(values[0])); |
||||
EXPECT_EQ(0, std::count(m.begin(), m.end(), values[0])); |
||||
EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values.begin() + 1, |
||||
values.end())); |
||||
} |
||||
|
||||
TYPED_TEST_P(ModifiersTest, Swap) { |
||||
using T = hash_internal::GeneratedType<TypeParam>; |
||||
std::vector<T> v1; |
||||
std::vector<T> v2; |
||||
std::generate_n(std::back_inserter(v1), 5, hash_internal::Generator<T>()); |
||||
std::generate_n(std::back_inserter(v2), 5, hash_internal::Generator<T>()); |
||||
TypeParam m1(v1.begin(), v1.end()); |
||||
TypeParam m2(v2.begin(), v2.end()); |
||||
EXPECT_THAT(keys(m1), ::testing::UnorderedElementsAreArray(v1)); |
||||
EXPECT_THAT(keys(m2), ::testing::UnorderedElementsAreArray(v2)); |
||||
m1.swap(m2); |
||||
EXPECT_THAT(keys(m1), ::testing::UnorderedElementsAreArray(v2)); |
||||
EXPECT_THAT(keys(m2), ::testing::UnorderedElementsAreArray(v1)); |
||||
} |
||||
|
||||
// TODO(alkis): Write tests for extract.
|
||||
// TODO(alkis): Write tests for merge.
|
||||
|
||||
REGISTER_TYPED_TEST_CASE_P(ModifiersTest, Clear, Insert, InsertHint, |
||||
InsertRange, Emplace, EmplaceHint, Erase, EraseRange, |
||||
EraseKey, Swap); |
||||
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_SET_MODIFIERS_TEST_H_
|
@ -0,0 +1,37 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <unordered_set> |
||||
|
||||
#include "absl/container/internal/unordered_set_constructor_test.h" |
||||
#include "absl/container/internal/unordered_set_lookup_test.h" |
||||
#include "absl/container/internal/unordered_set_modifiers_test.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
namespace { |
||||
|
||||
using SetTypes = |
||||
::testing::Types<std::unordered_set<int, StatefulTestingHash, |
||||
StatefulTestingEqual, Alloc<int>>, |
||||
std::unordered_set<std::string, StatefulTestingHash, |
||||
StatefulTestingEqual, Alloc<std::string>>>; |
||||
|
||||
INSTANTIATE_TYPED_TEST_CASE_P(UnorderedSet, ConstructorTest, SetTypes); |
||||
INSTANTIATE_TYPED_TEST_CASE_P(UnorderedSet, LookupTest, SetTypes); |
||||
INSTANTIATE_TYPED_TEST_CASE_P(UnorderedSet, ModifiersTest, SetTypes); |
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
@ -0,0 +1,530 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// -----------------------------------------------------------------------------
|
||||
// File: node_hash_map.h
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// An `absl::node_hash_map<K, V>` is an unordered associative container of
|
||||
// unique keys and associated values designed to be a more efficient replacement
|
||||
// for `std::unordered_map`. Like `unordered_map`, search, insertion, and
|
||||
// deletion of map elements can be done as an `O(1)` operation. However,
|
||||
// `node_hash_map` (and other unordered associative containers known as the
|
||||
// collection of Abseil "Swiss tables") contain other optimizations that result
|
||||
// in both memory and computation advantages.
|
||||
//
|
||||
// In most cases, your default choice for a hash map should be a map of type
|
||||
// `flat_hash_map`. However, if you need pointer stability and cannot store
|
||||
// a `flat_hash_map` with `unique_ptr` elements, a `node_hash_map` may be a
|
||||
// valid alternative. As well, if you are migrating your code from using
|
||||
// `std::unordered_map`, a `node_hash_map` provides a more straightforward
|
||||
// migration, because it guarantees pointer stability. Consider migrating to
|
||||
// `node_hash_map` and perhaps converting to a more efficient `flat_hash_map`
|
||||
// upon further review.
|
||||
|
||||
#ifndef ABSL_CONTAINER_NODE_HASH_MAP_H_ |
||||
#define ABSL_CONTAINER_NODE_HASH_MAP_H_ |
||||
|
||||
#include <tuple> |
||||
#include <type_traits> |
||||
#include <utility> |
||||
|
||||
#include "absl/container/internal/container_memory.h" |
||||
#include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export |
||||
#include "absl/container/internal/node_hash_policy.h" |
||||
#include "absl/container/internal/raw_hash_map.h" // IWYU pragma: export |
||||
#include "absl/memory/memory.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
template <class Key, class Value> |
||||
class NodeHashMapPolicy; |
||||
} // namespace container_internal
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// absl::node_hash_map
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// An `absl::node_hash_map<K, V>` is an unordered associative container which
|
||||
// has been optimized for both speed and memory footprint in most common use
|
||||
// cases. Its interface is similar to that of `std::unordered_map<K, V>` with
|
||||
// the following notable differences:
|
||||
//
|
||||
// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
|
||||
// `insert()`, provided that the map is provided a compatible heterogeneous
|
||||
// hashing function and equality operator.
|
||||
// * Contains a `capacity()` member function indicating the number of element
|
||||
// slots (open, deleted, and empty) within the hash map.
|
||||
// * Returns `void` from the `erase(iterator)` overload.
|
||||
//
|
||||
// By default, `node_hash_map` uses the `absl::Hash` hashing framework.
|
||||
// All fundamental and Abseil types that support the `absl::Hash` framework have
|
||||
// a compatible equality operator for comparing insertions into `node_hash_map`.
|
||||
// If your type is not yet supported by the `asbl::Hash` framework, see
|
||||
// absl/hash/hash.h for information on extending Abseil hashing to user-defined
|
||||
// types.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// // Create a node hash map of three strings (that map to strings)
|
||||
// absl::node_hash_map<std::string, std::string> ducks =
|
||||
// {{"a", "huey"}, {"b", "dewey"}, {"c", "louie"}};
|
||||
//
|
||||
// // Insert a new element into the node hash map
|
||||
// ducks.insert({"d", "donald"}};
|
||||
//
|
||||
// // Force a rehash of the node hash map
|
||||
// ducks.rehash(0);
|
||||
//
|
||||
// // Find the element with the key "b"
|
||||
// std::string search_key = "b";
|
||||
// auto result = ducks.find(search_key);
|
||||
// if (result != ducks.end()) {
|
||||
// std::cout << "Result: " << search_key->second << std::endl;
|
||||
// }
|
||||
template <class Key, class Value, |
||||
class Hash = absl::container_internal::hash_default_hash<Key>, |
||||
class Eq = absl::container_internal::hash_default_eq<Key>, |
||||
class Alloc = std::allocator<std::pair<const Key, Value>>> |
||||
class node_hash_map |
||||
: public absl::container_internal::raw_hash_map< |
||||
absl::container_internal::NodeHashMapPolicy<Key, Value>, Hash, Eq, |
||||
Alloc> { |
||||
using Base = typename node_hash_map::raw_hash_map; |
||||
|
||||
public: |
||||
node_hash_map() {} |
||||
using Base::Base; |
||||
|
||||
// node_hash_map::begin()
|
||||
//
|
||||
// Returns an iterator to the beginning of the `node_hash_map`.
|
||||
using Base::begin; |
||||
|
||||
// node_hash_map::cbegin()
|
||||
//
|
||||
// Returns a const iterator to the beginning of the `node_hash_map`.
|
||||
using Base::cbegin; |
||||
|
||||
// node_hash_map::cend()
|
||||
//
|
||||
// Returns a const iterator to the end of the `node_hash_map`.
|
||||
using Base::cend; |
||||
|
||||
// node_hash_map::end()
|
||||
//
|
||||
// Returns an iterator to the end of the `node_hash_map`.
|
||||
using Base::end; |
||||
|
||||
// node_hash_map::capacity()
|
||||
//
|
||||
// Returns the number of element slots (assigned, deleted, and empty)
|
||||
// available within the `node_hash_map`.
|
||||
//
|
||||
// NOTE: this member function is particular to `absl::node_hash_map` and is
|
||||
// not provided in the `std::unordered_map` API.
|
||||
using Base::capacity; |
||||
|
||||
// node_hash_map::empty()
|
||||
//
|
||||
// Returns whether or not the `node_hash_map` is empty.
|
||||
using Base::empty; |
||||
|
||||
// node_hash_map::max_size()
|
||||
//
|
||||
// Returns the largest theoretical possible number of elements within a
|
||||
// `node_hash_map` under current memory constraints. This value can be thought
|
||||
// of as the largest value of `std::distance(begin(), end())` for a
|
||||
// `node_hash_map<K, V>`.
|
||||
using Base::max_size; |
||||
|
||||
// node_hash_map::size()
|
||||
//
|
||||
// Returns the number of elements currently within the `node_hash_map`.
|
||||
using Base::size; |
||||
|
||||
// node_hash_map::clear()
|
||||
//
|
||||
// Removes all elements from the `node_hash_map`. Invalidates any references,
|
||||
// pointers, or iterators referring to contained elements.
|
||||
//
|
||||
// NOTE: this operation may shrink the underlying buffer. To avoid shrinking
|
||||
// the underlying buffer call `erase(begin(), end())`.
|
||||
using Base::clear; |
||||
|
||||
// node_hash_map::erase()
|
||||
//
|
||||
// Erases elements within the `node_hash_map`. Erasing does not trigger a
|
||||
// rehash. Overloads are listed below.
|
||||
//
|
||||
// void erase(const_iterator pos):
|
||||
//
|
||||
// Erases the element at `position` of the `node_hash_map`, returning
|
||||
// `void`.
|
||||
//
|
||||
// NOTE: this return behavior is different than that of STL containers in
|
||||
// general and `std::unordered_map` in particular.
|
||||
//
|
||||
// iterator erase(const_iterator first, const_iterator last):
|
||||
//
|
||||
// Erases the elements in the open interval [`first`, `last`), returning an
|
||||
// iterator pointing to `last`.
|
||||
//
|
||||
// size_type erase(const key_type& key):
|
||||
//
|
||||
// Erases the element with the matching key, if it exists.
|
||||
using Base::erase; |
||||
|
||||
// node_hash_map::insert()
|
||||
//
|
||||
// Inserts an element of the specified value into the `node_hash_map`,
|
||||
// returning an iterator pointing to the newly inserted element, provided that
|
||||
// an element with the given key does not already exist. If rehashing occurs
|
||||
// due to the insertion, all iterators are invalidated. Overloads are listed
|
||||
// below.
|
||||
//
|
||||
// std::pair<iterator,bool> insert(const init_type& value):
|
||||
//
|
||||
// Inserts a value into the `node_hash_map`. Returns a pair consisting of an
|
||||
// iterator to the inserted element (or to the element that prevented the
|
||||
// insertion) and a `bool` denoting whether the insertion took place.
|
||||
//
|
||||
// std::pair<iterator,bool> insert(T&& value):
|
||||
// std::pair<iterator,bool> insert(init_type&& value ):
|
||||
//
|
||||
// Inserts a moveable value into the `node_hash_map`. Returns a `std::pair`
|
||||
// consisting of an iterator to the inserted element (or to the element that
|
||||
// prevented the insertion) and a `bool` denoting whether the insertion took
|
||||
// place.
|
||||
//
|
||||
// iterator insert(const_iterator hint, const init_type& value):
|
||||
// iterator insert(const_iterator hint, T&& value):
|
||||
// iterator insert(const_iterator hint, init_type&& value );
|
||||
//
|
||||
// Inserts a value, using the position of `hint` as a non-binding suggestion
|
||||
// for where to begin the insertion search. Returns an iterator to the
|
||||
// inserted element, or to the existing element that prevented the
|
||||
// insertion.
|
||||
//
|
||||
// void insert(InputIterator first, InputIterator last ):
|
||||
//
|
||||
// Inserts a range of values [`first`, `last`).
|
||||
//
|
||||
// NOTE: Although the STL does not specify which element may be inserted if
|
||||
// multiple keys compare equivalently, for `node_hash_map` we guarantee the
|
||||
// first match is inserted.
|
||||
//
|
||||
// void insert(std::initializer_list<init_type> ilist ):
|
||||
//
|
||||
// Inserts the elements within the initializer list `ilist`.
|
||||
//
|
||||
// NOTE: Although the STL does not specify which element may be inserted if
|
||||
// multiple keys compare equivalently within the initializer list, for
|
||||
// `node_hash_map` we guarantee the first match is inserted.
|
||||
using Base::insert; |
||||
|
||||
// node_hash_map::insert_or_assign()
|
||||
//
|
||||
// Inserts an element of the specified value into the `node_hash_map` provided
|
||||
// that a value with the given key does not already exist, or replaces it with
|
||||
// the element value if a key for that value already exists, returning an
|
||||
// iterator pointing to the newly inserted element. If rehashing occurs due to
|
||||
// the insertion, all iterators are invalidated. Overloads are listed
|
||||
// below.
|
||||
//
|
||||
// std::pair<iterator, bool> insert_or_assign(const init_type& k, T&& obj):
|
||||
// std::pair<iterator, bool> insert_or_assign(init_type&& k, T&& obj):
|
||||
//
|
||||
// Inserts/Assigns (or moves) the element of the specified key into the
|
||||
// `node_hash_map`.
|
||||
//
|
||||
// iterator insert_or_assign(const_iterator hint,
|
||||
// const init_type& k, T&& obj):
|
||||
// iterator insert_or_assign(const_iterator hint, init_type&& k, T&& obj):
|
||||
//
|
||||
// Inserts/Assigns (or moves) the element of the specified key into the
|
||||
// `node_hash_map` using the position of `hint` as a non-binding suggestion
|
||||
// for where to begin the insertion search.
|
||||
using Base::insert_or_assign; |
||||
|
||||
// node_hash_map::emplace()
|
||||
//
|
||||
// Inserts an element of the specified value by constructing it in-place
|
||||
// within the `node_hash_map`, provided that no element with the given key
|
||||
// already exists.
|
||||
//
|
||||
// The element may be constructed even if there already is an element with the
|
||||
// key in the container, in which case the newly constructed element will be
|
||||
// destroyed immediately. Prefer `try_emplace()` unless your key is not
|
||||
// copyable or moveable.
|
||||
//
|
||||
// If rehashing occurs due to the insertion, all iterators are invalidated.
|
||||
using Base::emplace; |
||||
|
||||
// node_hash_map::emplace_hint()
|
||||
//
|
||||
// Inserts an element of the specified value by constructing it in-place
|
||||
// within the `node_hash_map`, using the position of `hint` as a non-binding
|
||||
// suggestion for where to begin the insertion search, and only inserts
|
||||
// provided that no element with the given key already exists.
|
||||
//
|
||||
// The element may be constructed even if there already is an element with the
|
||||
// key in the container, in which case the newly constructed element will be
|
||||
// destroyed immediately. Prefer `try_emplace()` unless your key is not
|
||||
// copyable or moveable.
|
||||
//
|
||||
// If rehashing occurs due to the insertion, all iterators are invalidated.
|
||||
using Base::emplace_hint; |
||||
|
||||
// node_hash_map::try_emplace()
|
||||
//
|
||||
// Inserts an element of the specified value by constructing it in-place
|
||||
// within the `node_hash_map`, provided that no element with the given key
|
||||
// already exists. Unlike `emplace()`, if an element with the given key
|
||||
// already exists, we guarantee that no element is constructed.
|
||||
//
|
||||
// If rehashing occurs due to the insertion, all iterators are invalidated.
|
||||
// Overloads are listed below.
|
||||
//
|
||||
// std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
|
||||
// std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
|
||||
//
|
||||
// Inserts (via copy or move) the element of the specified key into the
|
||||
// `node_hash_map`.
|
||||
//
|
||||
// iterator try_emplace(const_iterator hint,
|
||||
// const init_type& k, Args&&... args):
|
||||
// iterator try_emplace(const_iterator hint, init_type&& k, Args&&... args):
|
||||
//
|
||||
// Inserts (via copy or move) the element of the specified key into the
|
||||
// `node_hash_map` using the position of `hint` as a non-binding suggestion
|
||||
// for where to begin the insertion search.
|
||||
using Base::try_emplace; |
||||
|
||||
// node_hash_map::extract()
|
||||
//
|
||||
// Extracts the indicated element, erasing it in the process, and returns it
|
||||
// as a C++17-compatible node handle. Overloads are listed below.
|
||||
//
|
||||
// node_type extract(const_iterator position):
|
||||
//
|
||||
// Extracts the key,value pair of the element at the indicated position and
|
||||
// returns a node handle owning that extracted data.
|
||||
//
|
||||
// node_type extract(const key_type& x):
|
||||
//
|
||||
// Extracts the key,value pair of the element with a key matching the passed
|
||||
// key value and returns a node handle owning that extracted data. If the
|
||||
// `node_hash_map` does not contain an element with a matching key, this
|
||||
// function returns an empty node handle.
|
||||
using Base::extract; |
||||
|
||||
// node_hash_map::merge()
|
||||
//
|
||||
// Extracts elements from a given `source` node hash map into this
|
||||
// `node_hash_map`. If the destination `node_hash_map` already contains an
|
||||
// element with an equivalent key, that element is not extracted.
|
||||
using Base::merge; |
||||
|
||||
// node_hash_map::swap(node_hash_map& other)
|
||||
//
|
||||
// Exchanges the contents of this `node_hash_map` with those of the `other`
|
||||
// node hash map, avoiding invocation of any move, copy, or swap operations on
|
||||
// individual elements.
|
||||
//
|
||||
// All iterators and references on the `node_hash_map` remain valid, excepting
|
||||
// for the past-the-end iterator, which is invalidated.
|
||||
//
|
||||
// `swap()` requires that the node hash map's hashing and key equivalence
|
||||
// functions be Swappable, and are exchaged using unqualified calls to
|
||||
// non-member `swap()`. If the map's allocator has
|
||||
// `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
|
||||
// set to `true`, the allocators are also exchanged using an unqualified call
|
||||
// to non-member `swap()`; otherwise, the allocators are not swapped.
|
||||
using Base::swap; |
||||
|
||||
// node_hash_map::rehash(count)
|
||||
//
|
||||
// Rehashes the `node_hash_map`, setting the number of slots to be at least
|
||||
// the passed value. If the new number of slots increases the load factor more
|
||||
// than the current maximum load factor
|
||||
// (`count` < `size()` / `max_load_factor()`), then the new number of slots
|
||||
// will be at least `size()` / `max_load_factor()`.
|
||||
//
|
||||
// To force a rehash, pass rehash(0).
|
||||
using Base::rehash; |
||||
|
||||
// node_hash_map::reserve(count)
|
||||
//
|
||||
// Sets the number of slots in the `node_hash_map` to the number needed to
|
||||
// accommodate at least `count` total elements without exceeding the current
|
||||
// maximum load factor, and may rehash the container if needed.
|
||||
using Base::reserve; |
||||
|
||||
// node_hash_map::at()
|
||||
//
|
||||
// Returns a reference to the mapped value of the element with key equivalent
|
||||
// to the passed key.
|
||||
using Base::at; |
||||
|
||||
// node_hash_map::contains()
|
||||
//
|
||||
// Determines whether an element with a key comparing equal to the given `key`
|
||||
// exists within the `node_hash_map`, returning `true` if so or `false`
|
||||
// otherwise.
|
||||
using Base::contains; |
||||
|
||||
// node_hash_map::count(const Key& key) const
|
||||
//
|
||||
// Returns the number of elements with a key comparing equal to the given
|
||||
// `key` within the `node_hash_map`. note that this function will return
|
||||
// either `1` or `0` since duplicate keys are not allowed within a
|
||||
// `node_hash_map`.
|
||||
using Base::count; |
||||
|
||||
// node_hash_map::equal_range()
|
||||
//
|
||||
// Returns a closed range [first, last], defined by a `std::pair` of two
|
||||
// iterators, containing all elements with the passed key in the
|
||||
// `node_hash_map`.
|
||||
using Base::equal_range; |
||||
|
||||
// node_hash_map::find()
|
||||
//
|
||||
// Finds an element with the passed `key` within the `node_hash_map`.
|
||||
using Base::find; |
||||
|
||||
// node_hash_map::operator[]()
|
||||
//
|
||||
// Returns a reference to the value mapped to the passed key within the
|
||||
// `node_hash_map`, performing an `insert()` if the key does not already
|
||||
// exist. If an insertion occurs and results in a rehashing of the container,
|
||||
// all iterators are invalidated. Otherwise iterators are not affected and
|
||||
// references are not invalidated. Overloads are listed below.
|
||||
//
|
||||
// T& operator[](const Key& key ):
|
||||
//
|
||||
// Inserts an init_type object constructed in-place if the element with the
|
||||
// given key does not exist.
|
||||
//
|
||||
// T& operator[]( Key&& key ):
|
||||
//
|
||||
// Inserts an init_type object constructed in-place provided that an element
|
||||
// with the given key does not exist.
|
||||
using Base::operator[]; |
||||
|
||||
// node_hash_map::bucket_count()
|
||||
//
|
||||
// Returns the number of "buckets" within the `node_hash_map`.
|
||||
using Base::bucket_count; |
||||
|
||||
// node_hash_map::load_factor()
|
||||
//
|
||||
// Returns the current load factor of the `node_hash_map` (the average number
|
||||
// of slots occupied with a value within the hash map).
|
||||
using Base::load_factor; |
||||
|
||||
// node_hash_map::max_load_factor()
|
||||
//
|
||||
// Manages the maximum load factor of the `node_hash_map`. Overloads are
|
||||
// listed below.
|
||||
//
|
||||
// float node_hash_map::max_load_factor()
|
||||
//
|
||||
// Returns the current maximum load factor of the `node_hash_map`.
|
||||
//
|
||||
// void node_hash_map::max_load_factor(float ml)
|
||||
//
|
||||
// Sets the maximum load factor of the `node_hash_map` to the passed value.
|
||||
//
|
||||
// NOTE: This overload is provided only for API compatibility with the STL;
|
||||
// `node_hash_map` will ignore any set load factor and manage its rehashing
|
||||
// internally as an implementation detail.
|
||||
using Base::max_load_factor; |
||||
|
||||
// node_hash_map::get_allocator()
|
||||
//
|
||||
// Returns the allocator function associated with this `node_hash_map`.
|
||||
using Base::get_allocator; |
||||
|
||||
// node_hash_map::hash_function()
|
||||
//
|
||||
// Returns the hashing function used to hash the keys within this
|
||||
// `node_hash_map`.
|
||||
using Base::hash_function; |
||||
|
||||
// node_hash_map::key_eq()
|
||||
//
|
||||
// Returns the function used for comparing keys equality.
|
||||
using Base::key_eq; |
||||
|
||||
ABSL_DEPRECATED("Call `hash_function()` instead.") |
||||
typename Base::hasher hash_funct() { return this->hash_function(); } |
||||
|
||||
ABSL_DEPRECATED("Call `rehash()` instead.") |
||||
void resize(typename Base::size_type hint) { this->rehash(hint); } |
||||
}; |
||||
|
||||
namespace container_internal { |
||||
|
||||
template <class Key, class Value> |
||||
class NodeHashMapPolicy |
||||
: public absl::container_internal::node_hash_policy< |
||||
std::pair<const Key, Value>&, NodeHashMapPolicy<Key, Value>> { |
||||
using value_type = std::pair<const Key, Value>; |
||||
|
||||
public: |
||||
using key_type = Key; |
||||
using mapped_type = Value; |
||||
using init_type = std::pair</*non const*/ key_type, mapped_type>; |
||||
|
||||
template <class Allocator, class... Args> |
||||
static value_type* new_element(Allocator* alloc, Args&&... args) { |
||||
using PairAlloc = typename absl::allocator_traits< |
||||
Allocator>::template rebind_alloc<value_type>; |
||||
PairAlloc pair_alloc(*alloc); |
||||
value_type* res = |
||||
absl::allocator_traits<PairAlloc>::allocate(pair_alloc, 1); |
||||
absl::allocator_traits<PairAlloc>::construct(pair_alloc, res, |
||||
std::forward<Args>(args)...); |
||||
return res; |
||||
} |
||||
|
||||
template <class Allocator> |
||||
static void delete_element(Allocator* alloc, value_type* pair) { |
||||
using PairAlloc = typename absl::allocator_traits< |
||||
Allocator>::template rebind_alloc<value_type>; |
||||
PairAlloc pair_alloc(*alloc); |
||||
absl::allocator_traits<PairAlloc>::destroy(pair_alloc, pair); |
||||
absl::allocator_traits<PairAlloc>::deallocate(pair_alloc, pair, 1); |
||||
} |
||||
|
||||
template <class F, class... Args> |
||||
static decltype(absl::container_internal::DecomposePair( |
||||
std::declval<F>(), std::declval<Args>()...)) |
||||
apply(F&& f, Args&&... args) { |
||||
return absl::container_internal::DecomposePair(std::forward<F>(f), |
||||
std::forward<Args>(args)...); |
||||
} |
||||
|
||||
static size_t element_space_used(const value_type*) { |
||||
return sizeof(value_type); |
||||
} |
||||
|
||||
static Value& value(value_type* elem) { return elem->second; } |
||||
static const Value& value(const value_type* elem) { return elem->second; } |
||||
}; |
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
#endif // ABSL_CONTAINER_NODE_HASH_MAP_H_
|
@ -0,0 +1,218 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/container/node_hash_map.h" |
||||
|
||||
#include "absl/container/internal/tracked.h" |
||||
#include "absl/container/internal/unordered_map_constructor_test.h" |
||||
#include "absl/container/internal/unordered_map_lookup_test.h" |
||||
#include "absl/container/internal/unordered_map_modifiers_test.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
namespace { |
||||
|
||||
using ::testing::Field; |
||||
using ::testing::Pair; |
||||
using ::testing::UnorderedElementsAre; |
||||
|
||||
using MapTypes = ::testing::Types< |
||||
absl::node_hash_map<int, int, StatefulTestingHash, StatefulTestingEqual, |
||||
Alloc<std::pair<const int, int>>>, |
||||
absl::node_hash_map<std::string, std::string, StatefulTestingHash, |
||||
StatefulTestingEqual, |
||||
Alloc<std::pair<const std::string, std::string>>>>; |
||||
|
||||
INSTANTIATE_TYPED_TEST_CASE_P(NodeHashMap, ConstructorTest, MapTypes); |
||||
INSTANTIATE_TYPED_TEST_CASE_P(NodeHashMap, LookupTest, MapTypes); |
||||
INSTANTIATE_TYPED_TEST_CASE_P(NodeHashMap, ModifiersTest, MapTypes); |
||||
|
||||
using M = absl::node_hash_map<std::string, Tracked<int>>; |
||||
|
||||
TEST(NodeHashMap, Emplace) { |
||||
M m; |
||||
Tracked<int> t(53); |
||||
m.emplace("a", t); |
||||
ASSERT_EQ(0, t.num_moves()); |
||||
ASSERT_EQ(1, t.num_copies()); |
||||
|
||||
m.emplace(std::string("a"), t); |
||||
ASSERT_EQ(0, t.num_moves()); |
||||
ASSERT_EQ(1, t.num_copies()); |
||||
|
||||
std::string a("a"); |
||||
m.emplace(a, t); |
||||
ASSERT_EQ(0, t.num_moves()); |
||||
ASSERT_EQ(1, t.num_copies()); |
||||
|
||||
const std::string ca("a"); |
||||
m.emplace(a, t); |
||||
ASSERT_EQ(0, t.num_moves()); |
||||
ASSERT_EQ(1, t.num_copies()); |
||||
|
||||
m.emplace(std::make_pair("a", t)); |
||||
ASSERT_EQ(0, t.num_moves()); |
||||
ASSERT_EQ(2, t.num_copies()); |
||||
|
||||
m.emplace(std::make_pair(std::string("a"), t)); |
||||
ASSERT_EQ(0, t.num_moves()); |
||||
ASSERT_EQ(3, t.num_copies()); |
||||
|
||||
std::pair<std::string, Tracked<int>> p("a", t); |
||||
ASSERT_EQ(0, t.num_moves()); |
||||
ASSERT_EQ(4, t.num_copies()); |
||||
m.emplace(p); |
||||
ASSERT_EQ(0, t.num_moves()); |
||||
ASSERT_EQ(4, t.num_copies()); |
||||
|
||||
const std::pair<std::string, Tracked<int>> cp("a", t); |
||||
ASSERT_EQ(0, t.num_moves()); |
||||
ASSERT_EQ(5, t.num_copies()); |
||||
m.emplace(cp); |
||||
ASSERT_EQ(0, t.num_moves()); |
||||
ASSERT_EQ(5, t.num_copies()); |
||||
|
||||
std::pair<const std::string, Tracked<int>> pc("a", t); |
||||
ASSERT_EQ(0, t.num_moves()); |
||||
ASSERT_EQ(6, t.num_copies()); |
||||
m.emplace(pc); |
||||
ASSERT_EQ(0, t.num_moves()); |
||||
ASSERT_EQ(6, t.num_copies()); |
||||
|
||||
const std::pair<const std::string, Tracked<int>> cpc("a", t); |
||||
ASSERT_EQ(0, t.num_moves()); |
||||
ASSERT_EQ(7, t.num_copies()); |
||||
m.emplace(cpc); |
||||
ASSERT_EQ(0, t.num_moves()); |
||||
ASSERT_EQ(7, t.num_copies()); |
||||
|
||||
m.emplace(std::piecewise_construct, std::forward_as_tuple("a"), |
||||
std::forward_as_tuple(t)); |
||||
ASSERT_EQ(0, t.num_moves()); |
||||
ASSERT_EQ(7, t.num_copies()); |
||||
|
||||
m.emplace(std::piecewise_construct, std::forward_as_tuple(std::string("a")), |
||||
std::forward_as_tuple(t)); |
||||
ASSERT_EQ(0, t.num_moves()); |
||||
ASSERT_EQ(7, t.num_copies()); |
||||
} |
||||
|
||||
TEST(NodeHashMap, AssignRecursive) { |
||||
struct Tree { |
||||
// Verify that unordered_map<K, IncompleteType> can be instantiated.
|
||||
absl::node_hash_map<int, Tree> children; |
||||
}; |
||||
Tree root; |
||||
const Tree& child = root.children.emplace().first->second; |
||||
// Verify that `lhs = rhs` doesn't read rhs after clearing lhs.
|
||||
root = child; |
||||
} |
||||
|
||||
TEST(FlatHashMap, MoveOnlyKey) { |
||||
struct Key { |
||||
Key() = default; |
||||
Key(Key&&) = default; |
||||
Key& operator=(Key&&) = default; |
||||
}; |
||||
struct Eq { |
||||
bool operator()(const Key&, const Key&) const { return true; } |
||||
}; |
||||
struct Hash { |
||||
size_t operator()(const Key&) const { return 0; } |
||||
}; |
||||
absl::node_hash_map<Key, int, Hash, Eq> m; |
||||
m[Key()]; |
||||
} |
||||
|
||||
struct NonMovableKey { |
||||
explicit NonMovableKey(int i) : i(i) {} |
||||
NonMovableKey(NonMovableKey&&) = delete; |
||||
int i; |
||||
}; |
||||
struct NonMovableKeyHash { |
||||
using is_transparent = void; |
||||
size_t operator()(const NonMovableKey& k) const { return k.i; } |
||||
size_t operator()(int k) const { return k; } |
||||
}; |
||||
struct NonMovableKeyEq { |
||||
using is_transparent = void; |
||||
bool operator()(const NonMovableKey& a, const NonMovableKey& b) const { |
||||
return a.i == b.i; |
||||
} |
||||
bool operator()(const NonMovableKey& a, int b) const { return a.i == b; } |
||||
}; |
||||
|
||||
TEST(NodeHashMap, MergeExtractInsert) { |
||||
absl::node_hash_map<NonMovableKey, int, NonMovableKeyHash, NonMovableKeyEq> |
||||
set1, set2; |
||||
set1.emplace(std::piecewise_construct, std::make_tuple(7), |
||||
std::make_tuple(-7)); |
||||
set1.emplace(std::piecewise_construct, std::make_tuple(17), |
||||
std::make_tuple(-17)); |
||||
|
||||
set2.emplace(std::piecewise_construct, std::make_tuple(7), |
||||
std::make_tuple(-70)); |
||||
set2.emplace(std::piecewise_construct, std::make_tuple(19), |
||||
std::make_tuple(-190)); |
||||
|
||||
auto Elem = [](int key, int value) { |
||||
return Pair(Field(&NonMovableKey::i, key), value); |
||||
}; |
||||
|
||||
EXPECT_THAT(set1, UnorderedElementsAre(Elem(7, -7), Elem(17, -17))); |
||||
EXPECT_THAT(set2, UnorderedElementsAre(Elem(7, -70), Elem(19, -190))); |
||||
|
||||
// NonMovableKey is neither copyable nor movable. We should still be able to
|
||||
// move nodes around.
|
||||
static_assert(!std::is_move_constructible<NonMovableKey>::value, ""); |
||||
set1.merge(set2); |
||||
|
||||
EXPECT_THAT(set1, |
||||
UnorderedElementsAre(Elem(7, -7), Elem(17, -17), Elem(19, -190))); |
||||
EXPECT_THAT(set2, UnorderedElementsAre(Elem(7, -70))); |
||||
|
||||
auto node = set1.extract(7); |
||||
EXPECT_TRUE(node); |
||||
EXPECT_EQ(node.key().i, 7); |
||||
EXPECT_EQ(node.mapped(), -7); |
||||
EXPECT_THAT(set1, UnorderedElementsAre(Elem(17, -17), Elem(19, -190))); |
||||
|
||||
auto insert_result = set2.insert(std::move(node)); |
||||
EXPECT_FALSE(node); |
||||
EXPECT_FALSE(insert_result.inserted); |
||||
EXPECT_TRUE(insert_result.node); |
||||
EXPECT_EQ(insert_result.node.key().i, 7); |
||||
EXPECT_EQ(insert_result.node.mapped(), -7); |
||||
EXPECT_THAT(*insert_result.position, Elem(7, -70)); |
||||
EXPECT_THAT(set2, UnorderedElementsAre(Elem(7, -70))); |
||||
|
||||
node = set1.extract(17); |
||||
EXPECT_TRUE(node); |
||||
EXPECT_EQ(node.key().i, 17); |
||||
EXPECT_EQ(node.mapped(), -17); |
||||
EXPECT_THAT(set1, UnorderedElementsAre(Elem(19, -190))); |
||||
|
||||
node.mapped() = 23; |
||||
|
||||
insert_result = set2.insert(std::move(node)); |
||||
EXPECT_FALSE(node); |
||||
EXPECT_TRUE(insert_result.inserted); |
||||
EXPECT_FALSE(insert_result.node); |
||||
EXPECT_THAT(*insert_result.position, Elem(17, 23)); |
||||
EXPECT_THAT(set2, UnorderedElementsAre(Elem(7, -70), Elem(17, 23))); |
||||
} |
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
@ -0,0 +1,439 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// -----------------------------------------------------------------------------
|
||||
// File: node_hash_set.h
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// An `absl::node_hash_set<T>` is an unordered associative container designed to
|
||||
// be a more efficient replacement for `std::unordered_set`. Like
|
||||
// `unordered_set`, search, insertion, and deletion of map elements can be done
|
||||
// as an `O(1)` operation. However, `node_hash_set` (and other unordered
|
||||
// associative containers known as the collection of Abseil "Swiss tables")
|
||||
// contain other optimizations that result in both memory and computation
|
||||
// advantages.
|
||||
//
|
||||
// In most cases, your default choice for a hash table should be a map of type
|
||||
// `flat_hash_map` or a set of type `flat_hash_set`. However, if you need
|
||||
// pointer stability, a `node_hash_set` should be your preferred choice. As
|
||||
// well, if you are migrating your code from using `std::unordered_set`, a
|
||||
// `node_hash_set` should be an easy migration. Consider migrating to
|
||||
// `node_hash_set` and perhaps converting to a more efficient `flat_hash_set`
|
||||
// upon further review.
|
||||
|
||||
#ifndef ABSL_CONTAINER_NODE_HASH_SET_H_ |
||||
#define ABSL_CONTAINER_NODE_HASH_SET_H_ |
||||
|
||||
#include <type_traits> |
||||
|
||||
#include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export |
||||
#include "absl/container/internal/node_hash_policy.h" |
||||
#include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export |
||||
#include "absl/memory/memory.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
template <typename T> |
||||
struct NodeHashSetPolicy; |
||||
} // namespace container_internal
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// absl::node_hash_set
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// An `absl::node_hash_set<T>` is an unordered associative container which
|
||||
// has been optimized for both speed and memory footprint in most common use
|
||||
// cases. Its interface is similar to that of `std::unordered_set<T>` with the
|
||||
// following notable differences:
|
||||
//
|
||||
// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
|
||||
// `insert()`, provided that the map is provided a compatible heterogeneous
|
||||
// hashing function and equality operator.
|
||||
// * Contains a `capacity()` member function indicating the number of element
|
||||
// slots (open, deleted, and empty) within the hash set.
|
||||
// * Returns `void` from the `erase(iterator)` overload.
|
||||
//
|
||||
// By default, `node_hash_set` uses the `absl::Hash` hashing framework.
|
||||
// All fundamental and Abseil types that support the `absl::Hash` framework have
|
||||
// a compatible equality operator for comparing insertions into `node_hash_set`.
|
||||
// If your type is not yet supported by the `asbl::Hash` framework, see
|
||||
// absl/hash/hash.h for information on extending Abseil hashing to user-defined
|
||||
// types.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// // Create a node hash set of three strings
|
||||
// absl::node_hash_map<std::string, std::string> ducks =
|
||||
// {"huey", "dewey"}, "louie"};
|
||||
//
|
||||
// // Insert a new element into the node hash map
|
||||
// ducks.insert("donald"};
|
||||
//
|
||||
// // Force a rehash of the node hash map
|
||||
// ducks.rehash(0);
|
||||
//
|
||||
// // See if "dewey" is present
|
||||
// if (ducks.contains("dewey")) {
|
||||
// std::cout << "We found dewey!" << std::endl;
|
||||
// }
|
||||
template <class T, class Hash = absl::container_internal::hash_default_hash<T>, |
||||
class Eq = absl::container_internal::hash_default_eq<T>, |
||||
class Alloc = std::allocator<T>> |
||||
class node_hash_set |
||||
: public absl::container_internal::raw_hash_set< |
||||
absl::container_internal::NodeHashSetPolicy<T>, Hash, Eq, Alloc> { |
||||
using Base = typename node_hash_set::raw_hash_set; |
||||
|
||||
public: |
||||
node_hash_set() {} |
||||
using Base::Base; |
||||
|
||||
// node_hash_set::begin()
|
||||
//
|
||||
// Returns an iterator to the beginning of the `node_hash_set`.
|
||||
using Base::begin; |
||||
|
||||
// node_hash_set::cbegin()
|
||||
//
|
||||
// Returns a const iterator to the beginning of the `node_hash_set`.
|
||||
using Base::cbegin; |
||||
|
||||
// node_hash_set::cend()
|
||||
//
|
||||
// Returns a const iterator to the end of the `node_hash_set`.
|
||||
using Base::cend; |
||||
|
||||
// node_hash_set::end()
|
||||
//
|
||||
// Returns an iterator to the end of the `node_hash_set`.
|
||||
using Base::end; |
||||
|
||||
// node_hash_set::capacity()
|
||||
//
|
||||
// Returns the number of element slots (assigned, deleted, and empty)
|
||||
// available within the `node_hash_set`.
|
||||
//
|
||||
// NOTE: this member function is particular to `absl::node_hash_set` and is
|
||||
// not provided in the `std::unordered_map` API.
|
||||
using Base::capacity; |
||||
|
||||
// node_hash_set::empty()
|
||||
//
|
||||
// Returns whether or not the `node_hash_set` is empty.
|
||||
using Base::empty; |
||||
|
||||
// node_hash_set::max_size()
|
||||
//
|
||||
// Returns the largest theoretical possible number of elements within a
|
||||
// `node_hash_set` under current memory constraints. This value can be thought
|
||||
// of the largest value of `std::distance(begin(), end())` for a
|
||||
// `node_hash_set<T>`.
|
||||
using Base::max_size; |
||||
|
||||
// node_hash_set::size()
|
||||
//
|
||||
// Returns the number of elements currently within the `node_hash_set`.
|
||||
using Base::size; |
||||
|
||||
// node_hash_set::clear()
|
||||
//
|
||||
// Removes all elements from the `node_hash_set`. Invalidates any references,
|
||||
// pointers, or iterators referring to contained elements.
|
||||
//
|
||||
// NOTE: this operation may shrink the underlying buffer. To avoid shrinking
|
||||
// the underlying buffer call `erase(begin(), end())`.
|
||||
using Base::clear; |
||||
|
||||
// node_hash_set::erase()
|
||||
//
|
||||
// Erases elements within the `node_hash_set`. Erasing does not trigger a
|
||||
// rehash. Overloads are listed below.
|
||||
//
|
||||
// void erase(const_iterator pos):
|
||||
//
|
||||
// Erases the element at `position` of the `node_hash_set`, returning
|
||||
// `void`.
|
||||
//
|
||||
// NOTE: this return behavior is different than that of STL containers in
|
||||
// general and `std::unordered_map` in particular.
|
||||
//
|
||||
// iterator erase(const_iterator first, const_iterator last):
|
||||
//
|
||||
// Erases the elements in the open interval [`first`, `last`), returning an
|
||||
// iterator pointing to `last`.
|
||||
//
|
||||
// size_type erase(const key_type& key):
|
||||
//
|
||||
// Erases the element with the matching key, if it exists.
|
||||
using Base::erase; |
||||
|
||||
// node_hash_set::insert()
|
||||
//
|
||||
// Inserts an element of the specified value into the `node_hash_set`,
|
||||
// returning an iterator pointing to the newly inserted element, provided that
|
||||
// an element with the given key does not already exist. If rehashing occurs
|
||||
// due to the insertion, all iterators are invalidated. Overloads are listed
|
||||
// below.
|
||||
//
|
||||
// std::pair<iterator,bool> insert(const T& value):
|
||||
//
|
||||
// Inserts a value into the `node_hash_set`. Returns a pair consisting of an
|
||||
// iterator to the inserted element (or to the element that prevented the
|
||||
// insertion) and a bool denoting whether the insertion took place.
|
||||
//
|
||||
// std::pair<iterator,bool> insert(T&& value):
|
||||
//
|
||||
// Inserts a moveable value into the `node_hash_set`. Returns a pair
|
||||
// consisting of an iterator to the inserted element (or to the element that
|
||||
// prevented the insertion) and a bool denoting whether the insertion took
|
||||
// place.
|
||||
//
|
||||
// iterator insert(const_iterator hint, const T& value):
|
||||
// iterator insert(const_iterator hint, T&& value):
|
||||
//
|
||||
// Inserts a value, using the position of `hint` as a non-binding suggestion
|
||||
// for where to begin the insertion search. Returns an iterator to the
|
||||
// inserted element, or to the existing element that prevented the
|
||||
// insertion.
|
||||
//
|
||||
// void insert(InputIterator first, InputIterator last ):
|
||||
//
|
||||
// Inserts a range of values [`first`, `last`).
|
||||
//
|
||||
// NOTE: Although the STL does not specify which element may be inserted if
|
||||
// multiple keys compare equivalently, for `node_hash_set` we guarantee the
|
||||
// first match is inserted.
|
||||
//
|
||||
// void insert(std::initializer_list<T> ilist ):
|
||||
//
|
||||
// Inserts the elements within the initializer list `ilist`.
|
||||
//
|
||||
// NOTE: Although the STL does not specify which element may be inserted if
|
||||
// multiple keys compare equivalently within the initializer list, for
|
||||
// `node_hash_set` we guarantee the first match is inserted.
|
||||
using Base::insert; |
||||
|
||||
// node_hash_set::emplace()
|
||||
//
|
||||
// Inserts an element of the specified value by constructing it in-place
|
||||
// within the `node_hash_set`, provided that no element with the given key
|
||||
// already exists.
|
||||
//
|
||||
// The element may be constructed even if there already is an element with the
|
||||
// key in the container, in which case the newly constructed element will be
|
||||
// destroyed immediately. Prefer `try_emplace()` unless your key is not
|
||||
// copyable or moveable.
|
||||
//
|
||||
// If rehashing occurs due to the insertion, all iterators are invalidated.
|
||||
using Base::emplace; |
||||
|
||||
// node_hash_set::emplace_hint()
|
||||
//
|
||||
// Inserts an element of the specified value by constructing it in-place
|
||||
// within the `node_hash_set`, using the position of `hint` as a non-binding
|
||||
// suggestion for where to begin the insertion search, and only inserts
|
||||
// provided that no element with the given key already exists.
|
||||
//
|
||||
// The element may be constructed even if there already is an element with the
|
||||
// key in the container, in which case the newly constructed element will be
|
||||
// destroyed immediately. Prefer `try_emplace()` unless your key is not
|
||||
// copyable or moveable.
|
||||
//
|
||||
// If rehashing occurs due to the insertion, all iterators are invalidated.
|
||||
using Base::emplace_hint; |
||||
|
||||
// node_hash_set::extract()
|
||||
//
|
||||
// Extracts the indicated element, erasing it in the process, and returns it
|
||||
// as a C++17-compatible node handle. Overloads are listed below.
|
||||
//
|
||||
// node_type extract(const_iterator position):
|
||||
//
|
||||
// Extracts the element at the indicated position and returns a node handle
|
||||
// owning that extracted data.
|
||||
//
|
||||
// node_type extract(const key_type& x):
|
||||
//
|
||||
// Extracts the element with the key matching the passed key value and
|
||||
// returns a node handle owning that extracted data. If the `node_hash_set`
|
||||
// does not contain an element with a matching key, this function returns an
|
||||
// empty node handle.
|
||||
using Base::extract; |
||||
|
||||
// node_hash_set::merge()
|
||||
//
|
||||
// Extracts elements from a given `source` flat hash map into this
|
||||
// `node_hash_set`. If the destination `node_hash_set` already contains an
|
||||
// element with an equivalent key, that element is not extracted.
|
||||
using Base::merge; |
||||
|
||||
// node_hash_set::swap(node_hash_set& other)
|
||||
//
|
||||
// Exchanges the contents of this `node_hash_set` with those of the `other`
|
||||
// flat hash map, avoiding invocation of any move, copy, or swap operations on
|
||||
// individual elements.
|
||||
//
|
||||
// All iterators and references on the `node_hash_set` remain valid, excepting
|
||||
// for the past-the-end iterator, which is invalidated.
|
||||
//
|
||||
// `swap()` requires that the flat hash set's hashing and key equivalence
|
||||
// functions be Swappable, and are exchaged using unqualified calls to
|
||||
// non-member `swap()`. If the map's allocator has
|
||||
// `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
|
||||
// set to `true`, the allocators are also exchanged using an unqualified call
|
||||
// to non-member `swap()`; otherwise, the allocators are not swapped.
|
||||
using Base::swap; |
||||
|
||||
// node_hash_set::rehash(count)
|
||||
//
|
||||
// Rehashes the `node_hash_set`, setting the number of slots to be at least
|
||||
// the passed value. If the new number of slots increases the load factor more
|
||||
// than the current maximum load factor
|
||||
// (`count` < `size()` / `max_load_factor()`), then the new number of slots
|
||||
// will be at least `size()` / `max_load_factor()`.
|
||||
//
|
||||
// To force a rehash, pass rehash(0).
|
||||
//
|
||||
// NOTE: unlike behavior in `std::unordered_set`, references are also
|
||||
// invalidated upon a `rehash()`.
|
||||
using Base::rehash; |
||||
|
||||
// node_hash_set::reserve(count)
|
||||
//
|
||||
// Sets the number of slots in the `node_hash_set` to the number needed to
|
||||
// accommodate at least `count` total elements without exceeding the current
|
||||
// maximum load factor, and may rehash the container if needed.
|
||||
using Base::reserve; |
||||
|
||||
// node_hash_set::contains()
|
||||
//
|
||||
// Determines whether an element comparing equal to the given `key` exists
|
||||
// within the `node_hash_set`, returning `true` if so or `false` otherwise.
|
||||
using Base::contains; |
||||
|
||||
// node_hash_set::count(const Key& key) const
|
||||
//
|
||||
// Returns the number of elements comparing equal to the given `key` within
|
||||
// the `node_hash_set`. note that this function will return either `1` or `0`
|
||||
// since duplicate elements are not allowed within a `node_hash_set`.
|
||||
using Base::count; |
||||
|
||||
// node_hash_set::equal_range()
|
||||
//
|
||||
// Returns a closed range [first, last], defined by a `std::pair` of two
|
||||
// iterators, containing all elements with the passed key in the
|
||||
// `node_hash_set`.
|
||||
using Base::equal_range; |
||||
|
||||
// node_hash_set::find()
|
||||
//
|
||||
// Finds an element with the passed `key` within the `node_hash_set`.
|
||||
using Base::find; |
||||
|
||||
// node_hash_set::bucket_count()
|
||||
//
|
||||
// Returns the number of "buckets" within the `node_hash_set`. Note that
|
||||
// because a flat hash map contains all elements within its internal storage,
|
||||
// this value simply equals the current capacity of the `node_hash_set`.
|
||||
using Base::bucket_count; |
||||
|
||||
// node_hash_set::load_factor()
|
||||
//
|
||||
// Returns the current load factor of the `node_hash_set` (the average number
|
||||
// of slots occupied with a value within the hash map).
|
||||
using Base::load_factor; |
||||
|
||||
// node_hash_set::max_load_factor()
|
||||
//
|
||||
// Manages the maximum load factor of the `node_hash_set`. Overloads are
|
||||
// listed below.
|
||||
//
|
||||
// float node_hash_set::max_load_factor()
|
||||
//
|
||||
// Returns the current maximum load factor of the `node_hash_set`.
|
||||
//
|
||||
// void node_hash_set::max_load_factor(float ml)
|
||||
//
|
||||
// Sets the maximum load factor of the `node_hash_set` to the passed value.
|
||||
//
|
||||
// NOTE: This overload is provided only for API compatibility with the STL;
|
||||
// `node_hash_set` will ignore any set load factor and manage its rehashing
|
||||
// internally as an implementation detail.
|
||||
using Base::max_load_factor; |
||||
|
||||
// node_hash_set::get_allocator()
|
||||
//
|
||||
// Returns the allocator function associated with this `node_hash_set`.
|
||||
using Base::get_allocator; |
||||
|
||||
// node_hash_set::hash_function()
|
||||
//
|
||||
// Returns the hashing function used to hash the keys within this
|
||||
// `node_hash_set`.
|
||||
using Base::hash_function; |
||||
|
||||
// node_hash_set::key_eq()
|
||||
//
|
||||
// Returns the function used for comparing keys equality.
|
||||
using Base::key_eq; |
||||
|
||||
ABSL_DEPRECATED("Call `hash_function()` instead.") |
||||
typename Base::hasher hash_funct() { return this->hash_function(); } |
||||
|
||||
ABSL_DEPRECATED("Call `rehash()` instead.") |
||||
void resize(typename Base::size_type hint) { this->rehash(hint); } |
||||
}; |
||||
|
||||
namespace container_internal { |
||||
|
||||
template <class T> |
||||
struct NodeHashSetPolicy |
||||
: absl::container_internal::node_hash_policy<T&, NodeHashSetPolicy<T>> { |
||||
using key_type = T; |
||||
using init_type = T; |
||||
using constant_iterators = std::true_type; |
||||
|
||||
template <class Allocator, class... Args> |
||||
static T* new_element(Allocator* alloc, Args&&... args) { |
||||
using ValueAlloc = |
||||
typename absl::allocator_traits<Allocator>::template rebind_alloc<T>; |
||||
ValueAlloc value_alloc(*alloc); |
||||
T* res = absl::allocator_traits<ValueAlloc>::allocate(value_alloc, 1); |
||||
absl::allocator_traits<ValueAlloc>::construct(value_alloc, res, |
||||
std::forward<Args>(args)...); |
||||
return res; |
||||
} |
||||
|
||||
template <class Allocator> |
||||
static void delete_element(Allocator* alloc, T* elem) { |
||||
using ValueAlloc = |
||||
typename absl::allocator_traits<Allocator>::template rebind_alloc<T>; |
||||
ValueAlloc value_alloc(*alloc); |
||||
absl::allocator_traits<ValueAlloc>::destroy(value_alloc, elem); |
||||
absl::allocator_traits<ValueAlloc>::deallocate(value_alloc, elem, 1); |
||||
} |
||||
|
||||
template <class F, class... Args> |
||||
static decltype(absl::container_internal::DecomposeValue( |
||||
std::declval<F>(), std::declval<Args>()...)) |
||||
apply(F&& f, Args&&... args) { |
||||
return absl::container_internal::DecomposeValue( |
||||
std::forward<F>(f), std::forward<Args>(args)...); |
||||
} |
||||
|
||||
static size_t element_space_used(const T*) { return sizeof(T); } |
||||
}; |
||||
} // namespace container_internal
|
||||
} // namespace absl
|
||||
#endif // ABSL_CONTAINER_NODE_HASH_SET_H_
|
@ -0,0 +1,103 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/container/node_hash_set.h" |
||||
|
||||
#include "absl/container/internal/unordered_set_constructor_test.h" |
||||
#include "absl/container/internal/unordered_set_lookup_test.h" |
||||
#include "absl/container/internal/unordered_set_modifiers_test.h" |
||||
|
||||
namespace absl { |
||||
namespace container_internal { |
||||
namespace { |
||||
using ::absl::container_internal::hash_internal::Enum; |
||||
using ::absl::container_internal::hash_internal::EnumClass; |
||||
using ::testing::Pointee; |
||||
using ::testing::UnorderedElementsAre; |
||||
|
||||
using SetTypes = ::testing::Types< |
||||
node_hash_set<int, StatefulTestingHash, StatefulTestingEqual, Alloc<int>>, |
||||
node_hash_set<std::string, StatefulTestingHash, StatefulTestingEqual, |
||||
Alloc<int>>, |
||||
node_hash_set<Enum, StatefulTestingHash, StatefulTestingEqual, Alloc<Enum>>, |
||||
node_hash_set<EnumClass, StatefulTestingHash, StatefulTestingEqual, |
||||
Alloc<EnumClass>>>; |
||||
|
||||
INSTANTIATE_TYPED_TEST_CASE_P(NodeHashSet, ConstructorTest, SetTypes); |
||||
INSTANTIATE_TYPED_TEST_CASE_P(NodeHashSet, LookupTest, SetTypes); |
||||
INSTANTIATE_TYPED_TEST_CASE_P(NodeHashSet, ModifiersTest, SetTypes); |
||||
|
||||
TEST(NodeHashSet, MoveableNotCopyableCompiles) { |
||||
node_hash_set<std::unique_ptr<void*>> t; |
||||
node_hash_set<std::unique_ptr<void*>> u; |
||||
u = std::move(t); |
||||
} |
||||
|
||||
TEST(NodeHashSet, MergeExtractInsert) { |
||||
struct Hash { |
||||
size_t operator()(const std::unique_ptr<int>& p) const { return *p; } |
||||
}; |
||||
struct Eq { |
||||
bool operator()(const std::unique_ptr<int>& a, |
||||
const std::unique_ptr<int>& b) const { |
||||
return *a == *b; |
||||
} |
||||
}; |
||||
absl::node_hash_set<std::unique_ptr<int>, Hash, Eq> set1, set2; |
||||
set1.insert(absl::make_unique<int>(7)); |
||||
set1.insert(absl::make_unique<int>(17)); |
||||
|
||||
set2.insert(absl::make_unique<int>(7)); |
||||
set2.insert(absl::make_unique<int>(19)); |
||||
|
||||
EXPECT_THAT(set1, UnorderedElementsAre(Pointee(7), Pointee(17))); |
||||
EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7), Pointee(19))); |
||||
|
||||
set1.merge(set2); |
||||
|
||||
EXPECT_THAT(set1, UnorderedElementsAre(Pointee(7), Pointee(17), Pointee(19))); |
||||
EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7))); |
||||
|
||||
auto node = set1.extract(absl::make_unique<int>(7)); |
||||
EXPECT_TRUE(node); |
||||
EXPECT_THAT(node.value(), Pointee(7)); |
||||
EXPECT_THAT(set1, UnorderedElementsAre(Pointee(17), Pointee(19))); |
||||
|
||||
auto insert_result = set2.insert(std::move(node)); |
||||
EXPECT_FALSE(node); |
||||
EXPECT_FALSE(insert_result.inserted); |
||||
EXPECT_TRUE(insert_result.node); |
||||
EXPECT_THAT(insert_result.node.value(), Pointee(7)); |
||||
EXPECT_EQ(**insert_result.position, 7); |
||||
EXPECT_NE(insert_result.position->get(), insert_result.node.value().get()); |
||||
EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7))); |
||||
|
||||
node = set1.extract(absl::make_unique<int>(17)); |
||||
EXPECT_TRUE(node); |
||||
EXPECT_THAT(node.value(), Pointee(17)); |
||||
EXPECT_THAT(set1, UnorderedElementsAre(Pointee(19))); |
||||
|
||||
node.value() = absl::make_unique<int>(23); |
||||
|
||||
insert_result = set2.insert(std::move(node)); |
||||
EXPECT_FALSE(node); |
||||
EXPECT_TRUE(insert_result.inserted); |
||||
EXPECT_FALSE(insert_result.node); |
||||
EXPECT_EQ(**insert_result.position, 23); |
||||
EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7), Pointee(23))); |
||||
} |
||||
|
||||
} // namespace
|
||||
} // namespace container_internal
|
||||
} // namespace absl
|
@ -0,0 +1,114 @@ |
||||
# |
||||
# Copyright 2018 The Abseil Authors. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
# |
||||
|
||||
load( |
||||
"//absl:copts.bzl", |
||||
"ABSL_DEFAULT_COPTS", |
||||
"ABSL_TEST_COPTS", |
||||
) |
||||
|
||||
package(default_visibility = ["//visibility:public"]) |
||||
|
||||
licenses(["notice"]) # Apache 2.0 |
||||
|
||||
cc_library( |
||||
name = "hash", |
||||
srcs = [ |
||||
"internal/hash.cc", |
||||
"internal/hash.h", |
||||
], |
||||
hdrs = ["hash.h"], |
||||
copts = ABSL_DEFAULT_COPTS, |
||||
deps = [ |
||||
":city", |
||||
"//absl/base:core_headers", |
||||
"//absl/base:endian", |
||||
"//absl/container:fixed_array", |
||||
"//absl/meta:type_traits", |
||||
"//absl/numeric:int128", |
||||
"//absl/strings", |
||||
"//absl/types:optional", |
||||
"//absl/types:variant", |
||||
"//absl/utility", |
||||
], |
||||
) |
||||
|
||||
cc_library( |
||||
name = "hash_testing", |
||||
testonly = 1, |
||||
hdrs = ["hash_testing.h"], |
||||
deps = [ |
||||
":spy_hash_state", |
||||
"//absl/meta:type_traits", |
||||
"//absl/strings", |
||||
"//absl/types:variant", |
||||
"@com_google_googletest//:gtest", |
||||
], |
||||
) |
||||
|
||||
cc_test( |
||||
name = "hash_test", |
||||
srcs = ["hash_test.cc"], |
||||
copts = ABSL_TEST_COPTS, |
||||
deps = [ |
||||
":hash", |
||||
":hash_testing", |
||||
"//absl/base:core_headers", |
||||
"//absl/container:flat_hash_set", |
||||
"//absl/hash:spy_hash_state", |
||||
"//absl/meta:type_traits", |
||||
"//absl/numeric:int128", |
||||
"@com_google_googletest//:gtest_main", |
||||
], |
||||
) |
||||
|
||||
cc_library( |
||||
name = "spy_hash_state", |
||||
testonly = 1, |
||||
hdrs = ["internal/spy_hash_state.h"], |
||||
copts = ABSL_DEFAULT_COPTS, |
||||
visibility = ["//visibility:private"], |
||||
deps = [ |
||||
":hash", |
||||
"//absl/strings", |
||||
"//absl/strings:str_format", |
||||
], |
||||
) |
||||
|
||||
cc_library( |
||||
name = "city", |
||||
srcs = ["internal/city.cc"], |
||||
hdrs = [ |
||||
"internal/city.h", |
||||
"internal/city_crc.h", |
||||
], |
||||
copts = ABSL_DEFAULT_COPTS, |
||||
deps = [ |
||||
"//absl/base:config", |
||||
"//absl/base:core_headers", |
||||
"//absl/base:endian", |
||||
], |
||||
) |
||||
|
||||
cc_test( |
||||
name = "city_test", |
||||
srcs = ["internal/city_test.cc"], |
||||
copts = ABSL_TEST_COPTS, |
||||
deps = [ |
||||
":city", |
||||
"@com_google_googletest//:gtest_main", |
||||
], |
||||
) |
@ -0,0 +1,80 @@ |
||||
# |
||||
# Copyright 2018 The Abseil Authors. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
# |
||||
|
||||
list(APPEND HASH_PUBLIC_HEADERS |
||||
"hash.h" |
||||
) |
||||
|
||||
list(APPEND HASH_INTERNAL_HEADERS |
||||
"internal/city.h" |
||||
"internal/city_crc.h" |
||||
"internal/hash.h" |
||||
) |
||||
|
||||
# absl_hash library |
||||
list(APPEND HASH_SRC |
||||
"internal/city.cc" |
||||
"internal/hash.cc" |
||||
${HASH_PUBLIC_HEADERS} |
||||
${HASH_INTERNAL_HEADERS} |
||||
) |
||||
|
||||
set(HASH_PUBLIC_LIBRARIES absl::hash absl::container absl::strings absl::str_format absl::utility) |
||||
|
||||
absl_library( |
||||
TARGET |
||||
absl_hash |
||||
SOURCES |
||||
${HASH_SRC} |
||||
PUBLIC_LIBRARIES |
||||
${HASH_PUBLIC_LIBRARIES} |
||||
EXPORT_NAME |
||||
hash |
||||
) |
||||
|
||||
# |
||||
## TESTS |
||||
# |
||||
|
||||
# testing support |
||||
set(HASH_TEST_HEADERS hash_testing.h internal/spy_hash_state.h) |
||||
set(HASH_TEST_PUBLIC_LIBRARIES absl::hash absl::container absl::numeric absl::strings absl::str_format) |
||||
|
||||
# hash_test |
||||
set(HASH_TEST_SRC "hash_test.cc" ${HASH_TEST_HEADERS}) |
||||
|
||||
absl_test( |
||||
TARGET |
||||
hash_test |
||||
SOURCES |
||||
${HASH_TEST_SRC} |
||||
PUBLIC_LIBRARIES |
||||
${HASH_TEST_PUBLIC_LIBRARIES} |
||||
) |
||||
|
||||
# hash_test |
||||
set(CITY_TEST_SRC "internal/city_test.cc") |
||||
|
||||
absl_test( |
||||
TARGET |
||||
city_test |
||||
SOURCES |
||||
${CITY_TEST_SRC} |
||||
PUBLIC_LIBRARIES |
||||
${HASH_TEST_PUBLIC_LIBRARIES} |
||||
) |
||||
|
||||
|
@ -0,0 +1,312 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// -----------------------------------------------------------------------------
|
||||
// File: hash.h
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// This header file defines the Abseil `hash` library and the Abseil hashing
|
||||
// framework. This framework consists of the following:
|
||||
//
|
||||
// * The `absl::Hash` functor, which is used to invoke the hasher within the
|
||||
// Abseil hashing framework. `absl::Hash<T>` supports most basic types and
|
||||
// a number of Abseil types out of the box.
|
||||
// * `AbslHashValue`, an extension point that allows you to extend types to
|
||||
// support Abseil hashing without requiring you to define a hashing
|
||||
// algorithm.
|
||||
// * `HashState`, a type-erased class which implement the manipulation of the
|
||||
// hash state (H) itself. containing member functions `combine()` and
|
||||
// `combine_contiguous()`, which you can use to contribute to an existing
|
||||
// hash state when hashing your types.
|
||||
//
|
||||
// Unlike `std::hash` or other hashing frameworks, the Abseil hashing framework
|
||||
// provides most of its utility by abstracting away the hash algorithm (and its
|
||||
// implementation) entirely. Instead, a type invokes the Abseil hashing
|
||||
// framework by simply combining its state with the state of known, hashable
|
||||
// types. Hashing of that combined state is separately done by `absl::Hash`.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// // Suppose we have a class `Circle` for which we want to add hashing
|
||||
// class Circle {
|
||||
// public:
|
||||
// ...
|
||||
// private:
|
||||
// std::pair<int, int> center_;
|
||||
// int radius_;
|
||||
// };
|
||||
//
|
||||
// // To add hashing support to `Circle`, we simply need to add an ordinary
|
||||
// // function `AbslHashValue()`, and return the combined hash state of the
|
||||
// // existing hash state and the class state:
|
||||
//
|
||||
// template <typename H>
|
||||
// friend H AbslHashValue(H h, const Circle& c) {
|
||||
// return H::combine(std::move(h), c.center_, c.radius_);
|
||||
// }
|
||||
//
|
||||
// For more information, see Adding Type Support to `absl::Hash` below.
|
||||
//
|
||||
#ifndef ABSL_HASH_HASH_H_ |
||||
#define ABSL_HASH_HASH_H_ |
||||
|
||||
#include "absl/hash/internal/hash.h" |
||||
|
||||
namespace absl { |
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// `absl::Hash`
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// `absl::Hash<T>` is a convenient general-purpose hash functor for a type `T`
|
||||
// satisfying any of the following conditions (in order):
|
||||
//
|
||||
// * T is an arithmetic or pointer type
|
||||
// * T defines an overload for `AbslHashValue(H, const T&)` for an arbitrary
|
||||
// hash state `H`.
|
||||
// - T defines a specialization of `HASH_NAMESPACE::hash<T>`
|
||||
// - T defines a specialization of `std::hash<T>`
|
||||
//
|
||||
// `absl::Hash` intrinsically supports the following types:
|
||||
//
|
||||
// * All integral types (including bool)
|
||||
// * All enum types
|
||||
// * All floating-point types (although hashing them is discouraged)
|
||||
// * All pointer types, including nullptr_t
|
||||
// * std::pair<T1, T2>, if T1 and T2 are hashable
|
||||
// * std::tuple<Ts...>, if all the Ts... are hashable
|
||||
// * std::unique_ptr and std::shared_ptr
|
||||
// * All string-like types including:
|
||||
// * std::string
|
||||
// * std::string_view (as well as any instance of std::basic_string that
|
||||
// uses char and std::char_traits)
|
||||
// * All the standard sequence containers (provided the elements are hashable)
|
||||
// * All the standard ordered associative containers (provided the elements are
|
||||
// hashable)
|
||||
// * absl types such as the following:
|
||||
// * absl::string_view
|
||||
// * absl::InlinedVector
|
||||
// * absl::FixedArray
|
||||
// * absl::unit128
|
||||
// * absl::Time, absl::Duration, and absl::TimeZone
|
||||
//
|
||||
// Note: the list above is not meant to be exhaustive. Additional type support
|
||||
// may be added, in which case the above list will be updated.
|
||||
//
|
||||
// -----------------------------------------------------------------------------
|
||||
// absl::Hash Invocation Evaluation
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// When invoked, `absl::Hash<T>` searches for supplied hash functions in the
|
||||
// following order:
|
||||
//
|
||||
// * Natively supported types out of the box (see above)
|
||||
// * Types for which an `AbslHashValue()` overload is provided (such as
|
||||
// user-defined types). See "Adding Type Support to `absl::Hash`" below.
|
||||
// * Types which define a `HASH_NAMESPACE::hash<T>` specialization (aka
|
||||
// `__gnu_cxx::hash<T>` for gcc/Clang or `stdext::hash<T>` for MSVC)
|
||||
// * Types which define a `std::hash<T>` specialization
|
||||
//
|
||||
// The fallback to legacy hash functions exists mainly for backwards
|
||||
// compatibility. If you have a choice, prefer defining an `AbslHashValue`
|
||||
// overload instead of specializing any legacy hash functors.
|
||||
//
|
||||
// -----------------------------------------------------------------------------
|
||||
// The Hash State Concept, and using `HashState` for Type Erasure
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// The `absl::Hash` framework relies on the Concept of a "hash state." Such a
|
||||
// hash state is used in several places:
|
||||
//
|
||||
// * Within existing implementations of `absl::Hash<T>` to store the hashed
|
||||
// state of an object. Note that it is up to the implementation how it stores
|
||||
// such state. A hash table, for example, may mix the state to produce an
|
||||
// integer value; a testing framework may simply hold a vector of that state.
|
||||
// * Within implementations of `AbslHashValue()` used to extend user-defined
|
||||
// types. (See "Adding Type Support to absl::Hash" below.)
|
||||
// * Inside a `HashState`, providing type erasure for the concept of a hash
|
||||
// state, which you can use to extend the `absl::Hash` framework for types
|
||||
// that are otherwise difficult to extend using `AbslHashValue()`. (See the
|
||||
// `HashState` class below.)
|
||||
//
|
||||
// The "hash state" concept contains two member functions for mixing hash state:
|
||||
//
|
||||
// * `H::combine()`
|
||||
//
|
||||
// Combines an arbitrary number of values into a hash state, returning the
|
||||
// updated state. Note that the existing hash state is move-only and must be
|
||||
// passed by value.
|
||||
//
|
||||
// Each of the value types T must be hashable by H.
|
||||
//
|
||||
// NOTE:
|
||||
//
|
||||
// state = H::combine(std::move(state), value1, value2, value3);
|
||||
//
|
||||
// must be guaranteed to produce the same hash expansion as
|
||||
//
|
||||
// state = H::combine(std::move(state), value1);
|
||||
// state = H::combine(std::move(state), value2);
|
||||
// state = H::combine(std::move(state), value3);
|
||||
//
|
||||
// * `H::combine_contiguous()`
|
||||
//
|
||||
// Combines a contiguous array of `size` elements into a hash state,
|
||||
// returning the updated state. Note that the existing hash state is
|
||||
// move-only and must be passed by value.
|
||||
//
|
||||
// NOTE:
|
||||
//
|
||||
// state = H::combine_contiguous(std::move(state), data, size);
|
||||
//
|
||||
// need NOT be guaranteed to produce the same hash expansion as a loop
|
||||
// (it may perform internal optimizations). If you need this guarantee, use a
|
||||
// loop instead.
|
||||
//
|
||||
// -----------------------------------------------------------------------------
|
||||
// Adding Type Support to `absl::Hash`
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// To add support for your user-defined type, add a proper `AbslHashValue()`
|
||||
// overload as a free (non-member) function. The overload will take an
|
||||
// existing hash state and should combine that state with state from the type.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// template <typename H>
|
||||
// H AbslHashValue(H state, const MyType& v) {
|
||||
// return H::combine(std::move(state), v.field1, ..., v.fieldN);
|
||||
// }
|
||||
//
|
||||
// where `(field1, ..., fieldN)` are the members you would use on your
|
||||
// `operator==` to define equality.
|
||||
//
|
||||
// Notice that `AbslHashValue` is not a class member, but an ordinary function.
|
||||
// An `AbslHashValue` overload for a type should only be declared in the same
|
||||
// file and namespace as said type. The proper `AbslHashValue` implementation
|
||||
// for a given type will be discovered via ADL.
|
||||
//
|
||||
// Note: unlike `std::hash', `absl::Hash` should never be specialized. It must
|
||||
// only be extended by adding `AbslHashValue()` overloads.
|
||||
//
|
||||
template <typename T> |
||||
using Hash = absl::hash_internal::Hash<T>; |
||||
|
||||
// HashState
|
||||
//
|
||||
// A type erased version of the hash state concept, for use in user-defined
|
||||
// `AbslHashValue` implementations that can't use templates (such as PImpl
|
||||
// classes, virtual functions, etc.). The type erasure adds overhead so it
|
||||
// should be avoided unless necessary.
|
||||
//
|
||||
// Note: This wrapper will only erase calls to:
|
||||
// combine_contiguous(H, const unsigned char*, size_t)
|
||||
//
|
||||
// All other calls will be handled internally and will not invoke overloads
|
||||
// provided by the wrapped class.
|
||||
//
|
||||
// Users of this class should still define a template `AbslHashValue` function,
|
||||
// but can use `absl::HashState::Create(&state)` to erase the type of the hash
|
||||
// state and dispatch to their private hashing logic.
|
||||
//
|
||||
// This state can be used like any other hash state. In particular, you can call
|
||||
// `HashState::combine()` and `HashState::combine_contiguous()` on it.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// class Interface {
|
||||
// public:
|
||||
// template <typename H>
|
||||
// friend H AbslHashValue(H state, const Interface& value) {
|
||||
// state = H::combine(std::move(state), std::type_index(typeid(*this)));
|
||||
// value.HashValue(absl::HashState::Create(&state));
|
||||
// return state;
|
||||
// }
|
||||
// private:
|
||||
// virtual void HashValue(absl::HashState state) const = 0;
|
||||
// };
|
||||
//
|
||||
// class Impl : Interface {
|
||||
// private:
|
||||
// void HashValue(absl::HashState state) const override {
|
||||
// absl::HashState::combine(std::move(state), v1_, v2_);
|
||||
// }
|
||||
// int v1_;
|
||||
// string v2_;
|
||||
// };
|
||||
class HashState : public hash_internal::HashStateBase<HashState> { |
||||
public: |
||||
// HashState::Create()
|
||||
//
|
||||
// Create a new `HashState` instance that wraps `state`. All calls to
|
||||
// `combine()` and `combine_contiguous()` on the new instance will be
|
||||
// redirected to the original `state` object. The `state` object must outlive
|
||||
// the `HashState` instance.
|
||||
template <typename T> |
||||
static HashState Create(T* state) { |
||||
HashState s; |
||||
s.Init(state); |
||||
return s; |
||||
} |
||||
|
||||
HashState(const HashState&) = delete; |
||||
HashState& operator=(const HashState&) = delete; |
||||
HashState(HashState&&) = default; |
||||
HashState& operator=(HashState&&) = default; |
||||
|
||||
// HashState::combine()
|
||||
//
|
||||
// Combines an arbitrary number of values into a hash state, returning the
|
||||
// updated state.
|
||||
using HashState::HashStateBase::combine; |
||||
|
||||
// HashState::combine_contiguous()
|
||||
//
|
||||
// Combines a contiguous array of `size` elements into a hash state, returning
|
||||
// the updated state.
|
||||
static HashState combine_contiguous(HashState hash_state, |
||||
const unsigned char* first, size_t size) { |
||||
hash_state.combine_contiguous_(hash_state.state_, first, size); |
||||
return hash_state; |
||||
} |
||||
using HashState::HashStateBase::combine_contiguous; |
||||
|
||||
private: |
||||
HashState() = default; |
||||
|
||||
template <typename T> |
||||
static void CombineContiguousImpl(void* p, const unsigned char* first, |
||||
size_t size) { |
||||
T& state = *static_cast<T*>(p); |
||||
state = T::combine_contiguous(std::move(state), first, size); |
||||
} |
||||
|
||||
template <typename T> |
||||
void Init(T* state) { |
||||
state_ = state; |
||||
combine_contiguous_ = &CombineContiguousImpl<T>; |
||||
} |
||||
|
||||
// Do not erase an already erased state.
|
||||
void Init(HashState* state) { |
||||
state_ = state->state_; |
||||
combine_contiguous_ = state->combine_contiguous_; |
||||
} |
||||
|
||||
void* state_; |
||||
void (*combine_contiguous_)(void*, const unsigned char*, size_t); |
||||
}; |
||||
|
||||
} // namespace absl
|
||||
#endif // ABSL_HASH_HASH_H_
|
@ -0,0 +1,425 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/hash/hash.h" |
||||
|
||||
#include <array> |
||||
#include <cstring> |
||||
#include <deque> |
||||
#include <forward_list> |
||||
#include <functional> |
||||
#include <iterator> |
||||
#include <limits> |
||||
#include <list> |
||||
#include <map> |
||||
#include <memory> |
||||
#include <numeric> |
||||
#include <random> |
||||
#include <set> |
||||
#include <string> |
||||
#include <tuple> |
||||
#include <type_traits> |
||||
#include <unordered_map> |
||||
#include <utility> |
||||
#include <vector> |
||||
|
||||
#include "gmock/gmock.h" |
||||
#include "gtest/gtest.h" |
||||
#include "absl/container/flat_hash_set.h" |
||||
#include "absl/hash/hash_testing.h" |
||||
#include "absl/hash/internal/spy_hash_state.h" |
||||
#include "absl/meta/type_traits.h" |
||||
#include "absl/numeric/int128.h" |
||||
|
||||
namespace { |
||||
|
||||
using absl::Hash; |
||||
using absl::hash_internal::SpyHashState; |
||||
|
||||
template <typename T> |
||||
class HashValueIntTest : public testing::Test { |
||||
}; |
||||
TYPED_TEST_CASE_P(HashValueIntTest); |
||||
|
||||
template <typename T> |
||||
SpyHashState SpyHash(const T& value) { |
||||
return SpyHashState::combine(SpyHashState(), value); |
||||
} |
||||
|
||||
// Helper trait to verify if T is hashable. We use absl::Hash's poison status to
|
||||
// detect it.
|
||||
template <typename T> |
||||
using is_hashable = std::is_default_constructible<absl::Hash<T>>; |
||||
|
||||
TYPED_TEST_P(HashValueIntTest, BasicUsage) { |
||||
EXPECT_TRUE((is_hashable<TypeParam>::value)); |
||||
|
||||
TypeParam n = 42; |
||||
EXPECT_EQ(SpyHash(n), SpyHash(TypeParam{42})); |
||||
EXPECT_NE(SpyHash(n), SpyHash(TypeParam{0})); |
||||
EXPECT_NE(SpyHash(std::numeric_limits<TypeParam>::max()), |
||||
SpyHash(std::numeric_limits<TypeParam>::min())); |
||||
} |
||||
|
||||
TYPED_TEST_P(HashValueIntTest, FastPath) { |
||||
// Test the fast-path to make sure the values are the same.
|
||||
TypeParam n = 42; |
||||
EXPECT_EQ(absl::Hash<TypeParam>{}(n), |
||||
absl::Hash<std::tuple<TypeParam>>{}(std::tuple<TypeParam>(n))); |
||||
} |
||||
|
||||
REGISTER_TYPED_TEST_CASE_P(HashValueIntTest, BasicUsage, FastPath); |
||||
using IntTypes = testing::Types<unsigned char, char, int, int32_t, int64_t, uint32_t, |
||||
uint64_t, size_t>; |
||||
INSTANTIATE_TYPED_TEST_CASE_P(My, HashValueIntTest, IntTypes); |
||||
|
||||
template <typename T, typename = void> |
||||
struct IsHashCallble : std::false_type {}; |
||||
|
||||
template <typename T> |
||||
struct IsHashCallble<T, absl::void_t<decltype(std::declval<absl::Hash<T>>()( |
||||
std::declval<const T&>()))>> : std::true_type {}; |
||||
|
||||
template <typename T, typename = void> |
||||
struct IsAggregateInitializable : std::false_type {}; |
||||
|
||||
template <typename T> |
||||
struct IsAggregateInitializable<T, absl::void_t<decltype(T{})>> |
||||
: std::true_type {}; |
||||
|
||||
TEST(IsHashableTest, ValidHash) { |
||||
EXPECT_TRUE((is_hashable<int>::value)); |
||||
EXPECT_TRUE(std::is_default_constructible<absl::Hash<int>>::value); |
||||
EXPECT_TRUE(std::is_copy_constructible<absl::Hash<int>>::value); |
||||
EXPECT_TRUE(std::is_move_constructible<absl::Hash<int>>::value); |
||||
EXPECT_TRUE(absl::is_copy_assignable<absl::Hash<int>>::value); |
||||
EXPECT_TRUE(absl::is_move_assignable<absl::Hash<int>>::value); |
||||
EXPECT_TRUE(IsHashCallble<int>::value); |
||||
EXPECT_TRUE(IsAggregateInitializable<absl::Hash<int>>::value); |
||||
} |
||||
#if ABSL_HASH_INTERNAL_CAN_POISON_ && !defined(__APPLE__) |
||||
TEST(IsHashableTest, PoisonHash) { |
||||
struct X {}; |
||||
EXPECT_FALSE((is_hashable<X>::value)); |
||||
EXPECT_FALSE(std::is_default_constructible<absl::Hash<X>>::value); |
||||
EXPECT_FALSE(std::is_copy_constructible<absl::Hash<X>>::value); |
||||
EXPECT_FALSE(std::is_move_constructible<absl::Hash<X>>::value); |
||||
EXPECT_FALSE(absl::is_copy_assignable<absl::Hash<X>>::value); |
||||
EXPECT_FALSE(absl::is_move_assignable<absl::Hash<X>>::value); |
||||
EXPECT_FALSE(IsHashCallble<X>::value); |
||||
EXPECT_FALSE(IsAggregateInitializable<absl::Hash<X>>::value); |
||||
} |
||||
#endif // ABSL_HASH_INTERNAL_CAN_POISON_
|
||||
|
||||
// Hashable types
|
||||
//
|
||||
// These types exist simply to exercise various AbslHashValue behaviors, so
|
||||
// they are named by what their AbslHashValue overload does.
|
||||
struct NoOp { |
||||
template <typename HashCode> |
||||
friend HashCode AbslHashValue(HashCode h, NoOp n) { |
||||
return std::move(h); |
||||
} |
||||
}; |
||||
|
||||
struct EmptyCombine { |
||||
template <typename HashCode> |
||||
friend HashCode AbslHashValue(HashCode h, EmptyCombine e) { |
||||
return HashCode::combine(std::move(h)); |
||||
} |
||||
}; |
||||
|
||||
template <typename Int> |
||||
struct CombineIterative { |
||||
template <typename HashCode> |
||||
friend HashCode AbslHashValue(HashCode h, CombineIterative c) { |
||||
for (int i = 0; i < 5; ++i) { |
||||
h = HashCode::combine(std::move(h), Int(i)); |
||||
} |
||||
return h; |
||||
} |
||||
}; |
||||
|
||||
template <typename Int> |
||||
struct CombineVariadic { |
||||
template <typename HashCode> |
||||
friend HashCode AbslHashValue(HashCode h, CombineVariadic c) { |
||||
return HashCode::combine(std::move(h), Int(0), Int(1), Int(2), Int(3), |
||||
Int(4)); |
||||
} |
||||
}; |
||||
|
||||
using InvokeTag = absl::hash_internal::InvokeHashTag; |
||||
template <InvokeTag T> |
||||
using InvokeTagConstant = std::integral_constant<InvokeTag, T>; |
||||
|
||||
template <InvokeTag... Tags> |
||||
struct MinTag; |
||||
|
||||
template <InvokeTag a, InvokeTag b, InvokeTag... Tags> |
||||
struct MinTag<a, b, Tags...> : MinTag<(a < b ? a : b), Tags...> {}; |
||||
|
||||
template <InvokeTag a> |
||||
struct MinTag<a> : InvokeTagConstant<a> {}; |
||||
|
||||
template <InvokeTag... Tags> |
||||
struct CustomHashType { |
||||
size_t value; |
||||
}; |
||||
|
||||
template <InvokeTag allowed, InvokeTag... tags> |
||||
struct EnableIfContained |
||||
: std::enable_if<absl::disjunction< |
||||
std::integral_constant<bool, allowed == tags>...>::value> {}; |
||||
|
||||
template < |
||||
typename H, InvokeTag... Tags, |
||||
typename = typename EnableIfContained<InvokeTag::kHashValue, Tags...>::type> |
||||
H AbslHashValue(H state, CustomHashType<Tags...> t) { |
||||
static_assert(MinTag<Tags...>::value == InvokeTag::kHashValue, ""); |
||||
return H::combine(std::move(state), |
||||
t.value + static_cast<int>(InvokeTag::kHashValue)); |
||||
} |
||||
|
||||
} // namespace
|
||||
|
||||
namespace absl { |
||||
namespace hash_internal { |
||||
template <InvokeTag... Tags> |
||||
struct is_uniquely_represented< |
||||
CustomHashType<Tags...>, |
||||
typename EnableIfContained<InvokeTag::kUniquelyRepresented, Tags...>::type> |
||||
: std::true_type {}; |
||||
} // namespace hash_internal
|
||||
} // namespace absl
|
||||
|
||||
#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
||||
namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE { |
||||
template <InvokeTag... Tags> |
||||
struct hash<CustomHashType<Tags...>> { |
||||
template <InvokeTag... TagsIn, typename = typename EnableIfContained< |
||||
InvokeTag::kLegacyHash, TagsIn...>::type> |
||||
size_t operator()(CustomHashType<TagsIn...> t) const { |
||||
static_assert(MinTag<Tags...>::value == InvokeTag::kLegacyHash, ""); |
||||
return t.value + static_cast<int>(InvokeTag::kLegacyHash); |
||||
} |
||||
}; |
||||
} // namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE
|
||||
#endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
|
||||
|
||||
namespace std { |
||||
template <InvokeTag... Tags> // NOLINT
|
||||
struct hash<CustomHashType<Tags...>> { |
||||
template <InvokeTag... TagsIn, typename = typename EnableIfContained< |
||||
InvokeTag::kStdHash, TagsIn...>::type> |
||||
size_t operator()(CustomHashType<TagsIn...> t) const { |
||||
static_assert(MinTag<Tags...>::value == InvokeTag::kStdHash, ""); |
||||
return t.value + static_cast<int>(InvokeTag::kStdHash); |
||||
} |
||||
}; |
||||
} // namespace std
|
||||
|
||||
namespace { |
||||
|
||||
template <typename... T> |
||||
void TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>, T...) { |
||||
using type = CustomHashType<T::value...>; |
||||
SCOPED_TRACE(testing::PrintToString(std::vector<InvokeTag>{T::value...})); |
||||
EXPECT_TRUE(is_hashable<type>()); |
||||
EXPECT_TRUE(is_hashable<const type>()); |
||||
EXPECT_TRUE(is_hashable<const type&>()); |
||||
|
||||
const size_t offset = static_cast<int>(std::min({T::value...})); |
||||
EXPECT_EQ(SpyHash(type{7}), SpyHash(size_t{7 + offset})); |
||||
} |
||||
|
||||
void TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>) { |
||||
#if ABSL_HASH_INTERNAL_CAN_POISON_ |
||||
// is_hashable is false if we don't support any of the hooks.
|
||||
using type = CustomHashType<>; |
||||
EXPECT_FALSE(is_hashable<type>()); |
||||
EXPECT_FALSE(is_hashable<const type>()); |
||||
EXPECT_FALSE(is_hashable<const type&>()); |
||||
#endif // ABSL_HASH_INTERNAL_CAN_POISON_
|
||||
} |
||||
|
||||
template <InvokeTag Tag, typename... T> |
||||
void TestCustomHashType(InvokeTagConstant<Tag> tag, T... t) { |
||||
constexpr auto next = static_cast<InvokeTag>(static_cast<int>(Tag) + 1); |
||||
TestCustomHashType(InvokeTagConstant<next>(), tag, t...); |
||||
TestCustomHashType(InvokeTagConstant<next>(), t...); |
||||
} |
||||
|
||||
TEST(HashTest, CustomHashType) { |
||||
TestCustomHashType(InvokeTagConstant<InvokeTag{}>()); |
||||
} |
||||
|
||||
TEST(HashTest, NoOpsAreEquivalent) { |
||||
EXPECT_EQ(Hash<NoOp>()({}), Hash<NoOp>()({})); |
||||
EXPECT_EQ(Hash<NoOp>()({}), Hash<EmptyCombine>()({})); |
||||
} |
||||
|
||||
template <typename T> |
||||
class HashIntTest : public testing::Test { |
||||
}; |
||||
TYPED_TEST_CASE_P(HashIntTest); |
||||
|
||||
TYPED_TEST_P(HashIntTest, BasicUsage) { |
||||
EXPECT_NE(Hash<NoOp>()({}), Hash<TypeParam>()(0)); |
||||
EXPECT_NE(Hash<NoOp>()({}), |
||||
Hash<TypeParam>()(std::numeric_limits<TypeParam>::max())); |
||||
if (std::numeric_limits<TypeParam>::min() != 0) { |
||||
EXPECT_NE(Hash<NoOp>()({}), |
||||
Hash<TypeParam>()(std::numeric_limits<TypeParam>::min())); |
||||
} |
||||
|
||||
EXPECT_EQ(Hash<CombineIterative<TypeParam>>()({}), |
||||
Hash<CombineVariadic<TypeParam>>()({})); |
||||
} |
||||
|
||||
REGISTER_TYPED_TEST_CASE_P(HashIntTest, BasicUsage); |
||||
using IntTypes = testing::Types<unsigned char, char, int, int32_t, int64_t, uint32_t, |
||||
uint64_t, size_t>; |
||||
INSTANTIATE_TYPED_TEST_CASE_P(My, HashIntTest, IntTypes); |
||||
|
||||
struct StructWithPadding { |
||||
char c; |
||||
int i; |
||||
|
||||
template <typename H> |
||||
friend H AbslHashValue(H hash_state, const StructWithPadding& s) { |
||||
return H::combine(std::move(hash_state), s.c, s.i); |
||||
} |
||||
}; |
||||
|
||||
static_assert(sizeof(StructWithPadding) > sizeof(char) + sizeof(int), |
||||
"StructWithPadding doesn't have padding"); |
||||
static_assert(std::is_standard_layout<StructWithPadding>::value, ""); |
||||
|
||||
// This check has to be disabled because libstdc++ doesn't support it.
|
||||
// static_assert(std::is_trivially_constructible<StructWithPadding>::value, "");
|
||||
|
||||
template <typename T> |
||||
struct ArraySlice { |
||||
T* begin; |
||||
T* end; |
||||
|
||||
template <typename H> |
||||
friend H AbslHashValue(H hash_state, const ArraySlice& slice) { |
||||
for (auto t = slice.begin; t != slice.end; ++t) { |
||||
hash_state = H::combine(std::move(hash_state), *t); |
||||
} |
||||
return hash_state; |
||||
} |
||||
}; |
||||
|
||||
TEST(HashTest, HashNonUniquelyRepresentedType) { |
||||
// Create equal StructWithPadding objects that are known to have non-equal
|
||||
// padding bytes.
|
||||
static const size_t kNumStructs = 10; |
||||
unsigned char buffer1[kNumStructs * sizeof(StructWithPadding)]; |
||||
std::memset(buffer1, 0, sizeof(buffer1)); |
||||
auto* s1 = reinterpret_cast<StructWithPadding*>(buffer1); |
||||
|
||||
unsigned char buffer2[kNumStructs * sizeof(StructWithPadding)]; |
||||
std::memset(buffer2, 255, sizeof(buffer2)); |
||||
auto* s2 = reinterpret_cast<StructWithPadding*>(buffer2); |
||||
for (int i = 0; i < kNumStructs; ++i) { |
||||
SCOPED_TRACE(i); |
||||
s1[i].c = s2[i].c = '0' + i; |
||||
s1[i].i = s2[i].i = i; |
||||
ASSERT_FALSE(memcmp(buffer1 + i * sizeof(StructWithPadding), |
||||
buffer2 + i * sizeof(StructWithPadding), |
||||
sizeof(StructWithPadding)) == 0) |
||||
<< "Bug in test code: objects do not have unequal" |
||||
<< " object representations"; |
||||
} |
||||
|
||||
EXPECT_EQ(Hash<StructWithPadding>()(s1[0]), Hash<StructWithPadding>()(s2[0])); |
||||
EXPECT_EQ(Hash<ArraySlice<StructWithPadding>>()({s1, s1 + kNumStructs}), |
||||
Hash<ArraySlice<StructWithPadding>>()({s2, s2 + kNumStructs})); |
||||
} |
||||
|
||||
TEST(HashTest, StandardHashContainerUsage) { |
||||
std::unordered_map<int, std::string, Hash<int>> map = {{0, "foo"}, { 42, "bar" }}; |
||||
|
||||
EXPECT_NE(map.find(0), map.end()); |
||||
EXPECT_EQ(map.find(1), map.end()); |
||||
EXPECT_NE(map.find(0u), map.end()); |
||||
} |
||||
|
||||
struct ConvertibleFromNoOp { |
||||
ConvertibleFromNoOp(NoOp) {} // NOLINT(runtime/explicit)
|
||||
|
||||
template <typename H> |
||||
friend H AbslHashValue(H hash_state, ConvertibleFromNoOp) { |
||||
return H::combine(std::move(hash_state), 1); |
||||
} |
||||
}; |
||||
|
||||
TEST(HashTest, HeterogeneousCall) { |
||||
EXPECT_NE(Hash<ConvertibleFromNoOp>()(NoOp()), |
||||
Hash<NoOp>()(NoOp())); |
||||
} |
||||
|
||||
TEST(IsUniquelyRepresentedTest, SanityTest) { |
||||
using absl::hash_internal::is_uniquely_represented; |
||||
|
||||
EXPECT_TRUE(is_uniquely_represented<unsigned char>::value); |
||||
EXPECT_TRUE(is_uniquely_represented<int>::value); |
||||
EXPECT_FALSE(is_uniquely_represented<bool>::value); |
||||
EXPECT_FALSE(is_uniquely_represented<int*>::value); |
||||
} |
||||
|
||||
struct IntAndString { |
||||
int i; |
||||
std::string s; |
||||
|
||||
template <typename H> |
||||
friend H AbslHashValue(H hash_state, IntAndString int_and_string) { |
||||
return H::combine(std::move(hash_state), int_and_string.s, |
||||
int_and_string.i); |
||||
} |
||||
}; |
||||
|
||||
TEST(HashTest, SmallValueOn64ByteBoundary) { |
||||
Hash<IntAndString>()(IntAndString{0, std::string(63, '0')}); |
||||
} |
||||
|
||||
struct TypeErased { |
||||
size_t n; |
||||
|
||||
template <typename H> |
||||
friend H AbslHashValue(H hash_state, const TypeErased& v) { |
||||
v.HashValue(absl::HashState::Create(&hash_state)); |
||||
return hash_state; |
||||
} |
||||
|
||||
void HashValue(absl::HashState state) const { |
||||
absl::HashState::combine(std::move(state), n); |
||||
} |
||||
}; |
||||
|
||||
TEST(HashTest, TypeErased) { |
||||
EXPECT_TRUE((is_hashable<TypeErased>::value)); |
||||
EXPECT_TRUE((is_hashable<std::pair<TypeErased, int>>::value)); |
||||
|
||||
EXPECT_EQ(SpyHash(TypeErased{7}), SpyHash(size_t{7})); |
||||
EXPECT_NE(SpyHash(TypeErased{7}), SpyHash(size_t{13})); |
||||
|
||||
EXPECT_EQ(SpyHash(std::make_pair(TypeErased{7}, 17)), |
||||
SpyHash(std::make_pair(size_t{7}, 17))); |
||||
} |
||||
|
||||
} // namespace
|
@ -0,0 +1,372 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef ABSL_HASH_HASH_TESTING_H_ |
||||
#define ABSL_HASH_HASH_TESTING_H_ |
||||
|
||||
#include <initializer_list> |
||||
#include <tuple> |
||||
#include <type_traits> |
||||
#include <vector> |
||||
|
||||
#include "gmock/gmock.h" |
||||
#include "gtest/gtest.h" |
||||
#include "absl/hash/internal/spy_hash_state.h" |
||||
#include "absl/meta/type_traits.h" |
||||
#include "absl/strings/str_cat.h" |
||||
#include "absl/types/variant.h" |
||||
|
||||
namespace absl { |
||||
|
||||
// Run the absl::Hash algorithm over all the elements passed in and verify that
|
||||
// their hash expansion is congruent with their `==` operator.
|
||||
//
|
||||
// It is used in conjunction with EXPECT_TRUE. Failures will output information
|
||||
// on what requirement failed and on which objects.
|
||||
//
|
||||
// Users should pass a collection of types as either an initializer list or a
|
||||
// container of cases.
|
||||
//
|
||||
// EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
|
||||
// {v1, v2, ..., vN}));
|
||||
//
|
||||
// std::vector<MyType> cases;
|
||||
// // Fill cases...
|
||||
// EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(cases));
|
||||
//
|
||||
// Users can pass a variety of types for testing heterogeneous lookup with
|
||||
// `std::make_tuple`:
|
||||
//
|
||||
// EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
|
||||
// std::make_tuple(v1, v2, ..., vN)));
|
||||
//
|
||||
//
|
||||
// Ideally, the values passed should provide enough coverage of the `==`
|
||||
// operator and the AbslHashValue implementations.
|
||||
// For dynamically sized types, the empty state should usually be included in
|
||||
// the values.
|
||||
//
|
||||
// The function accepts an optional comparator function, in case that `==` is
|
||||
// not enough for the values provided.
|
||||
//
|
||||
// Usage:
|
||||
//
|
||||
// EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
|
||||
// std::make_tuple(v1, v2, ..., vN), MyCustomEq{}));
|
||||
//
|
||||
// It checks the following requirements:
|
||||
// 1. The expansion for a value is deterministic.
|
||||
// 2. For any two objects `a` and `b` in the sequence, if `a == b` evaluates
|
||||
// to true, then their hash expansion must be equal.
|
||||
// 3. If `a == b` evaluates to false their hash expansion must be unequal.
|
||||
// 4. If `a == b` evaluates to false neither hash expansion can be a
|
||||
// suffix of the other.
|
||||
// 5. AbslHashValue overloads should not be called by the user. They are only
|
||||
// meant to be called by the framework. Users should call H::combine() and
|
||||
// H::combine_contiguous().
|
||||
// 6. No moved-from instance of the hash state is used in the implementation
|
||||
// of AbslHashValue.
|
||||
//
|
||||
// The values do not have to have the same type. This can be useful for
|
||||
// equivalent types that support heterogeneous lookup.
|
||||
//
|
||||
// A possible reason for breaking (2) is combining state in the hash expansion
|
||||
// that was not used in `==`.
|
||||
// For example:
|
||||
//
|
||||
// struct Bad2 {
|
||||
// int a, b;
|
||||
// template <typename H>
|
||||
// friend H AbslHashValue(H state, Bad2 x) {
|
||||
// // Uses a and b.
|
||||
// return H::combine(x.a, x.b);
|
||||
// }
|
||||
// friend bool operator==(Bad2 x, Bad2 y) {
|
||||
// // Only uses a.
|
||||
// return x.a == y.a;
|
||||
// }
|
||||
// };
|
||||
//
|
||||
// As for (3), breaking this usually means that there is state being passed to
|
||||
// the `==` operator that is not used in the hash expansion.
|
||||
// For example:
|
||||
//
|
||||
// struct Bad3 {
|
||||
// int a, b;
|
||||
// template <typename H>
|
||||
// friend H AbslHashValue(H state, Bad3 x) {
|
||||
// // Only uses a.
|
||||
// return H::combine(x.a);
|
||||
// }
|
||||
// friend bool operator==(Bad3 x, Bad3 y) {
|
||||
// // Uses a and b.
|
||||
// return x.a == y.a && x.b == y.b;
|
||||
// }
|
||||
// };
|
||||
//
|
||||
// Finally, a common way to break 4 is by combining dynamic ranges without
|
||||
// combining the size of the range.
|
||||
// For example:
|
||||
//
|
||||
// struct Bad4 {
|
||||
// int *p, size;
|
||||
// template <typename H>
|
||||
// friend H AbslHashValue(H state, Bad4 x) {
|
||||
// return H::combine_range(x.p, x.p + x.size);
|
||||
// }
|
||||
// friend bool operator==(Bad4 x, Bad4 y) {
|
||||
// return std::equal(x.p, x.p + x.size, y.p, y.p + y.size);
|
||||
// }
|
||||
// };
|
||||
//
|
||||
// An easy solution to this is to combine the size after combining the range,
|
||||
// like so:
|
||||
// template <typename H>
|
||||
// friend H AbslHashValue(H state, Bad4 x) {
|
||||
// return H::combine(H::combine_range(x.p, x.p + x.size), x.size);
|
||||
// }
|
||||
//
|
||||
template <int&... ExplicitBarrier, typename Container> |
||||
ABSL_MUST_USE_RESULT testing::AssertionResult |
||||
VerifyTypeImplementsAbslHashCorrectly(const Container& values); |
||||
|
||||
template <int&... ExplicitBarrier, typename Container, typename Eq> |
||||
ABSL_MUST_USE_RESULT testing::AssertionResult |
||||
VerifyTypeImplementsAbslHashCorrectly(const Container& values, Eq equals); |
||||
|
||||
template <int&..., typename T> |
||||
ABSL_MUST_USE_RESULT testing::AssertionResult |
||||
VerifyTypeImplementsAbslHashCorrectly(std::initializer_list<T> values); |
||||
|
||||
template <int&..., typename T, typename Eq> |
||||
ABSL_MUST_USE_RESULT testing::AssertionResult |
||||
VerifyTypeImplementsAbslHashCorrectly(std::initializer_list<T> values, |
||||
Eq equals); |
||||
|
||||
namespace hash_internal { |
||||
|
||||
struct PrintVisitor { |
||||
size_t index; |
||||
template <typename T> |
||||
std::string operator()(const T* value) const { |
||||
return absl::StrCat("#", index, "(", testing::PrintToString(*value), ")"); |
||||
} |
||||
}; |
||||
|
||||
template <typename Eq> |
||||
struct EqVisitor { |
||||
Eq eq; |
||||
template <typename T, typename U> |
||||
bool operator()(const T* t, const U* u) const { |
||||
return eq(*t, *u); |
||||
} |
||||
}; |
||||
|
||||
struct ExpandVisitor { |
||||
template <typename T> |
||||
SpyHashState operator()(const T* value) const { |
||||
return SpyHashState::combine(SpyHashState(), *value); |
||||
} |
||||
}; |
||||
|
||||
template <typename Container, typename Eq> |
||||
ABSL_MUST_USE_RESULT testing::AssertionResult |
||||
VerifyTypeImplementsAbslHashCorrectly(const Container& values, Eq equals) { |
||||
using V = typename Container::value_type; |
||||
|
||||
struct Info { |
||||
const V& value; |
||||
size_t index; |
||||
std::string ToString() const { return absl::visit(PrintVisitor{index}, value); } |
||||
SpyHashState expand() const { return absl::visit(ExpandVisitor{}, value); } |
||||
}; |
||||
|
||||
using EqClass = std::vector<Info>; |
||||
std::vector<EqClass> classes; |
||||
|
||||
// Gather the values in equivalence classes.
|
||||
size_t i = 0; |
||||
for (const auto& value : values) { |
||||
EqClass* c = nullptr; |
||||
for (auto& eqclass : classes) { |
||||
if (absl::visit(EqVisitor<Eq>{equals}, value, eqclass[0].value)) { |
||||
c = &eqclass; |
||||
break; |
||||
} |
||||
} |
||||
if (c == nullptr) { |
||||
classes.emplace_back(); |
||||
c = &classes.back(); |
||||
} |
||||
c->push_back({value, i}); |
||||
++i; |
||||
|
||||
// Verify potential errors captured by SpyHashState.
|
||||
if (auto error = c->back().expand().error()) { |
||||
return testing::AssertionFailure() << *error; |
||||
} |
||||
} |
||||
|
||||
if (classes.size() < 2) { |
||||
return testing::AssertionFailure() |
||||
<< "At least two equivalence classes are expected."; |
||||
} |
||||
|
||||
// We assume that equality is correctly implemented.
|
||||
// Now we verify that AbslHashValue is also correctly implemented.
|
||||
|
||||
for (const auto& c : classes) { |
||||
// All elements of the equivalence class must have the same hash expansion.
|
||||
const SpyHashState expected = c[0].expand(); |
||||
for (const Info& v : c) { |
||||
if (v.expand() != v.expand()) { |
||||
return testing::AssertionFailure() |
||||
<< "Hash expansion for " << v.ToString() |
||||
<< " is non-deterministic."; |
||||
} |
||||
if (v.expand() != expected) { |
||||
return testing::AssertionFailure() |
||||
<< "Values " << c[0].ToString() << " and " << v.ToString() |
||||
<< " evaluate as equal but have an unequal hash expansion."; |
||||
} |
||||
} |
||||
|
||||
// Elements from other classes must have different hash expansion.
|
||||
for (const auto& c2 : classes) { |
||||
if (&c == &c2) continue; |
||||
const SpyHashState c2_hash = c2[0].expand(); |
||||
switch (SpyHashState::Compare(expected, c2_hash)) { |
||||
case SpyHashState::CompareResult::kEqual: |
||||
return testing::AssertionFailure() |
||||
<< "Values " << c[0].ToString() << " and " << c2[0].ToString() |
||||
<< " evaluate as unequal but have an equal hash expansion."; |
||||
case SpyHashState::CompareResult::kBSuffixA: |
||||
return testing::AssertionFailure() |
||||
<< "Hash expansion of " << c2[0].ToString() |
||||
<< " is a suffix of the hash expansion of " << c[0].ToString() |
||||
<< "."; |
||||
case SpyHashState::CompareResult::kASuffixB: |
||||
return testing::AssertionFailure() |
||||
<< "Hash expansion of " << c[0].ToString() |
||||
<< " is a suffix of the hash expansion of " << c2[0].ToString() |
||||
<< "."; |
||||
case SpyHashState::CompareResult::kUnequal: |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
return testing::AssertionSuccess(); |
||||
} |
||||
|
||||
template <typename... T> |
||||
struct TypeSet { |
||||
template <typename U, bool = disjunction<std::is_same<T, U>...>::value> |
||||
struct Insert { |
||||
using type = TypeSet<U, T...>; |
||||
}; |
||||
template <typename U> |
||||
struct Insert<U, true> { |
||||
using type = TypeSet; |
||||
}; |
||||
|
||||
template <template <typename...> class C> |
||||
using apply = C<T...>; |
||||
}; |
||||
|
||||
template <typename... T> |
||||
struct MakeTypeSet : TypeSet<>{}; |
||||
template <typename T, typename... Ts> |
||||
struct MakeTypeSet<T, Ts...> : MakeTypeSet<Ts...>::template Insert<T>::type {}; |
||||
|
||||
template <typename... T> |
||||
using VariantForTypes = typename MakeTypeSet< |
||||
const typename std::decay<T>::type*...>::template apply<absl::variant>; |
||||
|
||||
template <typename Container> |
||||
struct ContainerAsVector { |
||||
using V = absl::variant<const typename Container::value_type*>; |
||||
using Out = std::vector<V>; |
||||
|
||||
static Out Do(const Container& values) { |
||||
Out out; |
||||
for (const auto& v : values) out.push_back(&v); |
||||
return out; |
||||
} |
||||
}; |
||||
|
||||
template <typename... T> |
||||
struct ContainerAsVector<std::tuple<T...>> { |
||||
using V = VariantForTypes<T...>; |
||||
using Out = std::vector<V>; |
||||
|
||||
template <size_t... I> |
||||
static Out DoImpl(const std::tuple<T...>& tuple, absl::index_sequence<I...>) { |
||||
return Out{&std::get<I>(tuple)...}; |
||||
} |
||||
|
||||
static Out Do(const std::tuple<T...>& values) { |
||||
return DoImpl(values, absl::index_sequence_for<T...>()); |
||||
} |
||||
}; |
||||
|
||||
template <> |
||||
struct ContainerAsVector<std::tuple<>> { |
||||
static std::vector<VariantForTypes<int>> Do(std::tuple<>) { return {}; } |
||||
}; |
||||
|
||||
struct DefaultEquals { |
||||
template <typename T, typename U> |
||||
bool operator()(const T& t, const U& u) const { |
||||
return t == u; |
||||
} |
||||
}; |
||||
|
||||
} // namespace hash_internal
|
||||
|
||||
template <int&..., typename Container> |
||||
ABSL_MUST_USE_RESULT testing::AssertionResult |
||||
VerifyTypeImplementsAbslHashCorrectly(const Container& values) { |
||||
return hash_internal::VerifyTypeImplementsAbslHashCorrectly( |
||||
hash_internal::ContainerAsVector<Container>::Do(values), |
||||
hash_internal::DefaultEquals{}); |
||||
} |
||||
|
||||
template <int&..., typename Container, typename Eq> |
||||
ABSL_MUST_USE_RESULT testing::AssertionResult |
||||
VerifyTypeImplementsAbslHashCorrectly(const Container& values, Eq equals) { |
||||
return hash_internal::VerifyTypeImplementsAbslHashCorrectly( |
||||
hash_internal::ContainerAsVector<Container>::Do(values), |
||||
equals); |
||||
} |
||||
|
||||
template <int&..., typename T> |
||||
ABSL_MUST_USE_RESULT testing::AssertionResult |
||||
VerifyTypeImplementsAbslHashCorrectly(std::initializer_list<T> values) { |
||||
return hash_internal::VerifyTypeImplementsAbslHashCorrectly( |
||||
hash_internal::ContainerAsVector<std::initializer_list<T>>::Do(values), |
||||
hash_internal::DefaultEquals{}); |
||||
} |
||||
|
||||
template <int&..., typename T, typename Eq> |
||||
ABSL_MUST_USE_RESULT testing::AssertionResult |
||||
VerifyTypeImplementsAbslHashCorrectly(std::initializer_list<T> values, |
||||
Eq equals) { |
||||
return hash_internal::VerifyTypeImplementsAbslHashCorrectly( |
||||
hash_internal::ContainerAsVector<std::initializer_list<T>>::Do(values), |
||||
equals); |
||||
} |
||||
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_HASH_HASH_TESTING_H_
|
@ -0,0 +1,589 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// This file provides CityHash64() and related functions.
|
||||
//
|
||||
// It's probably possible to create even faster hash functions by
|
||||
// writing a program that systematically explores some of the space of
|
||||
// possible hash functions, by using SIMD instructions, or by
|
||||
// compromising on hash quality.
|
||||
|
||||
#include "absl/hash/internal/city.h" |
||||
|
||||
#include <string.h> // for memcpy and memset |
||||
#include <algorithm> |
||||
|
||||
#include "absl/base/config.h" |
||||
#include "absl/base/internal/endian.h" |
||||
#include "absl/base/internal/unaligned_access.h" |
||||
#include "absl/base/optimization.h" |
||||
|
||||
namespace absl { |
||||
namespace hash_internal { |
||||
|
||||
#ifdef ABSL_IS_BIG_ENDIAN |
||||
#define uint32_in_expected_order(x) (absl::gbswap_32(x)) |
||||
#define uint64_in_expected_order(x) (absl::gbswap_64(x)) |
||||
#else |
||||
#define uint32_in_expected_order(x) (x) |
||||
#define uint64_in_expected_order(x) (x) |
||||
#endif |
||||
|
||||
static uint64_t Fetch64(const char *p) { |
||||
return uint64_in_expected_order(ABSL_INTERNAL_UNALIGNED_LOAD64(p)); |
||||
} |
||||
|
||||
static uint32_t Fetch32(const char *p) { |
||||
return uint32_in_expected_order(ABSL_INTERNAL_UNALIGNED_LOAD32(p)); |
||||
} |
||||
|
||||
// Some primes between 2^63 and 2^64 for various uses.
|
||||
static const uint64_t k0 = 0xc3a5c85c97cb3127ULL; |
||||
static const uint64_t k1 = 0xb492b66fbe98f273ULL; |
||||
static const uint64_t k2 = 0x9ae16a3b2f90404fULL; |
||||
|
||||
// Magic numbers for 32-bit hashing. Copied from Murmur3.
|
||||
static const uint32_t c1 = 0xcc9e2d51; |
||||
static const uint32_t c2 = 0x1b873593; |
||||
|
||||
// A 32-bit to 32-bit integer hash copied from Murmur3.
|
||||
static uint32_t fmix(uint32_t h) { |
||||
h ^= h >> 16; |
||||
h *= 0x85ebca6b; |
||||
h ^= h >> 13; |
||||
h *= 0xc2b2ae35; |
||||
h ^= h >> 16; |
||||
return h; |
||||
} |
||||
|
||||
static uint32_t Rotate32(uint32_t val, int shift) { |
||||
// Avoid shifting by 32: doing so yields an undefined result.
|
||||
return shift == 0 ? val : ((val >> shift) | (val << (32 - shift))); |
||||
} |
||||
|
||||
#undef PERMUTE3 |
||||
#define PERMUTE3(a, b, c) \ |
||||
do { \
|
||||
std::swap(a, b); \
|
||||
std::swap(a, c); \
|
||||
} while (0) |
||||
|
||||
static uint32_t Mur(uint32_t a, uint32_t h) { |
||||
// Helper from Murmur3 for combining two 32-bit values.
|
||||
a *= c1; |
||||
a = Rotate32(a, 17); |
||||
a *= c2; |
||||
h ^= a; |
||||
h = Rotate32(h, 19); |
||||
return h * 5 + 0xe6546b64; |
||||
} |
||||
|
||||
static uint32_t Hash32Len13to24(const char *s, size_t len) { |
||||
uint32_t a = Fetch32(s - 4 + (len >> 1)); |
||||
uint32_t b = Fetch32(s + 4); |
||||
uint32_t c = Fetch32(s + len - 8); |
||||
uint32_t d = Fetch32(s + (len >> 1)); |
||||
uint32_t e = Fetch32(s); |
||||
uint32_t f = Fetch32(s + len - 4); |
||||
uint32_t h = len; |
||||
|
||||
return fmix(Mur(f, Mur(e, Mur(d, Mur(c, Mur(b, Mur(a, h))))))); |
||||
} |
||||
|
||||
static uint32_t Hash32Len0to4(const char *s, size_t len) { |
||||
uint32_t b = 0; |
||||
uint32_t c = 9; |
||||
for (size_t i = 0; i < len; i++) { |
||||
signed char v = s[i]; |
||||
b = b * c1 + v; |
||||
c ^= b; |
||||
} |
||||
return fmix(Mur(b, Mur(len, c))); |
||||
} |
||||
|
||||
static uint32_t Hash32Len5to12(const char *s, size_t len) { |
||||
uint32_t a = len, b = len * 5, c = 9, d = b; |
||||
a += Fetch32(s); |
||||
b += Fetch32(s + len - 4); |
||||
c += Fetch32(s + ((len >> 1) & 4)); |
||||
return fmix(Mur(c, Mur(b, Mur(a, d)))); |
||||
} |
||||
|
||||
uint32_t CityHash32(const char *s, size_t len) { |
||||
if (len <= 24) { |
||||
return len <= 12 |
||||
? (len <= 4 ? Hash32Len0to4(s, len) : Hash32Len5to12(s, len)) |
||||
: Hash32Len13to24(s, len); |
||||
} |
||||
|
||||
// len > 24
|
||||
uint32_t h = len, g = c1 * len, f = g; |
||||
uint32_t a0 = Rotate32(Fetch32(s + len - 4) * c1, 17) * c2; |
||||
uint32_t a1 = Rotate32(Fetch32(s + len - 8) * c1, 17) * c2; |
||||
uint32_t a2 = Rotate32(Fetch32(s + len - 16) * c1, 17) * c2; |
||||
uint32_t a3 = Rotate32(Fetch32(s + len - 12) * c1, 17) * c2; |
||||
uint32_t a4 = Rotate32(Fetch32(s + len - 20) * c1, 17) * c2; |
||||
h ^= a0; |
||||
h = Rotate32(h, 19); |
||||
h = h * 5 + 0xe6546b64; |
||||
h ^= a2; |
||||
h = Rotate32(h, 19); |
||||
h = h * 5 + 0xe6546b64; |
||||
g ^= a1; |
||||
g = Rotate32(g, 19); |
||||
g = g * 5 + 0xe6546b64; |
||||
g ^= a3; |
||||
g = Rotate32(g, 19); |
||||
g = g * 5 + 0xe6546b64; |
||||
f += a4; |
||||
f = Rotate32(f, 19); |
||||
f = f * 5 + 0xe6546b64; |
||||
size_t iters = (len - 1) / 20; |
||||
do { |
||||
uint32_t a0 = Rotate32(Fetch32(s) * c1, 17) * c2; |
||||
uint32_t a1 = Fetch32(s + 4); |
||||
uint32_t a2 = Rotate32(Fetch32(s + 8) * c1, 17) * c2; |
||||
uint32_t a3 = Rotate32(Fetch32(s + 12) * c1, 17) * c2; |
||||
uint32_t a4 = Fetch32(s + 16); |
||||
h ^= a0; |
||||
h = Rotate32(h, 18); |
||||
h = h * 5 + 0xe6546b64; |
||||
f += a1; |
||||
f = Rotate32(f, 19); |
||||
f = f * c1; |
||||
g += a2; |
||||
g = Rotate32(g, 18); |
||||
g = g * 5 + 0xe6546b64; |
||||
h ^= a3 + a1; |
||||
h = Rotate32(h, 19); |
||||
h = h * 5 + 0xe6546b64; |
||||
g ^= a4; |
||||
g = absl::gbswap_32(g) * 5; |
||||
h += a4 * 5; |
||||
h = absl::gbswap_32(h); |
||||
f += a0; |
||||
PERMUTE3(f, h, g); |
||||
s += 20; |
||||
} while (--iters != 0); |
||||
g = Rotate32(g, 11) * c1; |
||||
g = Rotate32(g, 17) * c1; |
||||
f = Rotate32(f, 11) * c1; |
||||
f = Rotate32(f, 17) * c1; |
||||
h = Rotate32(h + g, 19); |
||||
h = h * 5 + 0xe6546b64; |
||||
h = Rotate32(h, 17) * c1; |
||||
h = Rotate32(h + f, 19); |
||||
h = h * 5 + 0xe6546b64; |
||||
h = Rotate32(h, 17) * c1; |
||||
return h; |
||||
} |
||||
|
||||
// Bitwise right rotate. Normally this will compile to a single
|
||||
// instruction, especially if the shift is a manifest constant.
|
||||
static uint64_t Rotate(uint64_t val, int shift) { |
||||
// Avoid shifting by 64: doing so yields an undefined result.
|
||||
return shift == 0 ? val : ((val >> shift) | (val << (64 - shift))); |
||||
} |
||||
|
||||
static uint64_t ShiftMix(uint64_t val) { return val ^ (val >> 47); } |
||||
|
||||
static uint64_t HashLen16(uint64_t u, uint64_t v) { |
||||
return Hash128to64(uint128(u, v)); |
||||
} |
||||
|
||||
static uint64_t HashLen16(uint64_t u, uint64_t v, uint64_t mul) { |
||||
// Murmur-inspired hashing.
|
||||
uint64_t a = (u ^ v) * mul; |
||||
a ^= (a >> 47); |
||||
uint64_t b = (v ^ a) * mul; |
||||
b ^= (b >> 47); |
||||
b *= mul; |
||||
return b; |
||||
} |
||||
|
||||
static uint64_t HashLen0to16(const char *s, size_t len) { |
||||
if (len >= 8) { |
||||
uint64_t mul = k2 + len * 2; |
||||
uint64_t a = Fetch64(s) + k2; |
||||
uint64_t b = Fetch64(s + len - 8); |
||||
uint64_t c = Rotate(b, 37) * mul + a; |
||||
uint64_t d = (Rotate(a, 25) + b) * mul; |
||||
return HashLen16(c, d, mul); |
||||
} |
||||
if (len >= 4) { |
||||
uint64_t mul = k2 + len * 2; |
||||
uint64_t a = Fetch32(s); |
||||
return HashLen16(len + (a << 3), Fetch32(s + len - 4), mul); |
||||
} |
||||
if (len > 0) { |
||||
uint8_t a = s[0]; |
||||
uint8_t b = s[len >> 1]; |
||||
uint8_t c = s[len - 1]; |
||||
uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8); |
||||
uint32_t z = len + (static_cast<uint32_t>(c) << 2); |
||||
return ShiftMix(y * k2 ^ z * k0) * k2; |
||||
} |
||||
return k2; |
||||
} |
||||
|
||||
// This probably works well for 16-byte strings as well, but it may be overkill
|
||||
// in that case.
|
||||
static uint64_t HashLen17to32(const char *s, size_t len) { |
||||
uint64_t mul = k2 + len * 2; |
||||
uint64_t a = Fetch64(s) * k1; |
||||
uint64_t b = Fetch64(s + 8); |
||||
uint64_t c = Fetch64(s + len - 8) * mul; |
||||
uint64_t d = Fetch64(s + len - 16) * k2; |
||||
return HashLen16(Rotate(a + b, 43) + Rotate(c, 30) + d, |
||||
a + Rotate(b + k2, 18) + c, mul); |
||||
} |
||||
|
||||
// Return a 16-byte hash for 48 bytes. Quick and dirty.
|
||||
// Callers do best to use "random-looking" values for a and b.
|
||||
static std::pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(uint64_t w, uint64_t x, |
||||
uint64_t y, uint64_t z, |
||||
uint64_t a, uint64_t b) { |
||||
a += w; |
||||
b = Rotate(b + a + z, 21); |
||||
uint64_t c = a; |
||||
a += x; |
||||
a += y; |
||||
b += Rotate(a, 44); |
||||
return std::make_pair(a + z, b + c); |
||||
} |
||||
|
||||
// Return a 16-byte hash for s[0] ... s[31], a, and b. Quick and dirty.
|
||||
static std::pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(const char *s, uint64_t a, |
||||
uint64_t b) { |
||||
return WeakHashLen32WithSeeds(Fetch64(s), Fetch64(s + 8), Fetch64(s + 16), |
||||
Fetch64(s + 24), a, b); |
||||
} |
||||
|
||||
// Return an 8-byte hash for 33 to 64 bytes.
|
||||
static uint64_t HashLen33to64(const char *s, size_t len) { |
||||
uint64_t mul = k2 + len * 2; |
||||
uint64_t a = Fetch64(s) * k2; |
||||
uint64_t b = Fetch64(s + 8); |
||||
uint64_t c = Fetch64(s + len - 24); |
||||
uint64_t d = Fetch64(s + len - 32); |
||||
uint64_t e = Fetch64(s + 16) * k2; |
||||
uint64_t f = Fetch64(s + 24) * 9; |
||||
uint64_t g = Fetch64(s + len - 8); |
||||
uint64_t h = Fetch64(s + len - 16) * mul; |
||||
uint64_t u = Rotate(a + g, 43) + (Rotate(b, 30) + c) * 9; |
||||
uint64_t v = ((a + g) ^ d) + f + 1; |
||||
uint64_t w = absl::gbswap_64((u + v) * mul) + h; |
||||
uint64_t x = Rotate(e + f, 42) + c; |
||||
uint64_t y = (absl::gbswap_64((v + w) * mul) + g) * mul; |
||||
uint64_t z = e + f + c; |
||||
a = absl::gbswap_64((x + z) * mul + y) + b; |
||||
b = ShiftMix((z + a) * mul + d + h) * mul; |
||||
return b + x; |
||||
} |
||||
|
||||
uint64_t CityHash64(const char *s, size_t len) { |
||||
if (len <= 32) { |
||||
if (len <= 16) { |
||||
return HashLen0to16(s, len); |
||||
} else { |
||||
return HashLen17to32(s, len); |
||||
} |
||||
} else if (len <= 64) { |
||||
return HashLen33to64(s, len); |
||||
} |
||||
|
||||
// For strings over 64 bytes we hash the end first, and then as we
|
||||
// loop we keep 56 bytes of state: v, w, x, y, and z.
|
||||
uint64_t x = Fetch64(s + len - 40); |
||||
uint64_t y = Fetch64(s + len - 16) + Fetch64(s + len - 56); |
||||
uint64_t z = HashLen16(Fetch64(s + len - 48) + len, Fetch64(s + len - 24)); |
||||
std::pair<uint64_t, uint64_t> v = WeakHashLen32WithSeeds(s + len - 64, len, z); |
||||
std::pair<uint64_t, uint64_t> w = WeakHashLen32WithSeeds(s + len - 32, y + k1, x); |
||||
x = x * k1 + Fetch64(s); |
||||
|
||||
// Decrease len to the nearest multiple of 64, and operate on 64-byte chunks.
|
||||
len = (len - 1) & ~static_cast<size_t>(63); |
||||
do { |
||||
x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1; |
||||
y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1; |
||||
x ^= w.second; |
||||
y += v.first + Fetch64(s + 40); |
||||
z = Rotate(z + w.first, 33) * k1; |
||||
v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first); |
||||
w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16)); |
||||
std::swap(z, x); |
||||
s += 64; |
||||
len -= 64; |
||||
} while (len != 0); |
||||
return HashLen16(HashLen16(v.first, w.first) + ShiftMix(y) * k1 + z, |
||||
HashLen16(v.second, w.second) + x); |
||||
} |
||||
|
||||
uint64_t CityHash64WithSeed(const char *s, size_t len, uint64_t seed) { |
||||
return CityHash64WithSeeds(s, len, k2, seed); |
||||
} |
||||
|
||||
uint64_t CityHash64WithSeeds(const char *s, size_t len, uint64_t seed0, |
||||
uint64_t seed1) { |
||||
return HashLen16(CityHash64(s, len) - seed0, seed1); |
||||
} |
||||
|
||||
// A subroutine for CityHash128(). Returns a decent 128-bit hash for strings
|
||||
// of any length representable in signed long. Based on City and Murmur.
|
||||
static uint128 CityMurmur(const char *s, size_t len, uint128 seed) { |
||||
uint64_t a = Uint128Low64(seed); |
||||
uint64_t b = Uint128High64(seed); |
||||
uint64_t c = 0; |
||||
uint64_t d = 0; |
||||
int64_t l = len - 16; |
||||
if (l <= 0) { // len <= 16
|
||||
a = ShiftMix(a * k1) * k1; |
||||
c = b * k1 + HashLen0to16(s, len); |
||||
d = ShiftMix(a + (len >= 8 ? Fetch64(s) : c)); |
||||
} else { // len > 16
|
||||
c = HashLen16(Fetch64(s + len - 8) + k1, a); |
||||
d = HashLen16(b + len, c + Fetch64(s + len - 16)); |
||||
a += d; |
||||
do { |
||||
a ^= ShiftMix(Fetch64(s) * k1) * k1; |
||||
a *= k1; |
||||
b ^= a; |
||||
c ^= ShiftMix(Fetch64(s + 8) * k1) * k1; |
||||
c *= k1; |
||||
d ^= c; |
||||
s += 16; |
||||
l -= 16; |
||||
} while (l > 0); |
||||
} |
||||
a = HashLen16(a, c); |
||||
b = HashLen16(d, b); |
||||
return uint128(a ^ b, HashLen16(b, a)); |
||||
} |
||||
|
||||
uint128 CityHash128WithSeed(const char *s, size_t len, uint128 seed) { |
||||
if (len < 128) { |
||||
return CityMurmur(s, len, seed); |
||||
} |
||||
|
||||
// We expect len >= 128 to be the common case. Keep 56 bytes of state:
|
||||
// v, w, x, y, and z.
|
||||
std::pair<uint64_t, uint64_t> v, w; |
||||
uint64_t x = Uint128Low64(seed); |
||||
uint64_t y = Uint128High64(seed); |
||||
uint64_t z = len * k1; |
||||
v.first = Rotate(y ^ k1, 49) * k1 + Fetch64(s); |
||||
v.second = Rotate(v.first, 42) * k1 + Fetch64(s + 8); |
||||
w.first = Rotate(y + z, 35) * k1 + x; |
||||
w.second = Rotate(x + Fetch64(s + 88), 53) * k1; |
||||
|
||||
// This is the same inner loop as CityHash64(), manually unrolled.
|
||||
do { |
||||
x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1; |
||||
y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1; |
||||
x ^= w.second; |
||||
y += v.first + Fetch64(s + 40); |
||||
z = Rotate(z + w.first, 33) * k1; |
||||
v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first); |
||||
w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16)); |
||||
std::swap(z, x); |
||||
s += 64; |
||||
x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1; |
||||
y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1; |
||||
x ^= w.second; |
||||
y += v.first + Fetch64(s + 40); |
||||
z = Rotate(z + w.first, 33) * k1; |
||||
v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first); |
||||
w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16)); |
||||
std::swap(z, x); |
||||
s += 64; |
||||
len -= 128; |
||||
} while (ABSL_PREDICT_TRUE(len >= 128)); |
||||
x += Rotate(v.first + z, 49) * k0; |
||||
y = y * k0 + Rotate(w.second, 37); |
||||
z = z * k0 + Rotate(w.first, 27); |
||||
w.first *= 9; |
||||
v.first *= k0; |
||||
// If 0 < len < 128, hash up to 4 chunks of 32 bytes each from the end of s.
|
||||
for (size_t tail_done = 0; tail_done < len;) { |
||||
tail_done += 32; |
||||
y = Rotate(x + y, 42) * k0 + v.second; |
||||
w.first += Fetch64(s + len - tail_done + 16); |
||||
x = x * k0 + w.first; |
||||
z += w.second + Fetch64(s + len - tail_done); |
||||
w.second += v.first; |
||||
v = WeakHashLen32WithSeeds(s + len - tail_done, v.first + z, v.second); |
||||
v.first *= k0; |
||||
} |
||||
// At this point our 56 bytes of state should contain more than
|
||||
// enough information for a strong 128-bit hash. We use two
|
||||
// different 56-byte-to-8-byte hashes to get a 16-byte final result.
|
||||
x = HashLen16(x, v.first); |
||||
y = HashLen16(y + z, w.first); |
||||
return uint128(HashLen16(x + v.second, w.second) + y, |
||||
HashLen16(x + w.second, y + v.second)); |
||||
} |
||||
|
||||
uint128 CityHash128(const char *s, size_t len) { |
||||
return len >= 16 |
||||
? CityHash128WithSeed(s + 16, len - 16, |
||||
uint128(Fetch64(s), Fetch64(s + 8) + k0)) |
||||
: CityHash128WithSeed(s, len, uint128(k0, k1)); |
||||
} |
||||
} // namespace hash_internal
|
||||
} // namespace absl
|
||||
|
||||
#ifdef __SSE4_2__ |
||||
#include <nmmintrin.h> |
||||
#include "absl/hash/internal/city_crc.h" |
||||
|
||||
namespace absl { |
||||
namespace hash_internal { |
||||
|
||||
// Requires len >= 240.
|
||||
static void CityHashCrc256Long(const char *s, size_t len, uint32_t seed, |
||||
uint64_t *result) { |
||||
uint64_t a = Fetch64(s + 56) + k0; |
||||
uint64_t b = Fetch64(s + 96) + k0; |
||||
uint64_t c = result[0] = HashLen16(b, len); |
||||
uint64_t d = result[1] = Fetch64(s + 120) * k0 + len; |
||||
uint64_t e = Fetch64(s + 184) + seed; |
||||
uint64_t f = 0; |
||||
uint64_t g = 0; |
||||
uint64_t h = c + d; |
||||
uint64_t x = seed; |
||||
uint64_t y = 0; |
||||
uint64_t z = 0; |
||||
|
||||
// 240 bytes of input per iter.
|
||||
size_t iters = len / 240; |
||||
len -= iters * 240; |
||||
do { |
||||
#undef CHUNK |
||||
#define CHUNK(r) \ |
||||
PERMUTE3(x, z, y); \
|
||||
b += Fetch64(s); \
|
||||
c += Fetch64(s + 8); \
|
||||
d += Fetch64(s + 16); \
|
||||
e += Fetch64(s + 24); \
|
||||
f += Fetch64(s + 32); \
|
||||
a += b; \
|
||||
h += f; \
|
||||
b += c; \
|
||||
f += d; \
|
||||
g += e; \
|
||||
e += z; \
|
||||
g += x; \
|
||||
z = _mm_crc32_u64(z, b + g); \
|
||||
y = _mm_crc32_u64(y, e + h); \
|
||||
x = _mm_crc32_u64(x, f + a); \
|
||||
e = Rotate(e, r); \
|
||||
c += e; \
|
||||
s += 40 |
||||
|
||||
CHUNK(0); |
||||
PERMUTE3(a, h, c); |
||||
CHUNK(33); |
||||
PERMUTE3(a, h, f); |
||||
CHUNK(0); |
||||
PERMUTE3(b, h, f); |
||||
CHUNK(42); |
||||
PERMUTE3(b, h, d); |
||||
CHUNK(0); |
||||
PERMUTE3(b, h, e); |
||||
CHUNK(33); |
||||
PERMUTE3(a, h, e); |
||||
} while (--iters > 0); |
||||
|
||||
while (len >= 40) { |
||||
CHUNK(29); |
||||
e ^= Rotate(a, 20); |
||||
h += Rotate(b, 30); |
||||
g ^= Rotate(c, 40); |
||||
f += Rotate(d, 34); |
||||
PERMUTE3(c, h, g); |
||||
len -= 40; |
||||
} |
||||
if (len > 0) { |
||||
s = s + len - 40; |
||||
CHUNK(33); |
||||
e ^= Rotate(a, 43); |
||||
h += Rotate(b, 42); |
||||
g ^= Rotate(c, 41); |
||||
f += Rotate(d, 40); |
||||
} |
||||
result[0] ^= h; |
||||
result[1] ^= g; |
||||
g += h; |
||||
a = HashLen16(a, g + z); |
||||
x += y << 32; |
||||
b += x; |
||||
c = HashLen16(c, z) + h; |
||||
d = HashLen16(d, e + result[0]); |
||||
g += e; |
||||
h += HashLen16(x, f); |
||||
e = HashLen16(a, d) + g; |
||||
z = HashLen16(b, c) + a; |
||||
y = HashLen16(g, h) + c; |
||||
result[0] = e + z + y + x; |
||||
a = ShiftMix((a + y) * k0) * k0 + b; |
||||
result[1] += a + result[0]; |
||||
a = ShiftMix(a * k0) * k0 + c; |
||||
result[2] = a + result[1]; |
||||
a = ShiftMix((a + e) * k0) * k0; |
||||
result[3] = a + result[2]; |
||||
} |
||||
|
||||
// Requires len < 240.
|
||||
static void CityHashCrc256Short(const char *s, size_t len, uint64_t *result) { |
||||
char buf[240]; |
||||
memcpy(buf, s, len); |
||||
memset(buf + len, 0, 240 - len); |
||||
CityHashCrc256Long(buf, 240, ~static_cast<uint32_t>(len), result); |
||||
} |
||||
|
||||
void CityHashCrc256(const char *s, size_t len, uint64_t *result) { |
||||
if (ABSL_PREDICT_TRUE(len >= 240)) { |
||||
CityHashCrc256Long(s, len, 0, result); |
||||
} else { |
||||
CityHashCrc256Short(s, len, result); |
||||
} |
||||
} |
||||
|
||||
uint128 CityHashCrc128WithSeed(const char *s, size_t len, uint128 seed) { |
||||
if (len <= 900) { |
||||
return CityHash128WithSeed(s, len, seed); |
||||
} else { |
||||
uint64_t result[4]; |
||||
CityHashCrc256(s, len, result); |
||||
uint64_t u = Uint128High64(seed) + result[0]; |
||||
uint64_t v = Uint128Low64(seed) + result[1]; |
||||
return uint128(HashLen16(u, v + result[2]), |
||||
HashLen16(Rotate(v, 32), u * k0 + result[3])); |
||||
} |
||||
} |
||||
|
||||
uint128 CityHashCrc128(const char *s, size_t len) { |
||||
if (len <= 900) { |
||||
return CityHash128(s, len); |
||||
} else { |
||||
uint64_t result[4]; |
||||
CityHashCrc256(s, len, result); |
||||
return uint128(result[2], result[3]); |
||||
} |
||||
} |
||||
|
||||
} // namespace hash_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif |
@ -0,0 +1,108 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// http://code.google.com/p/cityhash/
|
||||
//
|
||||
// This file provides a few functions for hashing strings. All of them are
|
||||
// high-quality functions in the sense that they pass standard tests such
|
||||
// as Austin Appleby's SMHasher. They are also fast.
|
||||
//
|
||||
// For 64-bit x86 code, on short strings, we don't know of anything faster than
|
||||
// CityHash64 that is of comparable quality. We believe our nearest competitor
|
||||
// is Murmur3. For 64-bit x86 code, CityHash64 is an excellent choice for hash
|
||||
// tables and most other hashing (excluding cryptography).
|
||||
//
|
||||
// For 64-bit x86 code, on long strings, the picture is more complicated.
|
||||
// On many recent Intel CPUs, such as Nehalem, Westmere, Sandy Bridge, etc.,
|
||||
// CityHashCrc128 appears to be faster than all competitors of comparable
|
||||
// quality. CityHash128 is also good but not quite as fast. We believe our
|
||||
// nearest competitor is Bob Jenkins' Spooky. We don't have great data for
|
||||
// other 64-bit CPUs, but for long strings we know that Spooky is slightly
|
||||
// faster than CityHash on some relatively recent AMD x86-64 CPUs, for example.
|
||||
// Note that CityHashCrc128 is declared in citycrc.h.
|
||||
//
|
||||
// For 32-bit x86 code, we don't know of anything faster than CityHash32 that
|
||||
// is of comparable quality. We believe our nearest competitor is Murmur3A.
|
||||
// (On 64-bit CPUs, it is typically faster to use the other CityHash variants.)
|
||||
//
|
||||
// Functions in the CityHash family are not suitable for cryptography.
|
||||
//
|
||||
// Please see CityHash's README file for more details on our performance
|
||||
// measurements and so on.
|
||||
//
|
||||
// WARNING: This code has been only lightly tested on big-endian platforms!
|
||||
// It is known to work well on little-endian platforms that have a small penalty
|
||||
// for unaligned reads, such as current Intel and AMD moderate-to-high-end CPUs.
|
||||
// It should work on all 32-bit and 64-bit platforms that allow unaligned reads;
|
||||
// bug reports are welcome.
|
||||
//
|
||||
// By the way, for some hash functions, given strings a and b, the hash
|
||||
// of a+b is easily derived from the hashes of a and b. This property
|
||||
// doesn't hold for any hash functions in this file.
|
||||
|
||||
#ifndef ABSL_HASH_INTERNAL_CITY_H_ |
||||
#define ABSL_HASH_INTERNAL_CITY_H_ |
||||
|
||||
#include <stdint.h> |
||||
#include <stdlib.h> // for size_t. |
||||
#include <utility> |
||||
|
||||
|
||||
namespace absl { |
||||
namespace hash_internal { |
||||
|
||||
typedef std::pair<uint64_t, uint64_t> uint128; |
||||
|
||||
inline uint64_t Uint128Low64(const uint128 &x) { return x.first; } |
||||
inline uint64_t Uint128High64(const uint128 &x) { return x.second; } |
||||
|
||||
// Hash function for a byte array.
|
||||
uint64_t CityHash64(const char *s, size_t len); |
||||
|
||||
// Hash function for a byte array. For convenience, a 64-bit seed is also
|
||||
// hashed into the result.
|
||||
uint64_t CityHash64WithSeed(const char *s, size_t len, uint64_t seed); |
||||
|
||||
// Hash function for a byte array. For convenience, two seeds are also
|
||||
// hashed into the result.
|
||||
uint64_t CityHash64WithSeeds(const char *s, size_t len, uint64_t seed0, |
||||
uint64_t seed1); |
||||
|
||||
// Hash function for a byte array.
|
||||
uint128 CityHash128(const char *s, size_t len); |
||||
|
||||
// Hash function for a byte array. For convenience, a 128-bit seed is also
|
||||
// hashed into the result.
|
||||
uint128 CityHash128WithSeed(const char *s, size_t len, uint128 seed); |
||||
|
||||
// Hash function for a byte array. Most useful in 32-bit binaries.
|
||||
uint32_t CityHash32(const char *s, size_t len); |
||||
|
||||
// Hash 128 input bits down to 64 bits of output.
|
||||
// This is intended to be a reasonably good hash function.
|
||||
inline uint64_t Hash128to64(const uint128 &x) { |
||||
// Murmur-inspired hashing.
|
||||
const uint64_t kMul = 0x9ddfea08eb382d69ULL; |
||||
uint64_t a = (Uint128Low64(x) ^ Uint128High64(x)) * kMul; |
||||
a ^= (a >> 47); |
||||
uint64_t b = (Uint128High64(x) ^ a) * kMul; |
||||
b ^= (b >> 47); |
||||
b *= kMul; |
||||
return b; |
||||
} |
||||
|
||||
} // namespace hash_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_HASH_INTERNAL_CITY_H_
|
@ -0,0 +1,41 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// This file declares the subset of the CityHash functions that require
|
||||
// _mm_crc32_u64(). See the CityHash README for details.
|
||||
//
|
||||
// Functions in the CityHash family are not suitable for cryptography.
|
||||
|
||||
#ifndef ABSL_HASH_INTERNAL_CITY_CRC_H_ |
||||
#define ABSL_HASH_INTERNAL_CITY_CRC_H_ |
||||
|
||||
#include "absl/hash/internal/city.h" |
||||
|
||||
namespace absl { |
||||
namespace hash_internal { |
||||
|
||||
// Hash function for a byte array.
|
||||
uint128 CityHashCrc128(const char *s, size_t len); |
||||
|
||||
// Hash function for a byte array. For convenience, a 128-bit seed is also
|
||||
// hashed into the result.
|
||||
uint128 CityHashCrc128WithSeed(const char *s, size_t len, uint128 seed); |
||||
|
||||
// Hash function for a byte array. Sets result[0] ... result[3].
|
||||
void CityHashCrc256(const char *s, size_t len, uint64_t *result); |
||||
|
||||
} // namespace hash_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_HASH_INTERNAL_CITY_CRC_H_
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,23 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "absl/hash/internal/hash.h" |
||||
|
||||
namespace absl { |
||||
namespace hash_internal { |
||||
|
||||
ABSL_CONST_INIT const void* const CityHashState::kSeed = &kSeed; |
||||
|
||||
} // namespace hash_internal
|
||||
} // namespace absl
|
@ -0,0 +1,885 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// -----------------------------------------------------------------------------
|
||||
// File: hash.h
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
#ifndef ABSL_HASH_INTERNAL_HASH_H_ |
||||
#define ABSL_HASH_INTERNAL_HASH_H_ |
||||
|
||||
#include <algorithm> |
||||
#include <array> |
||||
#include <cmath> |
||||
#include <cstring> |
||||
#include <deque> |
||||
#include <forward_list> |
||||
#include <functional> |
||||
#include <iterator> |
||||
#include <limits> |
||||
#include <list> |
||||
#include <map> |
||||
#include <memory> |
||||
#include <set> |
||||
#include <string> |
||||
#include <tuple> |
||||
#include <type_traits> |
||||
#include <utility> |
||||
#include <vector> |
||||
|
||||
#include "absl/base/internal/endian.h" |
||||
#include "absl/base/port.h" |
||||
#include "absl/container/fixed_array.h" |
||||
#include "absl/meta/type_traits.h" |
||||
#include "absl/numeric/int128.h" |
||||
#include "absl/strings/string_view.h" |
||||
#include "absl/types/optional.h" |
||||
#include "absl/types/variant.h" |
||||
#include "absl/utility/utility.h" |
||||
#include "absl/hash/internal/city.h" |
||||
|
||||
namespace absl { |
||||
namespace hash_internal { |
||||
|
||||
// HashStateBase
|
||||
//
|
||||
// A hash state object represents an intermediate state in the computation
|
||||
// of an unspecified hash algorithm. `HashStateBase` provides a CRTP style
|
||||
// base class for hash state implementations. Developers adding type support
|
||||
// for `absl::Hash` should not rely on any parts of the state object other than
|
||||
// the following member functions:
|
||||
//
|
||||
// * HashStateBase::combine()
|
||||
// * HashStateBase::combine_contiguous()
|
||||
//
|
||||
// A derived hash state class of type `H` must provide a static member function
|
||||
// with a signature similar to the following:
|
||||
//
|
||||
// `static H combine_contiguous(H state, const unsigned char*, size_t)`.
|
||||
//
|
||||
// `HashStateBase` will provide a complete implementations for a hash state
|
||||
// object in terms of this method.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// // Use CRTP to define your derived class.
|
||||
// struct MyHashState : HashStateBase<MyHashState> {
|
||||
// static H combine_contiguous(H state, const unsigned char*, size_t);
|
||||
// using MyHashState::HashStateBase::combine;
|
||||
// using MyHashState::HashStateBase::combine_contiguous;
|
||||
// };
|
||||
template <typename H> |
||||
class HashStateBase { |
||||
public: |
||||
// HashStateBase::combine()
|
||||
//
|
||||
// Combines an arbitrary number of values into a hash state, returning the
|
||||
// updated state.
|
||||
//
|
||||
// Each of the value types `T` must be separately hashable by the Abseil
|
||||
// hashing framework.
|
||||
//
|
||||
// NOTE:
|
||||
//
|
||||
// state = H::combine(std::move(state), value1, value2, value3);
|
||||
//
|
||||
// is guaranteed to produce the same hash expansion as:
|
||||
//
|
||||
// state = H::combine(std::move(state), value1);
|
||||
// state = H::combine(std::move(state), value2);
|
||||
// state = H::combine(std::move(state), value3);
|
||||
template <typename T, typename... Ts> |
||||
static H combine(H state, const T& value, const Ts&... values); |
||||
static H combine(H state) { return state; } |
||||
|
||||
// HashStateBase::combine_contiguous()
|
||||
//
|
||||
// Combines a contiguous array of `size` elements into a hash state, returning
|
||||
// the updated state.
|
||||
//
|
||||
// NOTE:
|
||||
//
|
||||
// state = H::combine_contiguous(std::move(state), data, size);
|
||||
//
|
||||
// is NOT guaranteed to produce the same hash expansion as a for-loop (it may
|
||||
// perform internal optimizations). If you need this guarantee, use the
|
||||
// for-loop instead.
|
||||
template <typename T> |
||||
static H combine_contiguous(H state, const T* data, size_t size); |
||||
}; |
||||
|
||||
// is_uniquely_represented
|
||||
//
|
||||
// `is_uniquely_represented<T>` is a trait class that indicates whether `T`
|
||||
// is uniquely represented.
|
||||
//
|
||||
// A type is "uniquely represented" if two equal values of that type are
|
||||
// guaranteed to have the same bytes in their underlying storage. In other
|
||||
// words, if `a == b`, then `memcmp(&a, &b, sizeof(T))` is guaranteed to be
|
||||
// zero. This property cannot be detected automatically, so this trait is false
|
||||
// by default, but can be specialized by types that wish to assert that they are
|
||||
// uniquely represented. This makes them eligible for certain optimizations.
|
||||
//
|
||||
// If you have any doubt whatsoever, do not specialize this template.
|
||||
// The default is completely safe, and merely disables some optimizations
|
||||
// that will not matter for most types. Specializing this template,
|
||||
// on the other hand, can be very hazardous.
|
||||
//
|
||||
// To be uniquely represented, a type must not have multiple ways of
|
||||
// representing the same value; for example, float and double are not
|
||||
// uniquely represented, because they have distinct representations for
|
||||
// +0 and -0. Furthermore, the type's byte representation must consist
|
||||
// solely of user-controlled data, with no padding bits and no compiler-
|
||||
// controlled data such as vptrs or sanitizer metadata. This is usually
|
||||
// very difficult to guarantee, because in most cases the compiler can
|
||||
// insert data and padding bits at its own discretion.
|
||||
//
|
||||
// If you specialize this template for a type `T`, you must do so in the file
|
||||
// that defines that type (or in this file). If you define that specialization
|
||||
// anywhere else, `is_uniquely_represented<T>` could have different meanings
|
||||
// in different places.
|
||||
//
|
||||
// The Enable parameter is meaningless; it is provided as a convenience,
|
||||
// to support certain SFINAE techniques when defining specializations.
|
||||
template <typename T, typename Enable = void> |
||||
struct is_uniquely_represented : std::false_type {}; |
||||
|
||||
// is_uniquely_represented<unsigned char>
|
||||
//
|
||||
// unsigned char is a synonym for "byte", so it is guaranteed to be
|
||||
// uniquely represented.
|
||||
template <> |
||||
struct is_uniquely_represented<unsigned char> : std::true_type {}; |
||||
|
||||
// is_uniquely_represented for non-standard integral types
|
||||
//
|
||||
// Integral types other than bool should be uniquely represented on any
|
||||
// platform that this will plausibly be ported to.
|
||||
template <typename Integral> |
||||
struct is_uniquely_represented< |
||||
Integral, typename std::enable_if<std::is_integral<Integral>::value>::type> |
||||
: std::true_type {}; |
||||
|
||||
// is_uniquely_represented<bool>
|
||||
//
|
||||
//
|
||||
template <> |
||||
struct is_uniquely_represented<bool> : std::false_type {}; |
||||
|
||||
// hash_bytes()
|
||||
//
|
||||
// Convenience function that combines `hash_state` with the byte representation
|
||||
// of `value`.
|
||||
template <typename H, typename T> |
||||
H hash_bytes(H hash_state, const T& value) { |
||||
const unsigned char* start = reinterpret_cast<const unsigned char*>(&value); |
||||
return H::combine_contiguous(std::move(hash_state), start, sizeof(value)); |
||||
} |
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// AbslHashValue for Basic Types
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
// Note: Default `AbslHashValue` implementations live in `hash_internal`. This
|
||||
// allows us to block lexical scope lookup when doing an unqualified call to
|
||||
// `AbslHashValue` below. User-defined implementations of `AbslHashValue` can
|
||||
// only be found via ADL.
|
||||
|
||||
// AbslHashValue() for hashing bool values
|
||||
//
|
||||
// We use SFINAE to ensure that this overload only accepts bool, not types that
|
||||
// are convertible to bool.
|
||||
template <typename H, typename B> |
||||
typename std::enable_if<std::is_same<B, bool>::value, H>::type AbslHashValue( |
||||
H hash_state, B value) { |
||||
return H::combine(std::move(hash_state), |
||||
static_cast<unsigned char>(value ? 1 : 0)); |
||||
} |
||||
|
||||
// AbslHashValue() for hashing enum values
|
||||
template <typename H, typename Enum> |
||||
typename std::enable_if<std::is_enum<Enum>::value, H>::type AbslHashValue( |
||||
H hash_state, Enum e) { |
||||
// In practice, we could almost certainly just invoke hash_bytes directly,
|
||||
// but it's possible that a sanitizer might one day want to
|
||||
// store data in the unused bits of an enum. To avoid that risk, we
|
||||
// convert to the underlying type before hashing. Hopefully this will get
|
||||
// optimized away; if not, we can reopen discussion with c-toolchain-team.
|
||||
return H::combine(std::move(hash_state), |
||||
static_cast<typename std::underlying_type<Enum>::type>(e)); |
||||
} |
||||
// AbslHashValue() for hashing floating-point values
|
||||
template <typename H, typename Float> |
||||
typename std::enable_if<std::is_floating_point<Float>::value, H>::type |
||||
AbslHashValue(H hash_state, Float value) { |
||||
return hash_internal::hash_bytes(std::move(hash_state), |
||||
value == 0 ? 0 : value); |
||||
} |
||||
|
||||
// Long double has the property that it might have extra unused bytes in it.
|
||||
// For example, in x86 sizeof(long double)==16 but it only really uses 80-bits
|
||||
// of it. This means we can't use hash_bytes on a long double and have to
|
||||
// convert it to something else first.
|
||||
template <typename H> |
||||
H AbslHashValue(H hash_state, long double value) { |
||||
const int category = std::fpclassify(value); |
||||
switch (category) { |
||||
case FP_INFINITE: |
||||
// Add the sign bit to differentiate between +Inf and -Inf
|
||||
hash_state = H::combine(std::move(hash_state), std::signbit(value)); |
||||
break; |
||||
|
||||
case FP_NAN: |
||||
case FP_ZERO: |
||||
default: |
||||
// Category is enough for these.
|
||||
break; |
||||
|
||||
case FP_NORMAL: |
||||
case FP_SUBNORMAL: |
||||
// We can't convert `value` directly to double because this would have
|
||||
// undefined behavior if the value is out of range.
|
||||
// std::frexp gives us a value in the range (-1, -.5] or [.5, 1) that is
|
||||
// guaranteed to be in range for `double`. The truncation is
|
||||
// implementation defined, but that works as long as it is deterministic.
|
||||
int exp; |
||||
auto mantissa = static_cast<double>(std::frexp(value, &exp)); |
||||
hash_state = H::combine(std::move(hash_state), mantissa, exp); |
||||
} |
||||
|
||||
return H::combine(std::move(hash_state), category); |
||||
} |
||||
|
||||
// AbslHashValue() for hashing pointers
|
||||
template <typename H, typename T> |
||||
H AbslHashValue(H hash_state, T* ptr) { |
||||
return hash_internal::hash_bytes(std::move(hash_state), ptr); |
||||
} |
||||
|
||||
// AbslHashValue() for hashing nullptr_t
|
||||
template <typename H> |
||||
H AbslHashValue(H hash_state, std::nullptr_t) { |
||||
return H::combine(std::move(hash_state), static_cast<void*>(nullptr)); |
||||
} |
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// AbslHashValue for Composite Types
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
// is_hashable()
|
||||
//
|
||||
// Trait class which returns true if T is hashable by the absl::Hash framework.
|
||||
// Used for the AbslHashValue implementations for composite types below.
|
||||
template <typename T> |
||||
struct is_hashable; |
||||
|
||||
// AbslHashValue() for hashing pairs
|
||||
template <typename H, typename T1, typename T2> |
||||
typename std::enable_if<is_hashable<T1>::value && is_hashable<T2>::value, |
||||
H>::type |
||||
AbslHashValue(H hash_state, const std::pair<T1, T2>& p) { |
||||
return H::combine(std::move(hash_state), p.first, p.second); |
||||
} |
||||
|
||||
// hash_tuple()
|
||||
//
|
||||
// Helper function for hashing a tuple. The third argument should
|
||||
// be an index_sequence running from 0 to tuple_size<Tuple> - 1.
|
||||
template <typename H, typename Tuple, size_t... Is> |
||||
H hash_tuple(H hash_state, const Tuple& t, absl::index_sequence<Is...>) { |
||||
return H::combine(std::move(hash_state), std::get<Is>(t)...); |
||||
} |
||||
|
||||
// AbslHashValue for hashing tuples
|
||||
template <typename H, typename... Ts> |
||||
#if _MSC_VER |
||||
// This SFINAE gets MSVC confused under some conditions. Let's just disable it
|
||||
// for now.
|
||||
H |
||||
#else |
||||
typename std::enable_if<absl::conjunction<is_hashable<Ts>...>::value, H>::type |
||||
#endif |
||||
AbslHashValue(H hash_state, const std::tuple<Ts...>& t) { |
||||
return hash_internal::hash_tuple(std::move(hash_state), t, |
||||
absl::make_index_sequence<sizeof...(Ts)>()); |
||||
} |
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// AbslHashValue for Pointers
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
// AbslHashValue for hashing unique_ptr
|
||||
template <typename H, typename T, typename D> |
||||
H AbslHashValue(H hash_state, const std::unique_ptr<T, D>& ptr) { |
||||
return H::combine(std::move(hash_state), ptr.get()); |
||||
} |
||||
|
||||
// AbslHashValue for hashing shared_ptr
|
||||
template <typename H, typename T> |
||||
H AbslHashValue(H hash_state, const std::shared_ptr<T>& ptr) { |
||||
return H::combine(std::move(hash_state), ptr.get()); |
||||
} |
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// AbslHashValue for String-Like Types
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
// AbslHashValue for hashing strings
|
||||
//
|
||||
// All the string-like types supported here provide the same hash expansion for
|
||||
// the same character sequence. These types are:
|
||||
//
|
||||
// - `std::string` (and std::basic_string<char, std::char_traits<char>, A> for
|
||||
// any allocator A)
|
||||
// - `absl::string_view` and `std::string_view`
|
||||
//
|
||||
// For simplicity, we currently support only `char` strings. This support may
|
||||
// be broadened, if necessary, but with some caution - this overload would
|
||||
// misbehave in cases where the traits' `eq()` member isn't equivalent to `==`
|
||||
// on the underlying character type.
|
||||
template <typename H> |
||||
H AbslHashValue(H hash_state, absl::string_view str) { |
||||
return H::combine( |
||||
H::combine_contiguous(std::move(hash_state), str.data(), str.size()), |
||||
str.size()); |
||||
} |
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// AbslHashValue for Sequence Containers
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
// AbslHashValue for hashing std::array
|
||||
template <typename H, typename T, size_t N> |
||||
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
||||
H hash_state, const std::array<T, N>& array) { |
||||
return H::combine_contiguous(std::move(hash_state), array.data(), |
||||
array.size()); |
||||
} |
||||
|
||||
// AbslHashValue for hashing std::deque
|
||||
template <typename H, typename T, typename Allocator> |
||||
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
||||
H hash_state, const std::deque<T, Allocator>& deque) { |
||||
// TODO(gromer): investigate a more efficient implementation taking
|
||||
// advantage of the chunk structure.
|
||||
for (const auto& t : deque) { |
||||
hash_state = H::combine(std::move(hash_state), t); |
||||
} |
||||
return H::combine(std::move(hash_state), deque.size()); |
||||
} |
||||
|
||||
// AbslHashValue for hashing std::forward_list
|
||||
template <typename H, typename T, typename Allocator> |
||||
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
||||
H hash_state, const std::forward_list<T, Allocator>& list) { |
||||
size_t size = 0; |
||||
for (const T& t : list) { |
||||
hash_state = H::combine(std::move(hash_state), t); |
||||
++size; |
||||
} |
||||
return H::combine(std::move(hash_state), size); |
||||
} |
||||
|
||||
// AbslHashValue for hashing std::list
|
||||
template <typename H, typename T, typename Allocator> |
||||
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
||||
H hash_state, const std::list<T, Allocator>& list) { |
||||
for (const auto& t : list) { |
||||
hash_state = H::combine(std::move(hash_state), t); |
||||
} |
||||
return H::combine(std::move(hash_state), list.size()); |
||||
} |
||||
|
||||
// AbslHashValue for hashing std::vector
|
||||
//
|
||||
// Do not use this for vector<bool>. It does not have a .data(), and a fallback
|
||||
// for std::hash<> is most likely faster.
|
||||
template <typename H, typename T, typename Allocator> |
||||
typename std::enable_if<is_hashable<T>::value && !std::is_same<T, bool>::value, |
||||
H>::type |
||||
AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) { |
||||
return H::combine(H::combine_contiguous(std::move(hash_state), vector.data(), |
||||
vector.size()), |
||||
vector.size()); |
||||
} |
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// AbslHashValue for Ordered Associative Containers
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
// AbslHashValue for hashing std::map
|
||||
template <typename H, typename Key, typename T, typename Compare, |
||||
typename Allocator> |
||||
typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value, |
||||
H>::type |
||||
AbslHashValue(H hash_state, const std::map<Key, T, Compare, Allocator>& map) { |
||||
for (const auto& t : map) { |
||||
hash_state = H::combine(std::move(hash_state), t); |
||||
} |
||||
return H::combine(std::move(hash_state), map.size()); |
||||
} |
||||
|
||||
// AbslHashValue for hashing std::multimap
|
||||
template <typename H, typename Key, typename T, typename Compare, |
||||
typename Allocator> |
||||
typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value, |
||||
H>::type |
||||
AbslHashValue(H hash_state, |
||||
const std::multimap<Key, T, Compare, Allocator>& map) { |
||||
for (const auto& t : map) { |
||||
hash_state = H::combine(std::move(hash_state), t); |
||||
} |
||||
return H::combine(std::move(hash_state), map.size()); |
||||
} |
||||
|
||||
// AbslHashValue for hashing std::set
|
||||
template <typename H, typename Key, typename Compare, typename Allocator> |
||||
typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue( |
||||
H hash_state, const std::set<Key, Compare, Allocator>& set) { |
||||
for (const auto& t : set) { |
||||
hash_state = H::combine(std::move(hash_state), t); |
||||
} |
||||
return H::combine(std::move(hash_state), set.size()); |
||||
} |
||||
|
||||
// AbslHashValue for hashing std::multiset
|
||||
template <typename H, typename Key, typename Compare, typename Allocator> |
||||
typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue( |
||||
H hash_state, const std::multiset<Key, Compare, Allocator>& set) { |
||||
for (const auto& t : set) { |
||||
hash_state = H::combine(std::move(hash_state), t); |
||||
} |
||||
return H::combine(std::move(hash_state), set.size()); |
||||
} |
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// AbslHashValue for Wrapper Types
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
// AbslHashValue for hashing absl::optional
|
||||
template <typename H, typename T> |
||||
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
||||
H hash_state, const absl::optional<T>& opt) { |
||||
if (opt) hash_state = H::combine(std::move(hash_state), *opt); |
||||
return H::combine(std::move(hash_state), opt.has_value()); |
||||
} |
||||
|
||||
// VariantVisitor
|
||||
template <typename H> |
||||
struct VariantVisitor { |
||||
H&& hash_state; |
||||
template <typename T> |
||||
H operator()(const T& t) const { |
||||
return H::combine(std::move(hash_state), t); |
||||
} |
||||
}; |
||||
|
||||
// AbslHashValue for hashing absl::variant
|
||||
template <typename H, typename... T> |
||||
typename std::enable_if<conjunction<is_hashable<T>...>::value, H>::type |
||||
AbslHashValue(H hash_state, const absl::variant<T...>& v) { |
||||
if (!v.valueless_by_exception()) { |
||||
hash_state = absl::visit(VariantVisitor<H>{std::move(hash_state)}, v); |
||||
} |
||||
return H::combine(std::move(hash_state), v.index()); |
||||
} |
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
// hash_range_or_bytes()
|
||||
//
|
||||
// Mixes all values in the range [data, data+size) into the hash state.
|
||||
// This overload accepts only uniquely-represented types, and hashes them by
|
||||
// hashing the entire range of bytes.
|
||||
template <typename H, typename T> |
||||
typename std::enable_if<is_uniquely_represented<T>::value, H>::type |
||||
hash_range_or_bytes(H hash_state, const T* data, size_t size) { |
||||
const auto* bytes = reinterpret_cast<const unsigned char*>(data); |
||||
return H::combine_contiguous(std::move(hash_state), bytes, sizeof(T) * size); |
||||
} |
||||
|
||||
// hash_range_or_bytes()
|
||||
template <typename H, typename T> |
||||
typename std::enable_if<!is_uniquely_represented<T>::value, H>::type |
||||
hash_range_or_bytes(H hash_state, const T* data, size_t size) { |
||||
for (const auto end = data + size; data < end; ++data) { |
||||
hash_state = H::combine(std::move(hash_state), *data); |
||||
} |
||||
return hash_state; |
||||
} |
||||
|
||||
// InvokeHashTag
|
||||
//
|
||||
// InvokeHash(H, const T&) invokes the appropriate hash implementation for a
|
||||
// hasher of type `H` and a value of type `T`. If `T` is not hashable, there
|
||||
// will be no matching overload of InvokeHash().
|
||||
// Note: Some platforms (eg MSVC) do not support the detect idiom on
|
||||
// std::hash. In those platforms the last fallback will be std::hash and
|
||||
// InvokeHash() will always have a valid overload even if std::hash<T> is not
|
||||
// valid.
|
||||
//
|
||||
// We try the following options in order:
|
||||
// * If is_uniquely_represented, hash bytes directly.
|
||||
// * ADL AbslHashValue(H, const T&) call.
|
||||
// * std::hash<T>
|
||||
|
||||
// In MSVC we can't probe std::hash or stdext::hash because it triggers a
|
||||
// static_assert instead of failing substitution.
|
||||
#if defined(_MSC_VER) |
||||
#undef ABSL_HASH_INTERNAL_CAN_POISON_ |
||||
#else // _MSC_VER
|
||||
#define ABSL_HASH_INTERNAL_CAN_POISON_ 1 |
||||
#endif // _MSC_VER
|
||||
|
||||
#if defined(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE) && \ |
||||
ABSL_HASH_INTERNAL_CAN_POISON_ |
||||
#define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 1 |
||||
#endif |
||||
|
||||
enum class InvokeHashTag { |
||||
kUniquelyRepresented, |
||||
kHashValue, |
||||
#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
||||
kLegacyHash, |
||||
#endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
|
||||
kStdHash, |
||||
kNone |
||||
}; |
||||
|
||||
// HashSelect
|
||||
//
|
||||
// Type trait to select the appropriate hash implementation to use.
|
||||
// HashSelect<T>::value is an instance of InvokeHashTag that indicates the best
|
||||
// available hashing mechanism.
|
||||
// See `Note` above about MSVC.
|
||||
template <typename T> |
||||
struct HashSelect { |
||||
private: |
||||
struct State : HashStateBase<State> { |
||||
static State combine_contiguous(State hash_state, const unsigned char*, |
||||
size_t); |
||||
using State::HashStateBase::combine_contiguous; |
||||
}; |
||||
|
||||
// `Probe<V, Tag>::value` evaluates to `V<T>::value` if it is a valid
|
||||
// expression, and `false` otherwise.
|
||||
// `Probe<V, Tag>::tag` always evaluates to `Tag`.
|
||||
template <template <typename> class V, InvokeHashTag Tag> |
||||
struct Probe { |
||||
private: |
||||
template <typename U, typename std::enable_if<V<U>::value, int>::type = 0> |
||||
static std::true_type Test(int); |
||||
template <typename U> |
||||
static std::false_type Test(char); |
||||
|
||||
public: |
||||
static constexpr InvokeHashTag kTag = Tag; |
||||
static constexpr bool value = decltype( |
||||
Test<absl::remove_const_t<absl::remove_reference_t<T>>>(0))::value; |
||||
}; |
||||
|
||||
template <typename U> |
||||
using ProbeUniquelyRepresented = is_uniquely_represented<U>; |
||||
|
||||
template <typename U> |
||||
using ProbeHashValue = |
||||
std::is_same<State, decltype(AbslHashValue(std::declval<State>(), |
||||
std::declval<const U&>()))>; |
||||
|
||||
#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
||||
template <typename U> |
||||
using ProbeLegacyHash = |
||||
std::is_convertible<decltype(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash< |
||||
U>()(std::declval<const U&>())), |
||||
size_t>; |
||||
#endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
|
||||
|
||||
template <typename U> |
||||
using ProbeStdHash = |
||||
#if ABSL_HASH_INTERNAL_CAN_POISON_ |
||||
std::is_convertible<decltype(std::hash<U>()(std::declval<const U&>())), |
||||
size_t>; |
||||
#else // ABSL_HASH_INTERNAL_CAN_POISON_
|
||||
std::true_type; |
||||
#endif // ABSL_HASH_INTERNAL_CAN_POISON_
|
||||
|
||||
template <typename U> |
||||
using ProbeNone = std::true_type; |
||||
|
||||
public: |
||||
// Probe each implementation in order.
|
||||
// disjunction provides short circuting wrt instantiation.
|
||||
static constexpr InvokeHashTag value = absl::disjunction< |
||||
Probe<ProbeUniquelyRepresented, InvokeHashTag::kUniquelyRepresented>, |
||||
Probe<ProbeHashValue, InvokeHashTag::kHashValue>, |
||||
#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
||||
Probe<ProbeLegacyHash, InvokeHashTag::kLegacyHash>, |
||||
#endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
|
||||
Probe<ProbeStdHash, InvokeHashTag::kStdHash>, |
||||
Probe<ProbeNone, InvokeHashTag::kNone>>::kTag; |
||||
}; |
||||
|
||||
template <typename T> |
||||
struct is_hashable : std::integral_constant<bool, HashSelect<T>::value != |
||||
InvokeHashTag::kNone> {}; |
||||
|
||||
template <typename H, typename T> |
||||
absl::enable_if_t<HashSelect<T>::value == InvokeHashTag::kUniquelyRepresented, |
||||
H> |
||||
InvokeHash(H state, const T& value) { |
||||
return hash_internal::hash_bytes(std::move(state), value); |
||||
} |
||||
|
||||
template <typename H, typename T> |
||||
absl::enable_if_t<HashSelect<T>::value == InvokeHashTag::kHashValue, H> |
||||
InvokeHash(H state, const T& value) { |
||||
return AbslHashValue(std::move(state), value); |
||||
} |
||||
|
||||
#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
||||
template <typename H, typename T> |
||||
absl::enable_if_t<HashSelect<T>::value == InvokeHashTag::kLegacyHash, H> |
||||
InvokeHash(H state, const T& value) { |
||||
return hash_internal::hash_bytes( |
||||
std::move(state), ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>{}(value)); |
||||
} |
||||
#endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
|
||||
|
||||
template <typename H, typename T> |
||||
absl::enable_if_t<HashSelect<T>::value == InvokeHashTag::kStdHash, H> |
||||
InvokeHash(H state, const T& value) { |
||||
return hash_internal::hash_bytes(std::move(state), std::hash<T>{}(value)); |
||||
} |
||||
|
||||
// CityHashState
|
||||
class CityHashState : public HashStateBase<CityHashState> { |
||||
// absl::uint128 is not an alias or a thin wrapper around the intrinsic.
|
||||
// We use the intrinsic when available to improve performance.
|
||||
#ifdef ABSL_HAVE_INTRINSIC_INT128 |
||||
using uint128 = __uint128_t; |
||||
#else // ABSL_HAVE_INTRINSIC_INT128
|
||||
using uint128 = absl::uint128; |
||||
#endif // ABSL_HAVE_INTRINSIC_INT128
|
||||
|
||||
static constexpr uint64_t kMul = |
||||
sizeof(size_t) == 4 ? uint64_t{0xcc9e2d51} : uint64_t{0x9ddfea08eb382d69}; |
||||
|
||||
template <typename T> |
||||
using IntegralFastPath = |
||||
conjunction<std::is_integral<T>, is_uniquely_represented<T>>; |
||||
|
||||
public: |
||||
// Move only
|
||||
CityHashState(CityHashState&&) = default; |
||||
CityHashState& operator=(CityHashState&&) = default; |
||||
|
||||
// CityHashState::combine_contiguous()
|
||||
//
|
||||
// Fundamental base case for hash recursion: mixes the given range of bytes
|
||||
// into the hash state.
|
||||
static CityHashState combine_contiguous(CityHashState hash_state, |
||||
const unsigned char* first, |
||||
size_t size) { |
||||
return CityHashState( |
||||
CombineContiguousImpl(hash_state.state_, first, size, |
||||
std::integral_constant<int, sizeof(size_t)>{})); |
||||
} |
||||
using CityHashState::HashStateBase::combine_contiguous; |
||||
|
||||
// CityHashState::hash()
|
||||
//
|
||||
// For performance reasons in non-opt mode, we specialize this for
|
||||
// integral types.
|
||||
// Otherwise we would be instantiating and calling dozens of functions for
|
||||
// something that is just one multiplication and a couple xor's.
|
||||
// The result should be the same as running the whole algorithm, but faster.
|
||||
template <typename T, absl::enable_if_t<IntegralFastPath<T>::value, int> = 0> |
||||
static size_t hash(T value) { |
||||
return static_cast<size_t>(Mix(Seed(), static_cast<uint64_t>(value))); |
||||
} |
||||
|
||||
// Overload of CityHashState::hash()
|
||||
template <typename T, absl::enable_if_t<!IntegralFastPath<T>::value, int> = 0> |
||||
static size_t hash(const T& value) { |
||||
return static_cast<size_t>(combine(CityHashState{}, value).state_); |
||||
} |
||||
|
||||
private: |
||||
// Invoked only once for a given argument; that plus the fact that this is
|
||||
// move-only ensures that there is only one non-moved-from object.
|
||||
CityHashState() : state_(Seed()) {} |
||||
|
||||
// Workaround for MSVC bug.
|
||||
// We make the type copyable to fix the calling convention, even though we
|
||||
// never actually copy it. Keep it private to not affect the public API of the
|
||||
// type.
|
||||
CityHashState(const CityHashState&) = default; |
||||
|
||||
explicit CityHashState(uint64_t state) : state_(state) {} |
||||
|
||||
// Implementation of the base case for combine_contiguous where we actually
|
||||
// mix the bytes into the state.
|
||||
// Dispatch to different implementations of the combine_contiguous depending
|
||||
// on the value of `sizeof(size_t)`.
|
||||
static uint64_t CombineContiguousImpl(uint64_t state, |
||||
const unsigned char* first, size_t len, |
||||
std::integral_constant<int, 4> |
||||
/* sizeof_size_t */); |
||||
static uint64_t CombineContiguousImpl(uint64_t state, |
||||
const unsigned char* first, size_t len, |
||||
std::integral_constant<int, 8> |
||||
/* sizeof_size_t*/); |
||||
|
||||
// Reads 9 to 16 bytes from p.
|
||||
// The first 8 bytes are in .first, the rest (zero padded) bytes are in
|
||||
// .second.
|
||||
static std::pair<uint64_t, uint64_t> Read9To16(const unsigned char* p, |
||||
size_t len) { |
||||
uint64_t high = little_endian::Load64(p + len - 8); |
||||
return {little_endian::Load64(p), high >> (128 - len * 8)}; |
||||
} |
||||
|
||||
// Reads 4 to 8 bytes from p. Zero pads to fill uint64_t.
|
||||
static uint64_t Read4To8(const unsigned char* p, size_t len) { |
||||
return (static_cast<uint64_t>(little_endian::Load32(p + len - 4)) |
||||
<< (len - 4) * 8) | |
||||
little_endian::Load32(p); |
||||
} |
||||
|
||||
// Reads 1 to 3 bytes from p. Zero pads to fill uint32_t.
|
||||
static uint32_t Read1To3(const unsigned char* p, size_t len) { |
||||
return static_cast<uint32_t>((p[0]) | //
|
||||
(p[len / 2] << (len / 2 * 8)) | //
|
||||
(p[len - 1] << ((len - 1) * 8))); |
||||
} |
||||
|
||||
ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Mix(uint64_t state, uint64_t v) { |
||||
using MultType = |
||||
absl::conditional_t<sizeof(size_t) == 4, uint64_t, uint128>; |
||||
// We do the addition in 64-bit space to make sure the 128-bit
|
||||
// multiplication is fast. If we were to do it as MultType the compiler has
|
||||
// to assume that the high word is non-zero and needs to perform 2
|
||||
// multiplications instead of one.
|
||||
MultType m = state + v; |
||||
m *= kMul; |
||||
return static_cast<uint64_t>(m ^ (m >> (sizeof(m) * 8 / 2))); |
||||
} |
||||
|
||||
// Seed()
|
||||
//
|
||||
// A non-deterministic seed.
|
||||
//
|
||||
// The current purpose of this seed is to generate non-deterministic results
|
||||
// and prevent having users depend on the particular hash values.
|
||||
// It is not meant as a security feature right now, but it leaves the door
|
||||
// open to upgrade it to a true per-process random seed. A true random seed
|
||||
// costs more and we don't need to pay for that right now.
|
||||
//
|
||||
// On platforms with ASLR, we take advantage of it to make a per-process
|
||||
// random value.
|
||||
// See https://en.wikipedia.org/wiki/Address_space_layout_randomization
|
||||
//
|
||||
// On other platforms this is still going to be non-deterministic but most
|
||||
// probably per-build and not per-process.
|
||||
ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Seed() { |
||||
return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(kSeed)); |
||||
} |
||||
static const void* const kSeed; |
||||
|
||||
uint64_t state_; |
||||
}; |
||||
|
||||
// CityHashState::CombineContiguousImpl()
|
||||
inline uint64_t CityHashState::CombineContiguousImpl( |
||||
uint64_t state, const unsigned char* first, size_t len, |
||||
std::integral_constant<int, 4> /* sizeof_size_t */) { |
||||
// For large values we use CityHash, for small ones we just use a
|
||||
// multiplicative hash.
|
||||
uint64_t v; |
||||
if (len > 8) { |
||||
v = absl::hash_internal::CityHash32(reinterpret_cast<const char*>(first), len); |
||||
} else if (len >= 4) { |
||||
v = Read4To8(first, len); |
||||
} else if (len > 0) { |
||||
v = Read1To3(first, len); |
||||
} else { |
||||
// Empty ranges have no effect.
|
||||
return state; |
||||
} |
||||
return Mix(state, v); |
||||
} |
||||
|
||||
// Overload of CityHashState::CombineContiguousImpl()
|
||||
inline uint64_t CityHashState::CombineContiguousImpl( |
||||
uint64_t state, const unsigned char* first, size_t len, |
||||
std::integral_constant<int, 8> /* sizeof_size_t */) { |
||||
// For large values we use CityHash, for small ones we just use a
|
||||
// multiplicative hash.
|
||||
uint64_t v; |
||||
if (len > 16) { |
||||
v = absl::hash_internal::CityHash64(reinterpret_cast<const char*>(first), len); |
||||
} else if (len > 8) { |
||||
auto p = Read9To16(first, len); |
||||
state = Mix(state, p.first); |
||||
v = p.second; |
||||
} else if (len >= 4) { |
||||
v = Read4To8(first, len); |
||||
} else if (len > 0) { |
||||
v = Read1To3(first, len); |
||||
} else { |
||||
// Empty ranges have no effect.
|
||||
return state; |
||||
} |
||||
return Mix(state, v); |
||||
} |
||||
|
||||
|
||||
struct AggregateBarrier {}; |
||||
|
||||
// HashImpl
|
||||
|
||||
// Add a private base class to make sure this type is not an aggregate.
|
||||
// Aggregates can be aggregate initialized even if the default constructor is
|
||||
// deleted.
|
||||
struct PoisonedHash : private AggregateBarrier { |
||||
PoisonedHash() = delete; |
||||
PoisonedHash(const PoisonedHash&) = delete; |
||||
PoisonedHash& operator=(const PoisonedHash&) = delete; |
||||
}; |
||||
|
||||
template <typename T> |
||||
struct HashImpl { |
||||
size_t operator()(const T& value) const { return CityHashState::hash(value); } |
||||
}; |
||||
|
||||
template <typename T> |
||||
struct Hash |
||||
: absl::conditional_t<is_hashable<T>::value, HashImpl<T>, PoisonedHash> {}; |
||||
|
||||
template <typename H> |
||||
template <typename T, typename... Ts> |
||||
H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) { |
||||
return H::combine(hash_internal::InvokeHash(std::move(state), value), |
||||
values...); |
||||
} |
||||
|
||||
// HashStateBase::combine_contiguous()
|
||||
template <typename H> |
||||
template <typename T> |
||||
H HashStateBase<H>::combine_contiguous(H state, const T* data, size_t size) { |
||||
return hash_internal::hash_range_or_bytes(std::move(state), data, size); |
||||
} |
||||
} // namespace hash_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_HASH_INTERNAL_HASH_H_
|
@ -0,0 +1,23 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <cstdlib> |
||||
|
||||
#include "absl/hash/hash.h" |
||||
|
||||
// Prints the hash of argv[1].
|
||||
int main(int argc, char** argv) { |
||||
if (argc < 2) return 1; |
||||
printf("%zu\n", absl::Hash<int>{}(std::atoi(argv[1]))); // NOLINT
|
||||
} |
@ -0,0 +1,218 @@ |
||||
// Copyright 2018 The Abseil Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#ifndef ABSL_HASH_INTERNAL_SPY_HASH_STATE_H_ |
||||
#define ABSL_HASH_INTERNAL_SPY_HASH_STATE_H_ |
||||
|
||||
#include <ostream> |
||||
#include <string> |
||||
#include <vector> |
||||
|
||||
#include "absl/hash/hash.h" |
||||
#include "absl/strings/match.h" |
||||
#include "absl/strings/str_format.h" |
||||
#include "absl/strings/str_join.h" |
||||
|
||||
namespace absl { |
||||
namespace hash_internal { |
||||
|
||||
// SpyHashState is an implementation of the HashState API that simply
|
||||
// accumulates all input bytes in an internal buffer. This makes it useful
|
||||
// for testing AbslHashValue overloads (so long as they are templated on the
|
||||
// HashState parameter), since it can report the exact hash representation
|
||||
// that the AbslHashValue overload produces.
|
||||
//
|
||||
// Sample usage:
|
||||
// EXPECT_EQ(SpyHashState::combine(SpyHashState(), foo),
|
||||
// SpyHashState::combine(SpyHashState(), bar));
|
||||
template <typename T> |
||||
class SpyHashStateImpl : public HashStateBase<SpyHashStateImpl<T>> { |
||||
public: |
||||
SpyHashStateImpl() |
||||
: error_(std::make_shared<absl::optional<std::string>>()) { |
||||
static_assert(std::is_void<T>::value, ""); |
||||
} |
||||
|
||||
// Move-only
|
||||
SpyHashStateImpl(const SpyHashStateImpl&) = delete; |
||||
SpyHashStateImpl& operator=(const SpyHashStateImpl&) = delete; |
||||
|
||||
SpyHashStateImpl(SpyHashStateImpl&& other) noexcept { |
||||
*this = std::move(other); |
||||
} |
||||
|
||||
SpyHashStateImpl& operator=(SpyHashStateImpl&& other) noexcept { |
||||
hash_representation_ = std::move(other.hash_representation_); |
||||
error_ = other.error_; |
||||
moved_from_ = other.moved_from_; |
||||
other.moved_from_ = true; |
||||
return *this; |
||||
} |
||||
|
||||
template <typename U> |
||||
SpyHashStateImpl(SpyHashStateImpl<U>&& other) { // NOLINT
|
||||
hash_representation_ = std::move(other.hash_representation_); |
||||
error_ = other.error_; |
||||
moved_from_ = other.moved_from_; |
||||
other.moved_from_ = true; |
||||
} |
||||
|
||||
template <typename A, typename... Args> |
||||
static SpyHashStateImpl combine(SpyHashStateImpl s, const A& a, |
||||
const Args&... args) { |
||||
// Pass an instance of SpyHashStateImpl<A> when trying to combine `A`. This
|
||||
// allows us to test that the user only uses this instance for combine calls
|
||||
// and does not call AbslHashValue directly.
|
||||
// See AbslHashValue implementation at the bottom.
|
||||
s = SpyHashStateImpl<A>::HashStateBase::combine(std::move(s), a); |
||||
return SpyHashStateImpl::combine(std::move(s), args...); |
||||
} |
||||
static SpyHashStateImpl combine(SpyHashStateImpl s) { |
||||
if (direct_absl_hash_value_error_) { |
||||
*s.error_ = "AbslHashValue should not be invoked directly."; |
||||
} else if (s.moved_from_) { |
||||
*s.error_ = "Used moved-from instance of the hash state object."; |
||||
} |
||||
return s; |
||||
} |
||||
|
||||
static void SetDirectAbslHashValueError() { |
||||
direct_absl_hash_value_error_ = true; |
||||
} |
||||
|
||||
// Two SpyHashStateImpl objects are equal if they hold equal hash
|
||||
// representations.
|
||||
friend bool operator==(const SpyHashStateImpl& lhs, |
||||
const SpyHashStateImpl& rhs) { |
||||
return lhs.hash_representation_ == rhs.hash_representation_; |
||||
} |
||||
|
||||
friend bool operator!=(const SpyHashStateImpl& lhs, |
||||
const SpyHashStateImpl& rhs) { |
||||
return !(lhs == rhs); |
||||
} |
||||
|
||||
enum class CompareResult { |
||||
kEqual, |
||||
kASuffixB, |
||||
kBSuffixA, |
||||
kUnequal, |
||||
}; |
||||
|
||||
static CompareResult Compare(const SpyHashStateImpl& a, |
||||
const SpyHashStateImpl& b) { |
||||
const std::string a_flat = absl::StrJoin(a.hash_representation_, ""); |
||||
const std::string b_flat = absl::StrJoin(b.hash_representation_, ""); |
||||
if (a_flat == b_flat) return CompareResult::kEqual; |
||||
if (absl::EndsWith(a_flat, b_flat)) return CompareResult::kBSuffixA; |
||||
if (absl::EndsWith(b_flat, a_flat)) return CompareResult::kASuffixB; |
||||
return CompareResult::kUnequal; |
||||
} |
||||
|
||||
// operator<< prints the hash representation as a hex and ASCII dump, to
|
||||
// facilitate debugging.
|
||||
friend std::ostream& operator<<(std::ostream& out, |
||||
const SpyHashStateImpl& hash_state) { |
||||
out << "[\n"; |
||||
for (auto& s : hash_state.hash_representation_) { |
||||
size_t offset = 0; |
||||
for (char c : s) { |
||||
if (offset % 16 == 0) { |
||||
out << absl::StreamFormat("\n0x%04x: ", offset); |
||||
} |
||||
if (offset % 2 == 0) { |
||||
out << " "; |
||||
} |
||||
out << absl::StreamFormat("%02x", c); |
||||
++offset; |
||||
} |
||||
out << "\n"; |
||||
} |
||||
return out << "]"; |
||||
} |
||||
|
||||
// The base case of the combine recursion, which writes raw bytes into the
|
||||
// internal buffer.
|
||||
static SpyHashStateImpl combine_contiguous(SpyHashStateImpl hash_state, |
||||
const unsigned char* begin, |
||||
size_t size) { |
||||
hash_state.hash_representation_.emplace_back( |
||||
reinterpret_cast<const char*>(begin), size); |
||||
return hash_state; |
||||
} |
||||
|
||||
using SpyHashStateImpl::HashStateBase::combine_contiguous; |
||||
|
||||
absl::optional<std::string> error() const { |
||||
if (moved_from_) { |
||||
return "Returned a moved-from instance of the hash state object."; |
||||
} |
||||
return *error_; |
||||
} |
||||
|
||||
private: |
||||
template <typename U> |
||||
friend class SpyHashStateImpl; |
||||
|
||||
// This is true if SpyHashStateImpl<T> has been passed to a call of
|
||||
// AbslHashValue with the wrong type. This detects that the user called
|
||||
// AbslHashValue directly (because the hash state type does not match).
|
||||
static bool direct_absl_hash_value_error_; |
||||
|
||||
|
||||
std::vector<std::string> hash_representation_; |
||||
// This is a shared_ptr because we want all instances of the particular
|
||||
// SpyHashState run to share the field. This way we can set the error for
|
||||
// use-after-move and all the copies will see it.
|
||||
std::shared_ptr<absl::optional<std::string>> error_; |
||||
bool moved_from_ = false; |
||||
}; |
||||
|
||||
template <typename T> |
||||
bool SpyHashStateImpl<T>::direct_absl_hash_value_error_; |
||||
|
||||
template <bool& B> |
||||
struct OdrUse { |
||||
constexpr OdrUse() {} |
||||
bool& b = B; |
||||
}; |
||||
|
||||
template <void (*)()> |
||||
struct RunOnStartup { |
||||
static bool run; |
||||
static constexpr OdrUse<run> kOdrUse{}; |
||||
}; |
||||
|
||||
template <void (*f)()> |
||||
bool RunOnStartup<f>::run = (f(), true); |
||||
|
||||
template < |
||||
typename T, typename U, |
||||
// Only trigger for when (T != U),
|
||||
absl::enable_if_t<!std::is_same<T, U>::value, int> = 0, |
||||
// This statement works in two ways:
|
||||
// - First, it instantiates RunOnStartup and forces the initialization of
|
||||
// `run`, which set the global variable.
|
||||
// - Second, it triggers a SFINAE error disabling the overload to prevent
|
||||
// compile time errors. If we didn't disable the overload we would get
|
||||
// ambiguous overload errors, which we don't want.
|
||||
int = RunOnStartup<SpyHashStateImpl<T>::SetDirectAbslHashValueError>::run> |
||||
void AbslHashValue(SpyHashStateImpl<T>, const U&); |
||||
|
||||
using SpyHashState = SpyHashStateImpl<void>; |
||||
|
||||
} // namespace hash_internal
|
||||
} // namespace absl
|
||||
|
||||
#endif // ABSL_HASH_INTERNAL_SPY_HASH_STATE_H_
|
Loading…
Reference in new issue