Reorganize InlineData into an inner Rep structure.

This moves inlined code around a bit without changing anything bar the names of things. The purpose for all this is that it greatly simplifies the process of adding memory poisining to Cord / InlineData. InlineData can have scoped poison / unpoison regions around the interface, calling into rep for the 'real code'. I.e.:

Rep::as_chars() { return &inline_data[1]; }

InlineData::as_chars() {
  Unpoisoned self(this);
  return rep_.as_chars();
}

Likewise, it greatly simplifies intercepting the code for constructors, copy constructors and operator= logic.

PiperOrigin-RevId: 480893031
Change-Id: I050c88caff2315939d95a0361ae20528be36a96b
pull/1298/head
Martijn Vels 2 years ago committed by Copybara-Service
parent fbe4660185
commit 3af3e6386d
  1. 244
      absl/strings/internal/cord_internal.h

@ -425,12 +425,12 @@ constexpr char GetOrNull(absl::string_view data, size_t pos) {
// We store cordz_info as 64 bit pointer value in little endian format. This
// guarantees that the least significant byte of cordz_info matches the first
// byte of the inline data representation in as_chars_, which holds the inlined
// size or the 'is_tree' bit.
// byte of the inline data representation in `inline_data`, which holds the
// inlined size or the 'is_tree' bit.
using cordz_info_t = int64_t;
// Assert that the `cordz_info` pointer value perfectly overlaps the last half
// of `as_chars_` and can hold a pointer value.
// Assert that the `cordz_info` pointer value perfectly overlaps the first half
// of `inline_data` and can hold a pointer value.
static_assert(sizeof(cordz_info_t) * 2 == kMaxInline + 1, "");
static_assert(sizeof(cordz_info_t) >= sizeof(intptr_t), "");
@ -461,138 +461,85 @@ class InlineData {
// is actively inspected and used by gdb pretty printing code.
static constexpr size_t kTagOffset = 0;
constexpr InlineData() : as_chars_{0} {}
explicit InlineData(DefaultInitType) {}
explicit constexpr InlineData(CordRep* rep) : as_tree_(rep) {}
explicit constexpr InlineData(absl::string_view chars)
: as_chars_{static_cast<char>((chars.size() << 1)),
GetOrNull(chars, 0),
GetOrNull(chars, 1),
GetOrNull(chars, 2),
GetOrNull(chars, 3),
GetOrNull(chars, 4),
GetOrNull(chars, 5),
GetOrNull(chars, 6),
GetOrNull(chars, 7),
GetOrNull(chars, 8),
GetOrNull(chars, 9),
GetOrNull(chars, 10),
GetOrNull(chars, 11),
GetOrNull(chars, 12),
GetOrNull(chars, 13),
GetOrNull(chars, 14)} {}
constexpr InlineData() = default;
explicit InlineData(DefaultInitType init) : rep_(init) {}
explicit constexpr InlineData(CordRep* tree) : rep_(tree) {}
explicit constexpr InlineData(absl::string_view chars) : rep_(chars) {}
// Returns true if the current instance is empty.
// The 'empty value' is an inlined data value of zero length.
bool is_empty() const { return tag() == 0; }
bool is_empty() const { return rep_.is_empty(); }
// Returns true if the current instance holds a tree value.
bool is_tree() const { return (tag() & 1) != 0; }
bool is_tree() const { return rep_.is_tree(); }
// Returns true if the current instance holds a cordz_info value.
// Requires the current instance to hold a tree value.
bool is_profiled() const {
assert(is_tree());
return as_tree_.cordz_info != kNullCordzInfo;
}
bool is_profiled() const { return rep_.is_profiled(); }
// Returns true if either of the provided instances hold a cordz_info value.
// This method is more efficient than the equivalent `data1.is_profiled() ||
// data2.is_profiled()`. Requires both arguments to hold a tree.
static bool is_either_profiled(const InlineData& data1,
const InlineData& data2) {
assert(data1.is_tree() && data2.is_tree());
return (data1.as_tree_.cordz_info | data2.as_tree_.cordz_info) !=
kNullCordzInfo;
return Rep::is_either_profiled(data1.rep_, data2.rep_);
}
// Returns the cordz_info sampling instance for this instance, or nullptr
// if the current instance is not sampled and does not have CordzInfo data.
// Requires the current instance to hold a tree value.
CordzInfo* cordz_info() const {
assert(is_tree());
intptr_t info = static_cast<intptr_t>(absl::little_endian::ToHost64(
static_cast<uint64_t>(as_tree_.cordz_info)));
assert(info & 1);
return reinterpret_cast<CordzInfo*>(info - 1);
}
CordzInfo* cordz_info() const { return rep_.cordz_info(); }
// Sets the current cordz_info sampling instance for this instance, or nullptr
// if the current instance is not sampled and does not have CordzInfo data.
// Requires the current instance to hold a tree value.
void set_cordz_info(CordzInfo* cordz_info) {
assert(is_tree());
uintptr_t info = reinterpret_cast<uintptr_t>(cordz_info) | 1;
as_tree_.cordz_info =
static_cast<cordz_info_t>(absl::little_endian::FromHost64(info));
rep_.set_cordz_info(cordz_info);
}
// Resets the current cordz_info to null / empty.
void clear_cordz_info() {
assert(is_tree());
as_tree_.cordz_info = kNullCordzInfo;
}
void clear_cordz_info() { rep_.clear_cordz_info(); }
// Returns a read only pointer to the character data inside this instance.
// Requires the current instance to hold inline data.
const char* as_chars() const {
assert(!is_tree());
return &as_chars_[1];
}
const char* as_chars() const { return rep_.as_chars(); }
// Returns a mutable pointer to the character data inside this instance.
// Should be used for 'write only' operations setting an inlined value.
// Applications can set the value of inlined data either before or after
// setting the inlined size, i.e., both of the below are valid:
// Requires the current instance to hold inline data. Applications MUST set
// the inline size BEFORE setting the value of the inline data.
//
// // Set inlined data and inline size
// memcpy(data_.as_chars(), data, size);
// // Set inlined size and inline data. (Correct way).
// data_.set_inline_size(size);
// memcpy(data_.as_chars(), data, size);
//
// // Set inlined size and inline data
// data_.set_inline_size(size);
// // The below code will lead to UB / memory sanitizer failures!
// memcpy(data_.as_chars(), data, size);
// data_.set_inline_size(size);
//
// It's an error to read from the returned pointer without a preceding write
// if the current instance does not hold inline data, i.e.: is_tree() == true.
char* as_chars() { return &as_chars_[1]; }
char* as_chars() { return rep_.as_chars(); }
// Returns the tree value of this value.
// Requires the current instance to hold a tree value.
CordRep* as_tree() const {
assert(is_tree());
return as_tree_.rep;
}
CordRep* as_tree() const { return rep_.as_tree(); }
// Initialize this instance to holding the tree value `rep`,
// initializing the cordz_info to null, i.e.: 'not profiled'.
void make_tree(CordRep* rep) {
as_tree_.rep = rep;
as_tree_.cordz_info = kNullCordzInfo;
}
void make_tree(CordRep* tree) { rep_.make_tree(tree); }
// Set the tree value of this instance to 'rep`.
// Requires the current instance to already hold a tree value.
// Does not affect the value of cordz_info.
void set_tree(CordRep* rep) {
assert(is_tree());
as_tree_.rep = rep;
}
void set_tree(CordRep* rep) { rep_.set_tree(rep); }
// Returns the size of the inlined character data inside this instance.
// Requires the current instance to hold inline data.
size_t inline_size() const {
assert(!is_tree());
return static_cast<size_t>(tag()) >> 1;
}
size_t inline_size() const { return rep_.inline_size(); }
// Sets the size of the inlined character data inside this instance.
// Requires `size` to be <= kMaxInline.
// See the documentation on 'as_chars()' for more information and examples.
void set_inline_size(size_t size) {
ABSL_ASSERT(size <= kMaxInline);
tag() = static_cast<char>(size << 1);
}
void set_inline_size(size_t size) { rep_.set_inline_size(size); }
// Compares 'this' inlined data with rhs. The comparison is a straightforward
// lexicographic comparison. `Compare()` returns values as follows:
@ -602,14 +549,14 @@ class InlineData {
// 1 'this' InlineData instance larger
int Compare(const InlineData& rhs) const {
uint64_t x, y;
memcpy(&x, as_chars(), sizeof(x));
memcpy(&y, rhs.as_chars(), sizeof(y));
memcpy(&x, rep_.as_chars(), sizeof(x));
memcpy(&y, rhs.rep_.as_chars(), sizeof(y));
if (x == y) {
memcpy(&x, as_chars() + 7, sizeof(x));
memcpy(&y, rhs.as_chars() + 7, sizeof(y));
memcpy(&x, rep_.as_chars() + 7, sizeof(x));
memcpy(&y, rhs.rep_.as_chars() + 7, sizeof(y));
if (x == y) {
if (inline_size() == rhs.inline_size()) return 0;
return inline_size() < rhs.inline_size() ? -1 : 1;
if (rep_.inline_size() == rhs.rep_.inline_size()) return 0;
return rep_.inline_size() < rhs.rep_.inline_size() ? -1 : 1;
}
}
x = absl::big_endian::FromHost64(x);
@ -618,24 +565,115 @@ class InlineData {
}
private:
// See cordz_info_t for forced alignment and size of `cordz_info` details.
struct AsTree {
explicit constexpr AsTree(absl::cord_internal::CordRep* tree) : rep(tree) {}
cordz_info_t cordz_info = kNullCordzInfo;
absl::cord_internal::CordRep* rep;
};
struct Rep {
constexpr Rep() : inline_data{0} {}
explicit Rep(DefaultInitType) {}
explicit constexpr Rep(CordRep* rep) : tree_data(rep) {}
explicit constexpr Rep(absl::string_view chars)
: inline_data{static_cast<char>((chars.size() << 1)),
GetOrNull(chars, 0),
GetOrNull(chars, 1),
GetOrNull(chars, 2),
GetOrNull(chars, 3),
GetOrNull(chars, 4),
GetOrNull(chars, 5),
GetOrNull(chars, 6),
GetOrNull(chars, 7),
GetOrNull(chars, 8),
GetOrNull(chars, 9),
GetOrNull(chars, 10),
GetOrNull(chars, 11),
GetOrNull(chars, 12),
GetOrNull(chars, 13),
GetOrNull(chars, 14)} {}
int8_t& tag() { return reinterpret_cast<int8_t*>(this)[0]; }
int8_t tag() const { return reinterpret_cast<const int8_t*>(this)[0]; }
bool is_empty() const { return tag() == 0; }
bool is_tree() const { return (tag() & 1) != 0; }
bool is_profiled() const {
assert(is_tree());
return tree_data.cordz_info != kNullCordzInfo;
}
int8_t& tag() { return reinterpret_cast<int8_t*>(this)[0]; }
int8_t tag() const { return reinterpret_cast<const int8_t*>(this)[0]; }
static bool is_either_profiled(const Rep& rep1, const Rep& rep2) {
assert(rep1.is_tree() && rep2.is_tree());
return (rep1.tree_data.cordz_info | rep2.tree_data.cordz_info) !=
kNullCordzInfo;
}
// If the data has length <= kMaxInline, we store it in `as_chars_`, and
// store the size in the last char of `as_chars_` shifted left + 1.
// Else we store it in a tree and store a pointer to that tree in
// `as_tree_.rep` and store a tag in `tagged_size`.
union {
char as_chars_[kMaxInline + 1];
AsTree as_tree_;
};
CordzInfo* cordz_info() const {
assert(is_tree());
intptr_t info = static_cast<intptr_t>(absl::little_endian::ToHost64(
static_cast<uint64_t>(tree_data.cordz_info)));
assert(info & 1);
return reinterpret_cast<CordzInfo*>(info - 1);
}
void set_cordz_info(CordzInfo* cordz_info) {
assert(is_tree());
uintptr_t info = reinterpret_cast<uintptr_t>(cordz_info) | 1;
tree_data.cordz_info =
static_cast<cordz_info_t>(absl::little_endian::FromHost64(info));
}
void clear_cordz_info() {
assert(is_tree());
tree_data.cordz_info = kNullCordzInfo;
}
char* as_chars() { return &inline_data[1]; }
const char* as_chars() const {
assert(!is_tree());
return &inline_data[1];
}
CordRep* as_tree() const {
assert(is_tree());
return tree_data.rep;
}
void make_tree(CordRep* rep) {
tree_data.rep = rep;
tree_data.cordz_info = kNullCordzInfo;
}
void set_tree(CordRep* rep) {
assert(is_tree());
tree_data.rep = rep;
}
size_t inline_size() const {
assert(!is_tree());
return static_cast<size_t>(tag()) >> 1;
}
void set_inline_size(size_t size) {
ABSL_ASSERT(size <= kMaxInline);
tag() = static_cast<char>(size << 1);
}
struct AsTree {
explicit constexpr AsTree(absl::cord_internal::CordRep* tree)
: rep(tree) {}
cordz_info_t cordz_info = kNullCordzInfo;
absl::cord_internal::CordRep* rep;
};
// If the data has length <= kMaxInline, we store it in `inline_data`, and
// store the size in the first char of `inline_data` shifted left + 1.
// Else we store it in a tree and store a pointer to that tree in
// `tree_data.rep` and store a tag in `tagged_size` which also overlaps with
// cordz_info data, i.e., cordz_info will always be odd, 1 meaning nullptr.
union {
char inline_data[kMaxInline + 1];
AsTree tree_data;
};
} rep_;
};
static_assert(sizeof(InlineData) == kMaxInline + 1, "");

Loading…
Cancel
Save